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Abstract

Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence
against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation
resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1
display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-
expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in
vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show
up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that
Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease.
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Introduction

Reactive oxygen species (ROS) are the natural by-products of

many essential biological processes such as mitochondrial

respiration, although they are also potentially damaging to cells.

Consequently, eukaryotic organisms have evolved a comprehen-

sive range of proteins to detoxify ROS and repair against any

unwanted oxidative damage to DNA, lipids or proteins. These

antioxidants include enzymatic scavengers such as superoxide

dismutase (SOD) and catalase, glutathione peroxidase (Gpx) and

peroxyredoxins, as well as non-enzymatic factors including

glutathione, flavonoids and vitamins [1–2]. Oxidative stress occurs

when the antioxidant response is insufficient to balance the

production of ROS; this state can ultimately cause cell death by

apoptosis or necrosis via an array of signalling pathways, and

many studies both in vitro and in vivo have demonstrated that the

normal function of antioxidant defence systems is vital for cell

survival [3]. For example, mouse knockouts representing the most

critical mitochondrial antioxidant genes are often lethal at the pre-

or early post-natal stage, including glutathione peroxidase 4

(Gpx4), thioredoxin 2 (Thx2) and SOD2 [4–6].

In recent years there has been a particular focus on the role of

ROS in neurons, driven by the consistent presence of various

oxidative stress markers in neurodegenerative disease, as well as

several pathogenic mutations in proteins that feature prominently

in antioxidant pathways [3]. Furthermore, it appears that the

brain is more vulnerable to ROS damage compared to other

organs due to its high metabolic rate combined with a relatively

low concentration of antioxidant proteins [7]. Indeed, oxidative

stress and mitochondrial dysfunction have been implicated in all

major neurodegenerative disorders, including amyotrophic lateral

sclerosis (ALS), Parkinson’s and Alzheimer’s disease (PD and AD)

[3,8–9]; yet, despite numerous attempts to recapitulate human

disease pathology in mouse models, it is unclear how the timing

and disruption of endogenous ROS defence pathways might lead

to such heterogeneous neuropathological features [10]. Conse-

quently, with speculation that the up-regulation of antioxidants

may be a practical therapeutic target for neurological disease [11],

the hunt continues for new proteins that are key players in the

oxidative stress response.

In one such search for human factors induced under oxidative

stress, Volkert et al. identified oxidation resistance 1 (OXR1) as a

novel gene that was able to suppress DNA damage in Escherichia

coli oxidative repair-deficient mutants [12]. They went on to report

that the human protein, when localised to the mitochondria, was

sufficient to prevent oxidative damage in Saccharomyces cerevisiae

mutants lacking Oxr1 [13]. Indeed, the gene is found in all

eukaryote genomes, although in lower organisms its sequence is

restricted predominantly to the highly conserved C-terminal

(TLDc) domain [14]. In humans, the TLDc domain-containing

gene family is composed of four proteins in addition to OXR1,

including nuclear receptor coactivator 7 (NCOA7) and TBC1D24

[14–15]. Significantly, a mutation in the TLDc domain of

TBC1D24 recently has been found in Familial Infantile Myoclonic

Epilepsy (FIME) [16]. The function of this domain has not been

established, yet it was originally identified as a catalytic motif [17].

Studies have demonstrated that Oxr1 is induced under oxidative

stress [13,18]; however, virtually nothing is known about this
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obviously evolutionary significant gene or the TLDc domain itself

in mammalian systems.

Here we have used a combination of in vivo and in vitro

approaches to show that the levels of Oxr1 are critical for neuronal

survival and that up-regulation occurs in both human disease and

mouse models of neurodegeneration. In addition, we demonstrate

that the conserved TLDc domain alone is sufficient to confer

functionality in the mouse. This study therefore reveals the vital

role of Oxr1 in oxidative stress-related neurodegeneration.

Results

Bella mutants display cerebellar neurodegeneration
We identified the recessive Bella (bel) mouse as part of our screen

for mouse models of human movement disorders and ataxia from

a large-scale mutagenesis programme. Bel mice are indistinguish-

able from their control littermates at 2 weeks of age (P14); however

they rapidly develop a severe ataxic gait (see Video S1), fail to gain

weight as quickly as controls, and do not survive beyond P26.

Pathological analysis of the bel CNS revealed significant and

increasing number of apoptotic cells in the granule cell (GC) layer

(GCL) of the cerebellum (Figure 1A and 1B). The onset of cell

death occurs from P18-19, after which there is a highly significant

increase in apoptotic cells in the following days (Figure 1C). No

cell death was observed in any other region of the brain or spinal

cord in end-stage mutants, however (data not shown). The relative

size, structure and foliation pattern of the cerebellum was not

affected in late-stage bel mutants as determined by quantitative

histological methods (Figure S1A, S1D, and S1E) and no

significant difference in the GCL width was observed, reflecting

the relatively small proportion of apoptotic cells in mutant mice

(Figure S1B and S1F). Purkinje cell (PC) death is frequently

associated with GC loss [19–22] therefore the relative density of

PCs was calculated from bel mice, although no reduction was

observed compared to controls (Figure S1C and S1G). Quanti-

tative histopathology of skeletal muscle was also carried out on

end-stage bel mice. A significant increase in centrally nucleated

fibres was observed in the diaphragm of mutants compared to

Figure 1. Progressive neurodegeneration in the bel mutant. (A)
Apoptotic cells are found in the granule cell layer (GCL) but not the
Purkinje cell layer (PCL) or molecular layer (ML) of the bel (bel/bel)
cerebellum from P19 as indicated by TUNEL staining. (B) Cleaved
caspase-3 immunostaining of bel cerebellum at P24 showing positive
neurons in the GCL (arrow). Sections are counterstained with cresyl
violet (Nissl) indicating condensed nuclei, also indicative of apoptotic
cells (arrowhead). (C) Temporal quantification of apoptotic cells in the
bel and heterozygous (bel/+) cerebellum. Mean total number of TUNEL
and caspase-3 positive cells from multiple parasagittal sections of the
whole cerebellum show a large increase in apoptosis at P24. Scale bars:
150 mM (A), 50 mM (B).
doi:10.1371/journal.pgen.1002338.g001

Author Summary

Oxygen is vital for life, but it can also cause damage to
cells. Consequently, protective proteins (antioxidants) are
utilised to maintain the fine balance between oxygen
metabolism and the production of potentially toxic
reactive oxygen species (ROS). If this balance is not
maintained, oxidative stress occurs and excess ROS are
generated, causing damage to DNA, proteins, and lipids.
The brain is particularly susceptible to oxidative stress, and
ROS–induced damage is a common feature of all major
neurodegenerative disorders, including amyotrophic later-
al sclerosis (ALS) and Parkinson’s disease (PD). However,
the molecular mechanisms of ROS defence in neurons are
still under investigation. Here we describe the character-
isation of oxidation resistance 1 (Oxr1), a gene previously
shown to be induced under oxidative stress. We show
both in mice and in cells that loss of Oxr1 causes cell death
and that increasing protein levels can protect against ROS.
In addition, Oxr1 is over-expressed in the spinal cord in ALS
patients, as well as in a pre-symptomatic ALS mouse
model. These data demonstrate for the first time that Oxr1
is vital for the protection of neuronal cells against oxidative
stress and that induction of Oxr1 may be relevant to
neurodegenerative pathways in disease.

Oxr1 Protects against Oxidative Stress in Neurons
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controls, indicative of muscle degeneration, but not in the tibialis

anterior (TA) or soleus muscles of the hindlimb (Figure S1H and

S1I). Heterozygous (bel/+) mice aged up to 18 months of age

display no neuropathological or gait abnormalities (data not

shown).

Bel mice contain a 193.5 kb genomic deletion spanning
the Oxr1 gene

An initial genome scan followed by further genetic mapping

using polymorphic microsatellite and SNP markers reduced the

critical region containing the bel mutation to 5.5 Mb on

chromosome 15. Unexpectedly, during candidate gene sequenc-

ing, exons representing the genes Oxr1 and Muscle Activator of

Rho Signalling (STARS or Abra [23]) could not be amplified from

bel DNA. Therefore, genomic walking using chromosomome 15-

specific PCR primers followed by inverse PCR was used to identify

the boundaries of the apparent spontaneous deletion; the missing

region was confirmed as 193.5 kb, ablating the expression of both

Oxr1 and Abra (Figure S2A and S2B). To confirm no additional

ENU-generated mutation was segregating with the bel phenotype,

all annotated coding and non-coding transcripts in the critical

region were sequenced and no mutations were identified. In

addition, qRT-PCR confirmed that the loss of potential regulatory

sequences did not influence the expression of all adjacent

transcripts within the bel critical region (data not shown).

Oxr1 is highly expressed in the developing postnatal CNS
Expression studies were then carried out to determine the

distribution of both deleted genes in the central nervous system

(CNS). In situ hybridisation and RT-PCR showed that while Oxr1

was expressed in the cerebellar GCL, Abra could not be detected in

the cerebellum or the rest of the brain (Figure 2A and Figure S3D).

Further analysis of the developmental expression patterns showed

that Oxr1 is highly expressed in all major regions of the postnatal

brain and spinal cord at the RNA level (Figure 2B and Figure

S3A), although Abra could only be detected in skeletal muscle tissue

by in situ hybridisation and RT-PCR (Figure S3B and S3D); these

data are consistent with previously published expression data on

both genes [13,23]. In the mouse, several isoforms of Oxr1 have

been described, including the shortest isoform that includes only

the TLDc domain-containing exons 10 to 16 (or 11 to 16) with a

unique first exon (exon 9) (Oxr1-C, also known as C7C [24]; for

detail see Figure S7 and Figure S3C). In situ hybridisation using

isoform-specific probes demonstrated that both the Oxr1-C and

full-length (Oxr1-FL) transcript variants showed an essentially

identical expression pattern (Figure S3E), in agreement with the

riboprobe common to both isoforms used above (Figure 2B). An

antibody raised against the same common C-terminal end of Oxr1

(Figure S7) confirmed high levels of Oxr1 protein in the brain,

with no signal in bel tissue as expected (Figure 2C); these data also

serve to demonstrate the specificity of the antibody. Taken

together, these data suggest that loss of Oxr1 and not Abra is

responsible for the neuropathology observed in bel mutants.

The bel phenotype is rescued by an Oxr1 transgene
As conclusive proof that deletion of Oxr1 causes the bel

phenotype, we performed a genetic rescue experiment with two

independent Oxr1 transgenic lines. Ubiquitous expression of the

full-length Oxr1 cDNA (Oxr1-FL) in the brain was confirmed by

in situ hybridisation in bel mutants carrying the transgene (bel/bel;

Tg(CAG-Oxr1)+/2) (Figure 3A). Animals of this genotype displayed

no ataxia or growth defects, and no cell death was detected in any

region of the brain, including the cerebellar GCL, compared to

littermates that did not contain the Oxr1 transgene (bel/bel;

Tg(CAG-Oxr1)2/2) (Figure 3B). This rescue of the bel phenotype is

maintained in bel/bel; Tg(CAG-Oxr1)+/2 mice aged to 8 months of

age (Figure 3B). These data confirm that neurodegeneration in bel

mice is caused by Oxr1.

Oxr1 levels control the susceptibility of granule cells to
oxidative stress

To demonstrate that loss of Oxr1 rendered neurons from bel

mice more vulnerable to ROS, primary GCs were assayed for

hydrogen peroxide (H2O2) sensitivity. The assay conditions were

first optimised to facilitate measurements of cell death in the

presence or absence of Oxr1 (Figure S4A). These data confirmed

Figure 2. Oxr1 is absent in bel mice but highly expressed in the
wild-type postnatal brain. (A) In situ hybridisation showing the
presence of Oxr1 but not Abra in the GCL of the cerebellum in P24
heterozygous (bel/+) mice, whereas bel mutants lack both genes. (B)
Oxr1 expression in parasagittal sections from wild-type adult and
postnatal brain by in situ hybridisation. (C) Western blot of Oxr1 from
whole brain tissue of mice of each genotype in the bel genetic cross;
the full-length protein is at approximately 85 kDa and smaller isoforms
are observed at approximately 55 and 40 kDa. Note that the specificity
of the antibody is also demonstrated by the lack of signal in tissue from
bel mice. Scale bar: 150 mM (A).
doi:10.1371/journal.pgen.1002338.g002

Oxr1 Protects against Oxidative Stress in Neurons
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that bel mutant GCs are significantly more susceptible to

exogenous peroxide-induced apoptosis than controls (Figure 4A).

To further investigate the specificity of this effect, all Oxr1 isoforms

were then knocked-down by an shRNA to ,10% of endogenous

levels in wild-type GCs, resulting in almost twice the level of cell

death compared to neurons transfected with control constructs

(Figure 4B and Figure S4B). Conversely, replacement of Oxr1 in

bel GCs by lentiviral expression rescued the level of apoptotic cell

death in H2O2-treated cells down to wild-type levels (Figure 4C

and Figure S4B); thus once again strongly suggesting that loss of

Oxr1 alone is responsible for the bel phenotype. Significantly,

lentiviral over-expression of Oxr1 in wild-type GCs lead to a

significant reduction in apoptosis compared to cells expressing

endogenous levels of the gene (Figure 4C and Figure S4B),

demonstrating that Oxr1 can also be protective to neurons

exposed to stress.

In bel end-stage mice, apoptotic cell death is specific to the

cerebellar GCL, despite high levels of expression in other brain

regions including the wild-type cortex (Figure 2B). To therefore

investigate whether loss of Oxr1 would also render non-cerebellar

neurons susceptible to oxidative damage, we assayed cell death in

primary cortical cells (CCs) from bel mice in parallel with

cerebellar GCs; both cell populations were cultured to correspond

to P14 and P21 in vivo, respectively (Figure 4D). These data show

that no increase in cell death occurs in response to peroxide

treatment in bel GCs after 7 days in culture; however, after 14 days

of culturing a significant increase in apoptosis (approximately

80%) is observed in mutant cells versus wild-type. Although similar

results were obtained from CCs, interestingly a much smaller

increase in cell death is seen (approximately 20%) in mutants at

the second timepoint (Figure 4D). This suggests that in the

cerebellum Oxr1 levels play a more defining role in neuronal

survival, consistent with the specificity of neurodegeneration in bel

mice.

Previous studies have described the presence of OXR1 in the

mitochondria of HeLa cells [13], but also in the nucleus and

nucleolus in other mammalian cell lines using a different antibody

[24]. Thus to clarify the localisation of Oxr1 in neuronal cells,

immunofluorescence was carried out in wild-type GCs. Using our

antibody, Oxr1 was not detectable in GCs unless the cells were

treated with H2O2, which clearly induced protein expression

(Figure S4C). In these treated cells, Oxr1 also co-localised with the

mitochondrial marker Cox4, consistent with published studies

[13]. To determine whether similar induction and localisation was

common to other neuronal cell lines, the localisation studies were

repeated in N2A cells, generating essentially identical results

(Figure S4C). These data demonstrate stress-induction and

predominantly mitochondrial localisation of Oxr1 in neurons.

Loss of Oxr1 induces oxidative DNA damage
In view of the link between Oxr1 and oxidative stress, we then

screened for markers of oxidative stress in bel mice. 8-OHdG

staining was detected exclusively in the mutant GCL at P24,

indicative of oxidative DNA damage (Figure 5A). In agreement

with the apoptotic markers, virtually no DNA damage was

detectable prior to P24 (Figure 5B). To further quantify DNA

fragmentation due to loss of Oxr1, the DNA strand scission factor

from GCs was calculated using a picogreen assay, showing a

significant increase in DNA breaks in bel GCs subjected to H2O2

treatment (Figure 5C). We then analysed a large range of both

direct and indirect markers of oxidative stress in addition to

antioxidant enzymes from the cerebellum of end-stage (P24) bel

mice by qRT-PCR (Figure S5A). These data identified an

approximate 70% reduction in expression of glutathione perox-

idase 1 (Gpx1) in mutants, although no other genes showed

significant differences between the genotypes (Figure S5A and

S5B). We went on to test key antioxidants at the protein level, but

found no deregulation of the protein expression or enzyme

Figure 3. Genetic rescue of the bel phenotype with an Oxr1 transgene. (A) In situ hybridisation of Oxr1 from littermates at P24 shows the
ubiquitous expression of the Oxr1 transgene (from bel/bel Tg(Oxr1)/+ sections) in the brain. Two independent lines of bel/bel Tg(Oxr1)/+ ‘rescue’ mice
display no ataxia and no apoptotic cell death in the cerebellum as shown by TUNEL staining (B) compared to control bel mice that do not express the
transgene (bel/bel+/+), demonstrating that replacement of Oxr1 is sufficient to rescue the bel phenotype. Scale bars: 2 mm (A), 150 mM (B).
doi:10.1371/journal.pgen.1002338.g003

Oxr1 Protects against Oxidative Stress in Neurons
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activities of Gpx or catalase in the bel cerebellum (Figure S5C,

S5D, S5E). Using the same assays, there was no evidence for

oxidative stress in brain regions outside of the cerebellum (data not

shown). These data combined with the 8-OHdG results suggest

that the bel cerebellum does show some signs of oxidative stress

response due to the loss of Oxr1; although these are clearly limited

in vivo by the relatively small proportion of neurons affected in end-

stage mutant animals.

The cellular and tissue data combined suggest that the effect of

Oxr1 deletion is highly specific to GCs in bel mice in vivo. We

therefore investigated whether Oxr1 may also influence sensitivity

to other cellular stress factors using serum starvation in cultured

GCs. These data show that there was a significant (approximately

7-fold) increase in apoptosis in GC neurons cultured without

serum, although no difference in the levels of cell death was

observed between bel and control GCs (Figure S6). These data

suggest that loss of Oxr1 does not influence sensitivity to all cellular

stress conditions.

The conserved TLDc domain of Oxr1 is sufficient to
confer protection against oxidative stress

As discussed above, the C-terminal TLDc domain is highly

conserved in all Oxr1 orthologues as well as being highly

Figure 4. Oxr1 regulates sensitivity of GC neurons to oxidative
stress. (A) GCs from P7 bel (bel/bel) mice cultured for 14 days show a
significant increase in apoptotic cell death compared to wild-type (+/+)
when subjected to peroxide treatment. (B) Similar results to bel GCs are
obtained under the same conditions in wild-type GCs transfected with
an Oxr1 shRNA knockdown construct, in contrast with mock transfected
(pLKO.1puro) and scrambled shRNA transfected (scr. shRNA) cells. (C)
Expression of Oxr1 in bel GCs is sufficient to rescue the peroxide
sensitivity and protect wild-type GCs from the same treatment. (D)
Primary bel GCs neurons subjected to H2O2 treatment demonstrate a
relative increase in peroxide sensitivity compared to cortical cells (CC)

when cultured to represent the same P14 and P21 timepoint. Note that
no significant difference in sensitivity to peroxide treatment is observed
in GCs after 7 days of culture between bel and wild-type mice,
consistent with the lack of cell death observed in bel mice at P14. (A–D)
Asterisks indicate statistical significance (*P,0.05, **P,0.01 and
***P,0.001; ANOVA).
doi:10.1371/journal.pgen.1002338.g004

Figure 5. Oxidative DNA damage in bel GCs. (A) 8-OHdG
immunostaining of cerebellum sections at P24 showing oxidative
DNA damage in the GCL of bel mice (arrowhead). (B) Temporal
quantification of 8-OHdG immunostaining from parasagittal sections of
the whole cerebellum showing a large increase in positive cells at P24 in
bel mice. (C) DNA fragmentation from cultured primary GCs quantified
by picogreen. A significant increase in DNA damage is seen in peroxide
treated GCs from bel mice compared to controls (**P,0.01; ANOVA).
Scale bar: 50 mM (A).
doi:10.1371/journal.pgen.1002338.g005

Oxr1 Protects against Oxidative Stress in Neurons
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expressed in the brain (Figure S3D). To therefore investigate

whether the short Oxr1-C isoform was functional in neurons, we

repeated the peroxide sensitivity assays in bel GCs using constructs

coding for this isoform as well as Oxr1-FL. In these experiments, a

bicistronic vector containing GFP was used to assay the proportion

of transfected cells that were apoptotic (Figure 6A). These data

show that, despite the removal of over 500 amino-acids from the

N-terminus, Oxr1-C is able to confer protection against oxidative

stress as efficiently as the full-length protein in both wild-type and

bel GC culture.

To determine whether the presence of only short Oxr1 isoforms

would be detrimental to neuronal survival in vivo, a gene-trap

mouse (Oxr1Gt(RRR195)Byg) was rederived containing the vector

insertion between exons 3 and 4 of Oxr1 (Figure 6B and Figure

S7); mice carrying two copies of this insertion are therefore

expected to only express shorter isoforms of the gene. Mice

homozygous for the insertion were successfully generated and the

exact position of the trap vector confirmed (Figure 6B). These mice

displayed no gait or pathological abnormalities in the CNS up to

12 months of age (data not shown) and western blotting confirmed

that the gene-trap insertion had almost completely ablated the

expression of Oxr1-FL as expected (Figure 6C). Interestingly, the

proportion of the smallest isoform (Oxr1-C at approximately

25 kDa) was much higher in these cerebellar extracts than in

whole brain (Figure 6C and Figure 2C); this is consistent with the

isoform-specific in situ hybridisation data (Figure S3E) and suggests

that Oxr1-C may play a more significant functional role in the

cerebellum than other regions of the CNS. These data

demonstrate that TLDc domain-containing Oxr1 isoforms other

than the full-length protein are functional.

Oxr1 is susceptible to oxidation by peroxide
To gain some insight for the first time into the mechanism of

Oxr1 function, taking into account the results from peroxide stress

experiments in GCs, we investigated whether Oxr1 could react

directly with H2O2. Recombinant Oxr1-C protein was purified

(Figure S8A) and an Amplex Red assay was used to quantify

decreasing H2O2 concentration in the presence of increasing

concentrations of Oxr1-C. These data demonstrate that Oxr1-C is

able to significantly decrease the H2O2 levels in a dose-dependent

manner (Figure 7A). As a negative control, the same assay was

carried out in the absence of horseradish peroxidase (HRP) that is

an essential part of the Amplex Red reaction. These data show no

change in Amplex Red signal in the presence of Oxr1-C,

suggesting that Oxr1 is not able to compensate for the HRP

activity in this assay and is therefore unlikely to possess peroxidase

activity.

We next examined whether these data could be due to direct

oxidation of the Oxr1 protein. Several amino-acids have the

potential to undergo oxidative modification [25], but we began by

analysing the oxidation state of cysteine residues considering that a

C-terminal cysteine in the TLDc domain is conserved in Oxr1-

and Ncoa7-related sequences found in human, mouse, fly and

yeast (Cys753 in mouse Oxr1; Figure S8B). To quantify the

oxidation of sulfhydryl (SH) side chains, recombinant wild-type

Oxr1-C protein was incubated with H2O2 and then reacted with

ThioGlo-1, a thiol-active fluorophore [26]. Samples were then

separated by gel electrophoresis followed by densitometric analysis

(Figure 7B and 7C). These data show that a significant loss of thiol

labelling in Oxr1-C of approximately 2-fold occurs in the presence

of H2O2, indicating that oxidation of free SH groups is taking

place. To further examine the significance of cysteine residues in

the TLDc domain of Oxr1, the conserved cysteine was mutated

(C753A) and the recombinant protein assayed as above (Figure 7B

and 7C and Figure S8A). Independently, a second cysteine found

in Oxr1 proteins in vertebrates but not the related Ncoa7 was also

mutated and analysed (C704A; Figure 7B and 7C, Figure S8A).

Peroxide-treated C704A Oxr1-C showed a similar 2-fold reduc-

tion in ThioGlo-1 labelling as wild-type Oxr1-C; however, the

C753A mutant protein showed a non-significant loss of fluores-

cence, suggesting that this particular cysteine is more important for

the oxidation state of Oxr1 than C704 (Figure 7B and 7C). As a

Figure 6. The shortest TLDc domain-containing Oxr1 isoform is
able to confer resistance to oxidative stress in vitro and in vivo.
(A) GCs were cultured as above and transfected with Oxr1-FL or –C
constructs in an IRES-GFP expression vector. After peroxide treatment,
the proportion of cells successfully transfected (GFP positive) that were
apoptotic was calculated, showing that both constructs were as
effective at preventing cell death in both wild-type (+/+) and bel GCs
(***P,0.001; ANOVA). (B) Position of the RRR195 gene-trap insertion
(pG10lxf vector), 488 bp from the end of Oxr1 exon 3, as determined by
PCR. (C) Western blot of cerebellar tissue from littermates in the gene-
trap cross showing that in homozygous mice the Oxr1-FL isoform at
approximately 85 kDa is barely detectable, whereas Oxr1-C is
unchanged.
doi:10.1371/journal.pgen.1002338.g006
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positive control for these studies, DJ-1 (PARK7), a protein that has

been well-studied with respect to cysteine oxidation [27–28], was

analysed in parallel (Figure S8A). Recombinant wild-type mouse

DJ-1 showed a similar reduction in ThioGlo-1 labelling upon

peroxide treatment to wild-type Oxr1-C (Figure 7B and 7C).

To ascertain the rate of the reaction between wild-type Oxr1

and H2O2, direct kinetic measurements using HRP competition

assays were attempted [29], but the apparent low levels of

reactivity between Oxr1-C and peroxide rendered this approach

impractical (data not shown). Therefore, ThioGlo-1 labelling

experiments were repeated over a time-course, generating a rate

constant of Oxr1-C oxidation by H2O2 of 0.82 M21?s21 based on

second-order kinetics (Figure 7D). To then relate the significance

of the cysteine mutants to consumption of H2O2 in the Amplex

Red assay, both were assayed as above in parallel with wild-type

Oxr1-C recombinant protein. In agreement with the thiol

labelling assay, the C753A mutant showed a non-significant level

of peroxide consumption, whereas a significant drop in fluores-

cence was observed using the C704A Oxr1-C mutant (Figure 7E).

In summary, these data suggest that Oxr1 can react directly with

H2O2, although primarily through the oxidation reactive cysteine

residues.

Oxr1 is over-expressed in ALS and in an ALS model
Considering the numerous links between oxidative stress and

neurodegenerative disorders, and the high levels of Oxr1 in the

spinal cord (Figure S3A), we then analysed OXR1 expression in

ALS human biopsy samples. Western blots of ALS spinal cord

tissue show an obvious up-regulation of the intermediate TLDc-

domain-containing OXR1 isoforms compared to age-matched

controls (Figure 8A). As these data were obtained from patients at

the end-stage of disease, it was also important to ascertain whether

up-regulation of Oxr1 occurs before any major neuropathological

changes. Therefore, we analysed protein levels in spinal cord tissue

from pre-symptomatic low-copy G93A mutant superoxide dis-

mutase 1 (SOD1) expressing transgenic mice, a model of ALS.

These data show a significant up-regulation of Oxr1 in SOD1

mutants at 5 months of age compared to littermate controls

(Figure 8B and 8C). Importantly, this represents a timepoint prior

to the first reported signs of neuropathology or oxidative stress in

this particular line [30–31], suggesting that Oxr1 may be a novel

early marker of specific neurodegenerative pathways.

Discussion

Combining results from three mutant mouse lines, cellular

assays and biopsy samples, we have demonstrated for the first time

the importance of Oxr1 in neuronal survival; indeed, our data

Figure 7. Oxr1 undergoes oxidation by H2O2. (A) Purified Oxr1-C
was incubated with H2O2 (1.4 mM) and the remaining H2O2 in the
reaction was determined by the absorbance at 580 nm using an
Amplex Red assay. The graph shows a reduction in residual H2O2 with
increasing recombinant Oxr1-C concentration; from 20 mg/ml of protein
there is a significant decrease in absorbance in the presence of HRP (+
HRP). In the absence of HRP (2 HRP) there is no corresponding
reduction in absorbance. Control (PBS) reactions contained no protein
extract (**P,0.01; ANOVA). (B) Representative in-gel fluorescence of
ThioGlo-1 labelled recombinant Oxr1-C proteins and DJ-1. Proteins were

subjected or not to H2O2 treatment as indicated (100 mM, 30 minutes).
A significant reduction in fluorescence due to loss of free SH groups by
oxidation of cysteine residues was observed in wild-type (WT) Oxr1-C,
C704A Oxr1-C and DJ-1, but not the C753A mutant (quantified in (C);
*P,0.05; **P,0.01; ANOVA). Control reactions (CTRL) contained no
protein extract but included the ThioGlo-1 reagent as a measure of
background fluorescence. Lower panel shows staining of the same
PAGE gel post-analysis to confirm equal loading. (D) ThioGlo-1 labelling
of wild-type Oxr1-C in the presence of H2O2 was quantified over a time-
course to generate a second-order rate constant for the oxidation of
Oxr1 (see Materials and Methods for details). (E) The Amplex Red assay
was repeated (as panel A) using 20 mg of each recombinant Oxr1-C
protein as indicated. No significant reduction in residual H2O2 was
observed when using C753A mutant Oxr1 in the presence of HRP
compared to the corresponding – HRP control (**P,0.01; ANOVA).
Control reactions (CTRL) contained no protein extract.
doi:10.1371/journal.pgen.1002338.g007
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show that the sensitivity of neurons to exogenous stress can be

exquisitely controlled by the level of Oxr1 expression. Oxr1

therefore has much in common with some of the most important

antioxidants [3]; proteins such as SOD2 can be lethal when

disrupted but neuroprotective when over-expressed in vivo and

have therefore been nominated as potential therapeutic targets in

neurodegenerative disease [6,32]. Other key mitochondrial

proteins have also been linked to ataxia in mouse models.

Apoptosis-inducing factor (Aif) is vital to oxidative phosphoryla-

tion, and an 80% reduction in expression of the gene in the

Harlequin (Hq) mutant causes ataxia and oxidative stress-related

GC loss [33]. The Hq phenotype is far less severe than bel,

however, with the first signs of apoptosis in the cerebellum not

appearing until 4 months of age, followed by necrotic Purkinje cell

death and degeneration of other brain regions [19,34].

These models, along with bel mutants, emphasise that the brain

is clearly vulnerable to oxidative stress. Taken further, the fact that

GCs are more susceptible to ROS insults than other neuronal

populations, as observed in bel and Hq mice [33], has been

considered recently in detail. Using a combination of expression

and biochemical data, Wang et al. discovered that cerebellar GCs

were more susceptible to exogenous oxidative stress than neurons

from the cerebral cortex or hippocampal CA3 region [35]. Lower

expression of energy generating genes, combined with a greater

depletion of stored ATP, was also observed in GCs versus stress-

resistant neurons; this suggested that a shortfall in the energy

required to carry out cellular repair might render GCs particularly

sensitive to ROS. These data may also explain why we observed

that bel cortical cells were less sensitive to peroxide treatment than

GCs from bel mice. Neurodegenerative disease often presents with

highly specific pathological lesions despite widespread or ubiqui-

tous expression of the mutated gene(s) involved. Therefore,

examples of selective neuronal vulnerability to oxidative stress,

such as bel, are vital to understand why certain neurons are

targeted while others are spared, particularly in the early stages of

disease [36].

Several splice variants of Oxr1 have been described previously,

although we are the first to show that the shortest of these, Oxr1-

C, is able to protect neurons from oxidative stress as efficiently as

the full-length (Oxr1-FL) protein. Our western blot data is also the

first to demonstrate what appears to be a complex differential

distribution of Oxr1 isoforms at the protein level. For example,

Oxr1-C (25 kDa) is present in the whole brain at very low levels,

although in the cerebellum this splice variant is as highly expressed

as Oxr1-FL (85 kDa) whereas other intermediate isoforms are

absent. As Oxr1 in the apparently normal gene-trap mouse is

almost exclusively represented by the short Oxr1-C protein, we

postulate that Oxr1-C plays a more important role in the response

of GCs to stress than elsewhere in the CNS. Therefore, loss of this

particular isoform as well as the full-length protein, combined with

the apparent vulnerability of GCs, leads to cerebellar-specific

apoptotic cell death in bel mice. Original descriptions of human

OXR1 induction by oxidative stress were restricted to interme-

diate isoforms (at approximately 40 and 58 kDa), based on known

splice variants starting upstream of, but including, the TLDc

domain [12–13]. Although the full-length protein was therefore

not addressed in these early experiments, a construct representing

the 40 kDa isoform was still able to confer protection against ROS

in yeast [13]. Importantly, these original studies are in agreement

with our investigation that unequivocally demonstrates that these

shorter splice variants, all containing the TLDc domain, are

indeed functional.

We chose ALS to model the in vivo induction of Oxr1 as

oxidative stress has been consistently implicated in the human

disease and in ALS mouse models, with multiple markers of

oxidative damage observed in ALS post-mortem tissue recapitu-

lated in SOD1 transgenic lines [37]. The striking up-regulation of

intermediate OXR1 isoforms we observed in ALS may be a

consequence of significant neurodegeneration in the spinal cord;

but crucially, full-length Oxr1 protein levels were significantly

increased in SOD1 G93A mice before any overt phenotypic

abnormalities, suggesting Oxr1 may be an early marker of

neurodegeneration [30–31,38–39]. The fact that alternate iso-

forms were differentially regulated between human and mouse

may reflect species-specific post-transcriptional regulation of Oxr1

or the dissimilar stages of disease examined.

In summary, it is likely that alternate Oxr1 isoforms have

specific purposes; however it is clear from our work that

deciphering the function of the highly conserved TLDc domain

will be key to understanding the role of Oxr1 and Oxr1-related

proteins [14]. In view of this, we assayed recombinant Oxr1-C in a

peroxide scavenging assay and discovered that this region of the

protein can react directly with H2O2 in vitro. This is the first direct

evidence that the TLDc domain, originally predicted to be

catalytic [17], may act as an antioxidant protein. Consequently,

neurodegeneration in bel mice may be due to an increase in ROS

that would normally be detoxified by Oxr1. Importantly, however,

the calculated rate constant for Oxr1 oxidation by H2O2 argues

Figure 8. Expression of Oxr1 in ALS and ALS-related neurodegeneration. (A) Western blot showing up-regulation of OXR1 in thoracic spinal
cord biopsy samples from ALS patients versus age-matched controls. (B) Representative western blot demonstrating the expression of Oxr1 from the
lumbar enlargement of spinal cord tissue from pre-symptomatic SOD1 G93A low-copy transgenic mice and (C) quantification of full-length Oxr1
(85 kDa), n = 6 each genotype (**P,0.01; ANOVA).
doi:10.1371/journal.pgen.1002338.g008
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against a vital role for the protein as an antioxidant enzyme.

Although the value of 0.82 M21?s21 for Oxr1 is of the same order

of magnitude as reactive cysteine-mediated oxidation of BSA and

DJ-1 [28,40], it is thousands of times lower than key antioxidants

such as catalase and peroxiredoxins that have reported oxidative

rate constants of over 107 M21?s21 [29,41–42]. Therefore,

although one attribute of Oxr1 may be to reduce ROS directly,

it appears more likely that the oxidation of Oxr1 itself as a

consequence of oxidative stress in the cell has a more important

functional and/or regulatory role. Such redox-controlled modifi-

cations are important for a variety of proteins, including the

regulation of conformational changes, often related to the

formation or alteration of disulphide bonds [43,44]. For example,

detailed studies of oxidised forms of DJ-1 have focussed on Cys106

as a key residue that mediates the function of the protein, although

the mechanistic link between oxidation of this particular amino-

acid and the multiple proposed roles for DJ-1 in vivo is still unclear

[27]. It will therefore be important in the future to ascertain the

relationship between our data regarding cysteine oxidation of

Oxr1 with three-dimensional structural information of the TLDc

domain; for instance, differences in the accessibility of Cys753 and

Cys704 to peroxide may go some way to explain the results

described here.

A recent study, utilising Oxr1 knockdown in the mosquito

A.gambiae, proposed that Oxr1 down-regulates the transcription of

the antioxidants catalase and Gpx downstream of the stress-related

Jun N-terminal kinase (JNK) [45]. Our transcriptional analysis of

oxidative stress-related genes in the bel cerebellum also identified a

significant reduction in Gpx1 expression, although this difference

was not recapitulated at the protein level or using quantitative

enzyme assays. This is most likely due to the small number of GCs

affected in end-stage bel mice. As the study in A.gambiae was limited

to transcriptional data, it would be interesting to examine whether

the expression changes observed in mosquitoes equate to

detectable alterations at the protein level. Although the interaction

between Oxr1 and antioxidant enzymes is a plausible functional

hypothesis, no mechanism for this particular pathway was

investigated. Indeed, our biochemical data suggest that Oxr1

can react directly with ROS, although an indirect influence on

other antioxidants, such as Gpx, cannot be ruled out.

In the bel cerebellum, further evidence for oxidative stress was

shown by the large increase in oxidative DNA damage as

quantified by 8-OHdG immunostaining. The fact that few

markers for the oxidative stress response were altered overall

may simply reflect the limited lifespan of the bel mutant; only a

small proportion of neurons undergo apoptosis before death

(approximately 1–2% of all GCs) indicating the relative subtlety of

the neuropathology. We can only speculate that if bel mice

survived for longer whether additional regions of the CNS would

be similarly affected. Future work using conditional or inducible

disruption of Oxr1 will shed further light on such region-specific

mechanisms.

The bel mutant is an important new model of oxidative stress-

related neurodegeneration, although the short lifespan of mutants

limits the study of non-cerebellar neurons in vivo. Importantly,

however, the fact that Oxr1 is expressed in all major regions of the

brain and spinal cord, combined with our data from ALS and

SOD1 mutant tissue, suggests that it plays a widespread and vital

neuroprotective role. Indeed, it is intriguing that down-regulation

of OXR1 has been recently reported as one of the major differences

in a microarray study of the cortex in PD [46]. It is frequently

postulated that stimulating endogenous defence pathways would

be an effective strategy in combating cell death in disease [9]; our

findings therefore provide the first indication that the enhance-

ment of Oxr1 activity in vivo may counteract or even prevent the

damage carried out by ROS in the progression of neurodegen-

erative disorders. The apparent functional compensation of

OXR1 between yeast and human [13] and the high degree of

sequence conservation at particular amino acid residues in the

TLDc domain can now be investigated further to help decipher

the molecular mechanisms involved. Indeed, it is noteworthy that

the alanine mutated in the TLDc domain of the TBC1D24

protein in human FIME is not only conserved in OXR1 (Figure

S8B), but has also been shown to inhibit neurite outgrowth in vitro

[16], suggesting that further study into this family of proteins will

also be important for neurological disorders outside of those

directly linked with oxidative stress [47].

Materials and Methods

Ethics statement
All experiments were performed in accordance with the UK

Home Office regulations and approved by the University of

Oxford Ethical Review Panel.

Cloning of the bel deletion
The bel phenotype was first identified from a screen for recessive

ENU mutants at MRC Harwell, UK. To genetically map the trait,

13 bel mutants were initially screened for polymorphic SNP

markers between the parental C3H/HeH and BALB/c (ENU

treated) strains followed by fine mapping using additional

microsatellite and SNP markers. Inverse PCR was carried out

by digesting bel genomic DNA with a range of restriction enzymes,

ligating the products, amplifying around the circular DNAs using

nested primers and sequencing. A BglII restriction fragment

spanning the deletion was consistently identified, which was

confirmed using bel-specific PCR primers (59 CGACTAGGC-

CATCTTCTATTAC and 59 GCTAATGGCTGCCGAGTT-

TG). Mice were genotyped using these deletion primers in

combination with wild-type control primer (59 GTGACTG-

GAGGTGAGCTTTG) or using D15Mit229, a polymorphic

microsatellite marker in very close proximity to the bel deletion.

In situ hybridisation
In situ hybridisation was carried out as previously described on

12 mM frozen tissue sections [48]. Regions of Oxr1 and Abra mouse

cDNA sequences (see Figure S7) were subcloned into pCR4-

TOPO (Invitrogen) prior to DIG-labelled riboprobe synthesis and

hybridisation. Slides were exposed for 16 hours in all cases.

Immunohistochemistry and histology
TUNEL staining for apoptotic cells was carried out on frozen

sections using the in situ cell death kit (Roche). Antibodies for

cleaved caspase-3 (Cell Signalling, 1:500 dilution, 24 hours at 4uC)

and 8-OHdG (QED Biosciences, 1:250) immunostaining were

used on 4% paraformaldehyde perfused, paraffin wax embedded

sections; 8-OHdG staining was carried out as previously described

[49]. Primary antibody staining was visualised using Vectastain

Elite ABC kit (Vectorlabs) or Alexa Fluor 488 or 594 secondary

antibodies (Invitrogen) for immunofluorescence.

Quantitative histopathology
Five 10 mm sections taken at 40 mm intervals from the midline

of 3 bel/+ and 3 bel/bel mice were stained with cresyl violet. The

total area of each section corresponding to the cerebellum and the

remainder of the brain was calculated using Axiovision 4.6

software (Zeiss) and averaged over each genotype. For GCL

analysis, the midpoint of lobes III, IV/V and IX was determined
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as the distance between the apex to the abyss of the fissure. A

region representing 0.4 mm, 0.2 mm either side of this midpoint,

was used to determine the GCL width by dividing the area of the

GCL in this region by 0.4 mm to obtain an average value for each

lobe. To examine Purkinje cell numbers, adjacent sections, 5 from

each animal, were immunostained using anti-calbindin 28 K

(Swant, 1:15000 dilution, 48 hours at 4uC) as previously described

[48]. The total number of Purkinje cells on each section was

counted and divided by the total length of the Purkinje cell layer.

Adjacent sections to those above were used to count caspase-3 and

8-OHdG immunopositive cells in all cerebellar lobes. Quantifica-

tion of apoptosis by TUNEL staining was carried out on five

10 mm midline sections at 40 mM intervals from 3 mice of each

genotype. For muscle histopathology, tissue samples were dissected

and snap frozen in OCT (VWR) on isopentane in liquid nitrogen.

Frozen transverse sections were cut at 10 mM for haematoxylin

and eosin (H&E) staining using standard methods. Counts of

centrally nucleated fibres were averaged from H&E stained

sections from 4 mice of each genotype.

Primary neuronal culture
Culturing of granule and cortical cell cultures was carried out as

previously described (Amaxa Nucleofector protocol (Lonza) and

Bilimoria et al. [50]. Bel mutant and control granule or cortical

neurons were obtained from postnatal day 7 (P7) or P2 animals,

respectively, and cultured for 7 to 19 days prior to treatment. For

cell death experiments, cells were treated with 150 mM H2O2 for

4 hours before being fixed in 4% paraformaldehyde for 15 min-

utes prior to using the TUNEL assay as above. Cells were assayed

for survival by counting 1,500 cells for granule cells or 500 cells for

cortical cells. For immunofluorescence, GCs and N2As were

treated with 1 mM H2O2 for 30 minutes prior to recovery in fresh

media for 1 hour. Cell counts were analyzed using Prism software;

the difference between wild-type and mutant or between the

various treatments was compared using ANOVA. P values,0.05

were considered significant. All experiments were carried out on 3

or more occasions with cultures obtained from independent mouse

litters.

Expression constructs
For knockdown of Oxr1 expression, a Mission shRNA construct

(Sigma) specific to all TLDc-containing isoforms of the gene (see

Figure S7) was used. Primary cells were electroporated with

constructs using the Amaxa Nucleofector method (Lonza). The

relative level of knockdown was consistently over 90% as shown by

qRT-PCR using Oxr1 exon-spanning primers (Figure S4B). For

over-expression of Oxr1, the full-length mouse coding sequence

(NM_130885) with a C-terminal HA-tag was cloned into pLenti6/

V5-D-TOPO vector (Invitrogen) with a stop codon introduced

before the V5 sequence. The constructs were transfected into

HEK293T cells with packaging vectors and virus-containing

supernatants were collected 3 days later. GCs were infected after

11 days in culture by adding lentivirus-containing medium (1:50

dilution) and H2O2 treatment was carried out after 3 days of

infection for 4 hours prior to cell survival estimation as above.

Lentiviral Oxr1 expression equivalent to endogenous levels were

consistently obtained as shown by qRT-PCR using Oxr1 primers

as above (Figure S4B). For over-expression studies comparing

Oxr1-FL and Oxr1-C sequences, the coding regions (NM_130885

and NM_001130164, respectively) were cloned into a bicistronic

pCAGGS-based vector with additional internal ribosomal entry

site (IRES) upstream of GFP. Primary cells were electroporated as

above.

Western blotting
Tissue or cell extracts were prepared using standard RIPA

buffer and protein levels were quantified using BSA assays (Pierce

Thermo Scientific). After primary antibody (Oxr1 1:100 (see

above); catalase (Abcam); Gpx1 (Epitomics); SOD1 (Abcam)) and

peroxidase-conjugated secondary antibody incubation, blots were

developed with the ECL kit (Amersham). Frozen thoracic spinal

cord samples from non-SOD-related sporadic ALS patients and

age-matched controls were obtained from the Thomas Willis

Oxford Brain Collection. The lumbar enlargement of the spinal

cord from 5-month old male SOD1 G93A mutants (TgN[SOD1*-

G93A]Gur1) and littermate wild-type controls were dissected and

protein extracts prepared immediately as above. Band intensity

relative to internal controls was carried out using ImageJ software.

Quantitative RT–PCR
Expression studies were carried out from total RNA purified

using the RNeasy kit (Qiagen). cDNA was generated using Expand

Reverse Transcriptase (Roche) and triplicate qRT-PCR reactions

carried out using SYBR green (Applied Biosystems). Data were

analysed using StepOne software (Applied Biosystems) and

normalised to the control b-actin gene in all cases. All data shown

are generated from at least 3 independent samples. Primer

sequences are shown in Dataset S1.

Generation of Oxr1 transgenic line
The full-length mouse Oxr1 coding sequence was cloned into a

pCAGGS-derived vector (containing the chicken b-actin promoter

with a CMV enhancer and a rabbit b-globin intron), freed of the

plasmid backbone by restriction digest and injected into the

pronuclei of superovulated CBAB6F1 mice. Founder mice were

initially identified using Oxr1 exon-spanning primers for subsequent

breeding. Two independent founder females (Tg(CAG-Oxr1)+/2) were

bred to heterozygous bel/+ males over two generations to generate

mice homozygous for the bel deletion but also expressing the Oxr1

transgene (bel/bel, Tg(CAG-Oxr1)+/2) to determine genetic rescue.

Genetic background effects were controlled by assessing the onset of

ataxia and neuropathology of non-transgenic bel/bel mutants which

proved to be identical to the original bel line.

Generation of the Oxr1 gene-trap line
Gene-trap ES cell line RRR195 (Oxr1Gt(RRR195)Byg) was

obtained from Bay Genomics and the correct identity of the

insertion was confirmed by RT-PCR from cultured cells prior to

rederivation. RRR195 ES cells were injected into preimplantation

mouse embryos and chimeras were generated and bred with

C57BL/6J mice. Chimera ES cell contribution and germline

transmission were assessed by coat colour and confirmed by

genotyping. The exact position of the insertion was determined by

PCR to generate primers for genotyping; 59 GTGTTGAGT-

TCCCCATC and 59 CCGCAAACTCCTATTTCTGAG for the

gene-trap vector or 59 CAATCTAAATCCACTGCTGAC for the

wild-type intron 3/4 control. Mice heterozygous for the insertion

were bred together to generate homozygous animals.

Recombinant Oxr1 protein purification and antibody
production

The full-length coding sequence of Oxr1-C (NM_001130164)

and a region representing the TLDc domain of mouse Oxr1 (C7C,

see Figure S7) were subcloned into the pET-22b(+) expression

vector (Novagen) in-frame with a polyhistidine tag (66His) at the

C-terminus. The coding sequence of mouse DJ-1 (NM_020569)

was cloned in the same manner. Oxr1 cysteine mutants were
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generated by QuikChange site-directed mutagenesis (Stratagene)

and sequenced prior to use. Constructs were transformed into

BL21(DE3) E.Coli cells (Invitrogen) and protein expression was

induced overnight at 18uC at O.D600,0.8 by addition of

isopropyl-b-D-thiogalactopyranoside (IPTG) to a final concentra-

tion of 0.1 mM (Oxr1) or 0.25 mM (DJ-1). Bacterial cultures were

sonicated and recombinant His-tagged proteins were purified from

the soluble fraction using BD Talon metal affinity resin (BD

Biosciences Clontech) according to the manufacturer’s recom-

mendations. Antiserum was raised in rabbits against the C7C

TLDc domain fusion protein (Eurogentec) and affinity purified.

For protein oxidation studies, proteins were reduced in 2 mM

DTT and subjected to buffer exchange into 50 mM phosphate

buffer, pH 7.4 on PD-10 filtration columns (GE Healthcare) prior

to use.

Amplex Red assay
The Amplex Red assay was used to determine the presence

and/or depletion of H2O2 essentially as described by the

manufacturer (Molecular Probes). Working solutions of the dye

and horseradish peroxidase (HRP) were made fresh for each assay

and added to varying amounts of purified recombinant protein.

Based on predicted molecular weight of Oxr1-C (28.55 kDa),

protein concentrations ranged from 0.175 to 1.4 mM. The reaction

was initiated with the addition of H2O2 at a final concentration of

1.4 mM (e.g. ratio of H2O2 to Oxr1-C of up to 1:1). Samples were

incubated for 30 minutes at 37uC in the dark and fluorescence

readings were obtained at 580 nm. All wells were counted in

triplicate correcting for background fluorescence from a blank

sample and all experiments were repeated on 3 separate occasions.

Labelling of free SH groups with ThioGlo-1
Pre-reduced recombinant Oxr1-C protein was incubated with

100 mM H2O2 (final concentration) at 37uC for up to 30 minutes.

Individual aliquots (corresponding to 5 mg of protein) were taken at

a range of timepoints, excess H2O2 was removed with purified

catalase (Sigma), and the amount of reactive thiols determined by

incubation with 30 mM ThioGlo-1 for 90 minutes at 60uC. Samples

were mixed with Laemmli loading dye (without bromophenol blue

to prevent background fluorescence) and subjected to SDS-PAGE.

Gels were visualised with an ultraviolet light source and subjected to

densitometry using a Fluor-S MultiImager (BioRad). To confirm

equal loading of protein, gels were post-stained using SimplyBlue

(Invitrogen). The rate constant for this reaction was estimated by

plotting (1/nHo2So) ln[So(Ho2S)/Ho(So2nS)] versus time as

previously described [40], where Ho represents the initial

concentration of H2O2, So is the initial concentration of free SH

groups, S is the SH content reacted and n is the moles of free SH

oxidised per mole of H2O2; n was taken to be a value of 2 given two

potential reactive cysteines in the Oxr1-C recombinant protein

fragment used.

Catalase and Gpx assays
Catalase activity from cerebellar tissue samples was carried out

using Amplex Red Catalase Assay Kit (Molecular Probes) and

Gpx activity was measured using the Glutathione Peroxidase

Assay Kit (Calbiochem), both according to the manufacturer’s

instructions based on standard curves of enzyme activity.

DNA fragmentation assay
Genomic DNA from cells was extracted using the Genomic

DNA Extraction Kit for tissues (Qiagen). Double-stranded DNA

was quantified using PicoGreen (Thermo Scientific) as per

manufacturer’s instructions and compared to a standard curve

generated from l/HindIII DNA to determine a ratio of dsDNA to

ssDNA (strand scission factor) in the sample.

Supporting Information

Dataset S1 Primers used for qRT-PCR of oxidative stress

markers.

(DOC)

Figure S1 Quantitative histological analysis of the bel cerebellum

and muscle. (A) Cresyl violet staining of a vermal parasagittal section

indicates that no disruption in the foliation of the bel cerebellum

occurs. A small but non-significant reduction in cerebellar size is

observed in bel mice compared to controls, based on area

calculations from multiple sections (D). The size of the bel

cerebellum in not proportionally smaller than controls, however

(E). (B) Cresyl violet staining of lobe IV/V indicating the position of

the cerebellar granule cell (GCL), molecular (ML) and Purkinje cell

(PCL) layers. A small but non-significant reduction in average GCL

width is observed in bel mice compared to controls in lobes III, IV/

V and IX; data for lobe IV/V are shown (F). (C) Adjacent sections

were immunostained with anti-calbindin and used to calculate the

average Purkinje cell density in bel mice. There was no difference in

density between the genotypes showing no cell death in the PCL in

bel mice (G). (H) Haematoxylin and eosin staining of representative

transverse sections of bel and wild-type (+/+) diaphragm muscle

indicating centrally nucleated fibres in mutants (arrowheads). (I)

Quantification of centrally nucleated fibres in the soleus, TA and

diaphragm from all genotypes (**P,0.01, ANOVA). Scale bars:

0.5 mm (A) and 0.1 mm in (B) and (C).

(TIF)

Figure S2 Identification of the bel deletion. (A) Annotation of

mouse chromosome 15 showing the critical mapped genetic region

for the bel phenotype. The exact position of the deletion as

determined by inverse PCR as indicated, and confirmed by PCR

using flanking primers (B).

(TIF)

Figure S3 Additional expression analysis of Oxr1 and Abra. (A) In

situ hybridisation showing expression of Oxr1 but not Abra in wild-

type spinal cord at P24. The same Abra riboprobe detects

expression of the gene in skeletal muscle (B). (C) Gene structure

of full-length Oxr1 (Oxr1-FL) and short Oxr1 (Oxr1-C) isoforms,

not to scale; exon 9 is unique to Oxr1-C. (D) RT-PCR of the

entire protein-coding sequence of Oxr1-FL, Oxr1-C and Abra from

P24 brain (lanes labelled B) and cerebellum (lanes labelled C)

tissue. Skeletal muscle (M) is also shown as a positive control for

Abra expression. Note that the two bands amplified using Oxr1-C

primers correspond to transcripts either containing (Oxr1-C) or

lacking (Oxr1-C9) the alternatively spliced exon 10. Negative

control reactions from template containing no RT enzyme are

indicated (2). (E) In situ hybridisation of adult (P56) mouse brain

using riboprobes specific to Oxr1-FL and Oxr1-C. For details of

the relative probe positions, see Figure S7.

(TIF)

Figure S4 Primary neuronal culture control data. (A) Gradient

of H2O2 treatment tested in primary GCs to generate a robust

stress response for apoptotic cell counts. (B) Quantitative RT-PCR

of relative total Oxr1 expression level after knockdown and

lentiviral over-expression from 3 independent experiments. (C)

Immunostaining of GCs and N2A cells using the Oxr1 antibody

demonstrates induction and co-localisation of Oxr1 with the cox4

mitochondrial marker 1 hour after peroxide treatment.

(TIF)
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Figure S5 Oxidative stress markers in bel cerebellum. (A)

Quantitative RT-PCR from end-stage bel and wild-type littermate

cerebellum tissue for a range of oxidative stress makers: catalase

(cat), cullin1 (cul1), cytochrome c (cytc), glutamate-cysteine ligase

catalytic and modifier subunits (gclc/gclm), glial fibrillary acidic

protein (gfap), glutathione peroxidise 1 (gpx1), heme oxygenase 1

(ho1), kelch-like ECH-associated protein 1 (keap1), NAD(P)H

dehydrogenase, quinone 1 (nqo1), nuclear factor (erythroid-derived

2)-like 2 (nrf2), Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (pgc1a), superoxide dismutase 1 and 2 (Sod1

and Sod2). Data are also shown as relative expression ratio between

genotypes for key antioxidant enzymes (B), including a significant

reduction in gpx1 expression in mutants (*** P,0.01, ANOVA).

(C) No difference in the protein levels of catalase, Gpx1 or SOD1

is observed in cerebellar tissue between end-stage bel and littermate

control mice as shown by western blot. Enzyme assays also show

no difference in the activity of Gpx (D) or catalase (E) from the

same tissue.

(TIF)

Figure S6 Serum starvation of GCs. Primary GCs from wild-

type and bel mice were cultured for 14 days were subjected to

serum starvation for 4 hours. No difference in apoptosis was

observed between genotypes.

(TIF)

Figure S7 Diagram of cDNAs and probes used. cDNA

structures of mouse Oxr1-FL and Oxr1-C (not to scale) with

relative positions of probes/antibodies used in this study. The

structure of the gene-trap cDNA is also shown.

(TIF)

Figure S8 Protein purification of Oxr1 and C-terminal sequence

alignment. (A) Coomassie staining of SDS-PAGE gels showing the

induction (left) and subsequent purification (right, 5 mg loading) of

wild-type and mutant histidine-tagged Oxr1-C and DJ-1 proteins.

The position of the mutated cysteine amino acids in the TLDc

domain refers to full-length mouse Oxr1 protein sequence

(accession number NP_570955). (B) ClustalW alignment of the

C-terminal region of the TLDc domain in Oxr1-related proteins

from Homo sapiens (hs), Mus musculus (mm), Xenopus laevis (xl), Danio

rerio (dr), Drosophila melanogaster (dm) and Saccharomyces cerevisiae (sc).

Position of the cysteine residue C753 in mouse Oxr1 is marked.

The alanine residue in TBC1D24 recently reported as mutated in

human FIME (A509V) is highlighted in yellow.

(TIF)

Video S1 Film demonstrating the phenotype of the bel mutant. A

bel male mouse at P24 is shown, later joined by a heterozygous

(bel/+) littermate.

(WMV)
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