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Abstract

It is now understood that virtually all human cancer types are the result of the accumulation of
both genetic and epigenetic changes. DNA methylation is a molecular modification of DNA that is
crucial for normal development. Genes that are rich in CpG dinucleotides are usually not
methylated in normal tissues, but are frequently hypermethylated in cancer. With the advent of
high-throughput platforms, large-scale structure of genomic methylation patterns is available
through genome-wide scans and tremendous amount of DNA methylation data have been recently
generated. However, sophisticated statistical methods to handle complex DNA methylation data
are very limited. Here we developed a likelihood based Uniform-Normal-mixture model to select
differentially methylated loci between case and control groups using Illumina arrays. The idea is
to model the data as three types of methylation loci, one unmethylated, one completely
methylated, and one partially methylated. A three-component mixture model with two Uniform
distributions and one truncated normal distribution was used to model the three types. The mixture
probabilities and the mean of the normal distribution were used to make inference about
differentially methylated loci. Through extensive simulation studies, we demonstrated the
feasibility and power of the proposed method. An application to a recently published study on
ovarian cancer identified several methylation loci that are missed by the existing method.
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Introduction

It is now understood that virtually all human cancer types are the result of the accumulation
of both genetic and epigenetic changes [Jones and Baylin, 2002; Herman and Baylin, 2003;
Feinberg and Tycko, 2004; Lund and Lohuizen, 2004; Baylin and Ohm, 2006; Egger et al.,
2004; Kulis and Esteller, 2010; Kalari and Pfeifer, 2010; Kerkel et al., 2010]. Pathological
epigenetic changes, that is, non-sequence-based alterations that are inherited are increasingly
recognized as alternatives to mutations and chromosomal alterations in disrupting gene
function [Egger et al., 2004]. DNA methylation, the addition of a methyl group to the 5’
position of cytosine in the context of a CpG dinucleotide, is a molecular modification of
DNA that is crucial for normal development. Aberrant epigenetic mechanisms include
global DNA hypomethylation, chromatin alterations, hypermethylation and hypomethylation
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of specific genes that influence the transcription of genes important to the cancer process.
All of these can lead to aberrant activation of growth-promoting genes and aberrant
silencing of tumor-suppressor genes [Feinberg and Tycko, 2004]. Genes that are rich in CpG
dinucleotides are usually not methylated in normal tissues, but are frequently
hypermethylated in cancer. This is often associated with gene silencing [Jones and Laird,
1999] and is an important mechanism for the inactivation of tumor suppressor genes. In
more recent studies on DNA methylation and cancers, Eberth et al. [2010] found that CD44
may be a promising new epigenetic marker for diagnosis and a potential therapeutic target
for the treatment of specific lymphoma subtypes as it is found to be epigenetically regulated
in lymphoma and undergoes de novo methylation in distinct lymphoma subtypes; Bediaga et
al. [2010] found that DNA methylation profiles may enable breast cancer subtype
prediction; Christensen et al. [2010] found that breast cancer prognostic characteristics and
risk-related exposures appear to be associated with gene-specific tumor methylation and
overall methylation pattern; and Lugthart et al. [2011] found aberrant DNA
hypermethylation in acute myeloid leukemia among many other studies. Apart from the
importance in DNA methylation with cancer development, what makes DNA methylation
even more interesting is, unlike genetic alterations, DNA methylation is reversible. Thus, to
decode the human epigenome to understand DNA methylation alterations in tumorigenesis
may help us with new therapeutic approaches.

DNA methylation has historically been studied in a locus-targeted manner. However, with
the advent of high-throughput platforms, large-scale structure of genomic methylation
patterns is available through genome-wide scans. Two high-throughput platforms that have
been popularly used include the Illumina Infinium Human Methylation27 array and the
Illumina GoldenGate array. Both arrays are based on genotyping bisulfite-converted DNA.
DNA samples are treated with a methylation kit that converts unmethylated cytosines to
uracils, whereas methylated cytosines are protected and remain cytosine. Therefore, whether
the base at a given locus is converted or not provides information on its original methylation
status. The results of the array, the methylation status of the interrogated CpG site is a
sequence of B-values, one for each locus, calculated as the average of approximately 30
replicates (with approximately 30 beads per site per sample) of the quantity max(M, 0)/
(max(U,0) + max(M,0) + 100). Here U is the fluorescent signal from an unmethylated allele
on a single bead, M is that from a methylated allele. A maximum between signal intensity
and 0 is chosen to compensate for negative signals due to background subtraction. The
constant 100 is to regularize B-values when both M and U values are small [Bibikova et al.,
2006]. This B-value ranges continuously from 0 (unmethylated) to 1 (completely
methylated) and reflects the methylation level of each CpG site.

Recently tremendous amounts of DNA methylation data have been generated from high-
throughput DNA methylation platforms. However, sophisticated statistical methods to
handle complex DNA methylation data, especially data measured with proportions from
popularly used commercial platforms such as lllumina, are either nonexistent or very
limited. Currently, to select differentially methylated loci, researchers mainly apply either
parametric methods such as regression-based methods or t-test or nonparametric methods
such as rank sum test. Some research has been done on tumor type classifications using
DNA methlyation data. Siegmund et al. [2004] introduced a Bernoulli-lognormal mixture
model for classifying DNA methylation data generated using MethyLight. MethyLight
results in percentages of methylated reference (PMR) and frequently contains an “excess” of
zeros. Houseman et al. [2008] proposed a beta-mixture model to classify different tissue
types using Illumina arrays. Most recently, Kuan et al. [2010] investigated issues in quality
control steps. We noticed from many studies that p-values generated by BeadStudio with
[llumina arrays usually have a heavy tail close to zero which represents unmethylated and a
bump close to one which represents completely methylated. Figure 1 displays histograms of
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DNA methylation measures of several representative markers in cancer and normal groups
using the data from the United Kingdom Ovarian Cancer Population Study (UKOPS)
[Teschendorff et al., 2010]. Existing methods do not take this unique feature into account.
Although DNA methylation measures generated by BeadStudio are continuous measures
between 0 and 1, on the molecular level, some loci are unmethylated, some are completely
methylated, and some are hemi-methylated, i.e., the cytosine is only methylated in one
strand but not in the other (Human Molecular Genetics, 3" Edition). In this paper, we
developed a likelihood based Uniform-Normal-mixture model to select differentially
methylated loci between case and control groups. The idea is to model the data as three
types of methylation loci, one unmethylated, one completely methylated, and one partially
methylated. A three-component mixture model with two Uniform distributions and one
truncated normal distribution was used to model the three types. The mixture probabilities
and the mean of the normal distribution were used to make inference about differentially
methylated loci. Through extensive simulation studies, we demonstrated the feasibility and
power of the proposed method. We further applied the proposed method to the United
Kingdom Ovarian Cancer Population Study to select differentially methylated loci between
ovarian cancer cases and age-matched healthy controls using IHlumina Infinium Human
Methylation27 Beadchip [Teschendorff et al., 2010] and identified some methylation loci
that are missed by the existing method.

For each DNA methylation marker, let y;,i = 1,...,n denote independent observations of 8-
values representing DNA methylation levels, where n is the number of subjects in one
group. Let 71 and 1, be two threshold values (0 < 11 < 0.5 < 1y <1) conditional on which we
have two Uniform distributions representing two components, Uy ;] for unmethylated and
Ulcp,17 for completely methylated. The third component is a truncated normal component for
those partially methylated loci. Under a Uniform-Normal-mixture model, where y; ’s are
assumed to be a mixture of three different methylation patterns, let zj, i = 1,...,n be the latent
indicator variable for each observation y; that determines the component from which the
observation originates, where

{ 1,if y; is from mathylation pattern group /,/=1,...,3
=

0, otherwise.

We consider {y;, zj;} as the “complete data”. Here zj = (zj1,zi2,zi3)' follows a 3-category
multinomial distribution with probabilities © = (11,75,73)', and = is the prior distribution for
zj and iy + mp + w3 = 1. Thus, we have

i ~ 11 Ujo,) ) +72Njo.1) 0 | s 0 +73U oy 1) G)s =1, o,

where Njo 13(Vi | 1,62) is the truncated normal density truncated at 0 and 1. The likelihood of
observing n subjects is thus:

n
L(y| 9)21—1 (m U071 i)+maNpo. 1 (i L, 0?)+(1 =1y — ) Uiz 1 U’i)),

i=1

Here 0 = (11,12,11,m,14,0) are the unknown parameters representing “mixture” proportions
and the parameters of the Uniform and normal distributions.

Genet Epidemiol. Author manuscript; available in PMC 2012 November 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wang

Page 4

At a specific methylation locus k, assuming two different sets of parameters for case and
control groups, parameters are 6, = (t1,t2,m1,72,11,6) for the case group and

6:=(11,72,7;, 75, st , o ) for the control group, where 11, and 1, are the same for both groups.
The joint likelihood of observing ny independent cases and n, independent controls at DNA
methylation locus k is L(y | 6) = L(yj | 61)L(y; | 02). In estimating the parameters, we apply a
numerical estimation using the profile likelihood coupled with an Expectation-Maximization
(EM) algorithm [Dempster et al., 1977]. The likelihood of (t1,12) is defined for each fixed
(t1,72) (0 <11 <0.5 <19 <1) by maximizing L(t1,72,m1,72,11,0) OVer (m1,mp,1,0) and

maximizing L(ty, T2, 71;, Ty, it , 0 ) OVer (1,75, it , o ) Using the EM algorithm. That is,

Lp(T1, T2)=MaX 1, 7 4y o, 0y LATL T2 W0 02, W, 0, 70y, T, 1, 07 ), The maximum likelihood
estimators of (t1,t,) are defined by maximizing the profile likelihood, that is, (t1,75) =
argmax Lp(t1,72). The EM algorithm is applied to estimate the log-likelihood and obtain the
maximum likelihood estimates (MLE) of the parameters (r1,m2,1,6) for the case group and

MLE of the parameters (Jr‘] , n'z, i, o) for the control group separately, with the E-step and
the M-step updated iteratively. Using the case group as an example, to get the MLE of the
parameters (mq,m,11,0) for the case group, the EM algorithm proceeds as follows:

@ (D

Step 1: Start with a set of initial best guesses of the parameters (x|, 5 ", ", oV);

Step 2 (E-step): Given the current estimates of the parameters (7", 7", 1@, ),

compute the posterior probabilities for all casesi=1,...,n;,and 1 =1,2,3:

() _ K‘I')Uw,f,] i)

ST 20U 0y OO N01) 01 | OO+ (1=2 =2 U yay 0)
(0)_ 2 Njoay 03 1 00 .
“i2 _7r‘|“U|n,‘—|] i)+ Nyoay Gi | 4,0y +(1-n\" =2y o0’

Step 3: (M-step): Update the parameters (z\"*", 25", 1+ oDy,

1
NG
) Dt
n;* )izl T

ny ’
§ m 20,
(1) _ Ldi=1"2""
Wy
Rt
ny [:IN':
E S0 (r1)y2
2 . T iK1 )
(O_(H—l)) — i=1 ;

m (0
i=1"72

Step 4: Repeat the E-step and the M-step until convergence.

To test the null hypothesis that locus k is not differentially methylated between case and

control groups, we test Hozmzn’],nz:;r'z, and p = p'. That is, we compare the mixture
probabilities and mean of the normal distribution between case and control groups. The
corresponding alternative hypothesis is Hy : not all m1's,m»'s, and p's are the same. We use
the Likelihood Ratio Test (LRT) with 3 degrees of freedom (dfs) to test Hy. The LRT
statistic will be compared to a 2 distribution with 3 dfs to assess significance. To obtain the
MLE of the parameters under Hy, the same profile likelihood coupled with the EM
algorithm is applied, while the steps of the EM algorithm are changed. The joint likelihood
of observing nq independent cases and n, independent controls at DNA methylation locus j
under Hg is:
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Ly |0)=L(y; | (t1, T2, w1, M2, 1, O)L(y; | (71, T2, 1, 2, 1, 07)).

The EM algorithm to get the MLE of the parameters (r1,72,1,6,6") proceeds as follows:

Step 1: Start with a set of initial best guesses of the parameters (z\", 73", u", oV, V),

Step 2 (E-step): Given the current estimates of the parameters (n(” n(z”, u? oW Oy,

compute the posterior probabilities for all casesi = 1,...,n1, and COﬂtI‘OlSj =1,...,ny, and
1=1,23:
L0 _ 7f Umrlj(\y)
“il T 70021 vi)+ry N[u 0y (i | 1 (D) >+(l—n '~ Wiey1 G1)
(0 _ 7y Nyt i | 1, @)
‘2 _n‘]”Uln_,]] 0-,‘)+;r‘> Nyo1) (i | 1, (o D)+(1 zr —Jr‘”;U[ 511 i )
(_ ﬂ‘,')U[nv 1)
it _”T)UIO.r]] L\',/)+H;)N[m| (vj |/1"’,((7'”")2)*-(l—ﬂf,f)—ﬂg')U{rTu L\',,‘)7
_ 2 Nioay 07 1104 )

2T 7 U001 )+ Nyoa (v | #0(c” Oy )41 2PV 1) o’

Step 3: (M-step): Update the parameters (z\"", [tV (+D g+1) o+ 1)y,
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ny+ny
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Step 4: Repeat the E-step and the M-step until convergence.

We test the K DNA methylation loci independently. To adjust for multiple comparisons, a
False Discovery Rate (FDR) g-value [Storey and Tibshirani, 2003] of < 0.05 as significant
for the examination of K loci could be applied.

Results

In this section, using extensive simulation studies, the performance of the proposed method
is compared to that of the two-sample t-test. Method that assumes a general beta distribution
for proportion measures like DNA methylation measures has not been applied by
researchers partly due to its lack of biologically meaningful interpretation in parameters.
Therefore, only t-test is considered as an alternative method to the proposed method. The
simulation procedures were repeated 10,000 times to evaluate the Type | error rates and
1,000 times to evaluate power.

Simulation Setup

In the simulation studies to evaluate Type | error rates and power, the total sample size was
fixed at ny = 250 cases and n, = 250 controls. To mimic the distribution of p-values
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generated by BeadStudio with Illumina arrays, which usually have a heavy tail close to zero
(unmethylated) and a bump close to one (completely methylated), we set t1,t, at different
values, 11 = 0.1, 1 = 0.9 and 11 = 0.15, 1, = 0.85. With fixed 11,19, we considered different
parameter settings with different mixture probabilities my,7, and =3, and different mean and
standard deviation (u,c) for the truncated normal distribution Nig 1). Therefore, within case
and control groups, for each methylation measure, it has a probability m; to be generated
from a Uniform distribution Uy ¢}, a probability =3 to be generated from a Uniform
distribution U[, 13, and a probability =, to be generated from a truncated normal distribution

Nio,11(k,0)-

We chose different parameter settings such that case and control groups would be different
in term of the percentage of unmethylated, the percentage of completely methylated, or the
mean methylation level of partially methylated.

In order to evaluate the Type | error rates for the proposed test, data were generated under
the null hypothesis that a specific locus k is not differentially methylated between case and

control groups, i.e., Ho:ﬂ1=ﬂ;,7t2=ﬂ:l, and p = p'. The simulation procedure was repeated
10,000 times. Type | error rates of the proposed method and the two-sample t-test were then
estimated by the proportion of times that the null hypothesis of locus k is not differentially
methylated between case and control groups was rejected by the two methods, respectively.

Table 1 displays the Type | error rates to detect differentially methylated loci with the
proposed method and the t-test under different parameters settings. The nominal Type | error
rate of 0.05 was well controlled by both the proposed method and the t-test although the
proposed method is a little more conservative than the t-test.

To assess the performance of the proposed method, three scenarios of the parameter settings
were considered. Table 2 displays power results to detect differentially methylated loci
between case and control groups with the proposed method and the t-test under the three
scenarios when 11,15 are set at t; = 0.1, 1o = 0.9. Power was assessed with 1,000 simulations.

In Scenario 1, we considered the parameter settings when the following two conditions are
met: 1) there are difference in both the mixture probabilities x; 's and the mean of the normal
distribution component p between the case and control groups, 2) but the difference between
the overall methylation levels of the case and control groups is small. This is the scenario
when there is no much difference in the overall mean of the methylation percentage but
there is difference in all three mixture components between the case and control groups. As
we expected, the proposed method has almost 100% power for all settings considered while
the t-test has very small power. The sample means provide in the table are the sample means
over 1,000 simulations for case and control groups separately. Also expected, the power of
the t-test increases as the difference between the overall methylation level in the two groups
increases. More specifically, in parameter settings 1 and 2, when the sample difference
between the case and control groups in methylation percentage is only about 0.014 and
0.027, there is no power at all with the t-test. But the proposed method has 100% power in
both settings.

In Scenario 2, we considered the parameter settings when 1) there is difference in either the
mixture probabilities z; 's or the mean of the normal distribution component p between the
case and control groups, 2) but the difference between the overall methylation levels of the
case and control groups is small. This is the scenario when there is no much difference in the
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overall mean of the methylation percentage but there is difference in some of the mixture
components. As we expected, the proposed method has much greater power than the t-test in
all settings considered. More specifically, in parameter settings 1 and 3, case and control
groups are different only in terms of mixture probabilities. In parameter settings 2 and 4,
case and control groups are different only in terms of the mean of the normal distribution
mixture component. The power of the proposed method is much higher than that of the t-test
in all settings but the power difference is not as big as in Scenario 1.

In Scenario 3, we considered the parameter settings when 1) there is difference in both/
either the mixture probabilities x; 's and/or the mean of the normal distribution component p
between the case and control groups, 2) and the difference between the overall methylation
levels of the case and control groups is large. We can see that in this scenario, the t-test that
tests for difference between overall means has good powers on all settings. Note that, under
the parameter setting 1 when the difference between overall methylation levels between the
case and control groups is large and comparable to the difference between either the mixture
probabilities or the mean of the partially methylated group, the two-sample t-test has slightly
higher power than the proposed method.

Simulations with Special Settings

We also investigated simulation settings when there is no data in one of the three
components. Table 3 displays both Type | error rates and power under such scenarios. When
we do not observe data in one of the three components, the Type | error rates are still well
preserved by the proposed method and the t-test. In terms of power, the proposed method
has much greater power than the t-test if the difference between the overall methylation
levels of the case and control groups is small (scenarios 1 and 3). When the difference is big,
the two methods have similar power (scenario 2).

We note that in all simulation settings considered, all parameter estimates are very close to
the true values (data not shown).

Real Data Application

We applied the proposed method to the United Kingdom Ovarian Cancer Population Study
(UKOPS) to select differentially methylated loci between ovarian cancer cases and age-
matched healthy controls using Illumina Infinium Human Methylation27 Beadchip
[Teschendorff et al., 2010]. The original data has 266 cases with 131 pre-treatment cases and
135 post-treatment cases, and 274 age-matched healthy controls. As whether or not patients
have received treatment and age when blood samples were taken are known factors to affect
DNA methylation levels, we chose to use a more homogenous population with 131 ovarian
cancer cases who gave their blood at the time of their diagnosis prior to treatment and with
age-matched controls to illustrate the feasibility and power of the proposed method. For
quality control of the DNA methylation data, we removed samples with a low bisulfite (BS)
conversion efficiency (BS control intensity values < 4,000); we also removed batches 10-12
due to over representation of controls on these batches and outliers using a quantile filtering
[Teschendorff et al., 2010]; lastly, we required at least 95% CpG coverage per sample and at
least 50 cases and 50 controls per locus. These quality control steps resulted in a f-valued
data matrix of dimension of 22,951x(96 cases + 136 controls).

Because of the relatively small sample size in the real data application, we propose to assess
the significance level associated with the proposed statistic and the t test using a permutation
procedure rather than relying on the asymptotic distributions. We permuted the disease
status among cases and controls, which generated a new data set in which the null
hypothesis that no DNA methylation marker is associated with the disease status holds. We
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repeated the permutation procedure 1,000 times to generate the distribution of the test
statistics under the null hypothesis. Thus, the p-value to testing if a marker is differentially
methylated between case and control groups is the proportion of times the statistics from the
permuted data are equal or greater than the statistics from the observed data [Westfall and
Young, 1993]. We did not adjust for multiple comparisons as the purpose of the real data
application is to demonstrate the feasibility and power of the proposed method rather than to
identify DNA methylation loci for further study.

Of the 22,951 loci tested, 1,473 loci have permuted p-values 0.001 using the proposed
method, while 1,655 loci have permuted p-values 0.001 with the t-test. Among those, there
are overlapping 1,412 loci that have permuted p-values 0.001 using both methods. We
further examined the loci that are identified by the proposed method but not by the t-test,
and loci that are identified by the t-test but not by the proposed method. Out of the 61 loci
that have permuted p-values 0.001 using the proposed methods but permuted p-values >
0.001 using the t-test, 16 loci have permuted p-values > 0.05 using the t-test. We selected 4
representative loci among the 16 and plotted the histograms of the B values of the case and
control groups (Figure 2). Also included in the plots are overall mean methylation levels of
case and control groups at each marker. It is clear that for the two loci from the left
(cg18943195 and cg22184145) the percentage of unmethylated samples are different
between case and control groups while the difference between the overall mean methylation
levels of the case and control groups are as small as 0.002 or 0.003. Similarly, for the two
loci from the right (cg25428451 and cg23070249) the average methylation levels of partially
unmethylated samples are different between case and control groups while the difference
between the overall mean methylation levels of the case and control groups are as small as
0.003. In these cases, the t-test is not able to detect the difference while the proposed method
is. As we pointed out that the purpose of this ovarian cancer data application is to
demonstrate the feasibility and power of the proposed method rather than to identify new
DNA methylation loci for further study, we only want to comment on some potential
interesting methylation loci among the 16 loci that have been identified by the proposed
method but not the t-tests. For example, the identified locus cg18053505, located on
chromosome 3, is on gene PCAF, which has been detected in primary esophageal squamous
cell carcinoma (ESCC) tumors and ESCC cell lines as a candidate tumor suppressor gene
[Qin et al., 2008]; the identified locus cg11375622, located on chromosome 8, is on gene
BOP1, which has been suggested to play an oncogenic role in hepatocellular carcinoma by
promoting epithelial-to-mesenchymal transition [Chung et al., 2011].

Out of the 158 loci that have permuted p-values 0.001 using the t-test but permuted p-values
> 0.001 using the proposed method, 146 loci have permuted p-values < 0.005 using the
proposed method, only 8 loci have permuted p-values > 0.05 using the proposed method.
We selected 4 representative loci among the 8 and plotted the histograms of the g values of
the case and control groups (Figure 3). We can see that the case and control groups are not
much different in terms of the three components at the 4 loci (cg04754011, cg15250507,
cg06836736 and ¢g26200585) but the difference between the overall mean methylation
levels of the case and control groups are more than 0.01. The permuted p-values of the 16
markers that are identified by the proposed method but not the t-test and the permuted p-
values of the 8 markers that are identified by the t-test but not the proposed method are
displayed in Table 4.

Discussion

With the importance of epigenetic changes on cancer development well understood, many
research efforts have been devoted to searching for differentially methylated loci between
cancer and normal patients to see the possible contribution of methlyation process on cancer
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development. However, the unique pattern we observed in methylation measurements
generated by the Illumina methylation arrays that have been widely applied has been ignored
by the existing methods to select differentially methylated loci. We observed that there is an
enrichment in values close to “0” as unmethylated and an enrichment in values close to “1”
as completely methylated. With the understanding that on the molecular level some loci are
unmethylated, some are completely methylated, and some are hemi-methylated, i.e., the
cytosine is only methylated in one strand but not in the other, we proposed a likelihood-
based Uniform-Normal-mixture model to select differentially methylated loci between case
and control groups. The proposed method models methylation loci as three types,
unmethylated, completely methylated, and partially methylated. A three-component mixture
model with two Uniform distributions and one truncated normal distribution is used to
model the three types. To make inference about differential methylation, we compare the
mixture probabilities and mean of the normal distribution between case and control groups.
The rational underlying the proposed method is that it will be more sensitive to the
difference in any methlyation patterns between two groups than the existing methods that
search for overall difference. For example, in the situation when case and control groups
differ in terms of the percentages of unmethylated or completely methylated but the mean
methylation levels in case and control groups are similar, the proposed method is expected
to be powerful to detect the difference in the distribution while existing methods such as the
t-test that focus on detecting the difference in means do not have any power.

The simulation results illustrated the feasibility and power of the proposed method. The
proposed method that takes into account the unique pattern observed in the methylation
percentage measurements has higher power to detect differentially methylated loci than the
two-sample t-test under almost all parameter settings considered. Especially under the
settings when the difference between the overall methylation levels in case and control
groups is small but there are differences in the proportions of unmethylated, partially
methylated, or completely methylated, or there is difference in the mean methylation level of
the partially methlyated component. Under this setting, the t-test has almost no power but
the proposed method has almost perfect power. When the difference between the overall
means of methylation proportions in case and control groups is large, both the t-test and the
proposed method have good power. We need to note that when the difference between the
overall methylation levels of case and control groups is large and comparable to the
difference between either the mixture probabilities or the mean of the partially methylated
group, the t-test has slightly higher power than the proposed method. Thus we believe the
proposed method is a nice complement to the robust t-test. An application to a recently
published study on ovarian cancer suggested that in the majority of the cases, the p-values
generated using the proposed method and the t-test agree with each other. Among all the loci
with permuted p-values 0.001 using both methods, 82.2% loci overlap. Among the non-
overlapping loci, 15 loci have permuted p-values 0.001 with the proposed method but
permuted p-values > 0.05 with the t-test. Further examination of those 15 loci suggested
large differences in either the percentage of complete unmethylation or the level of partial
methylation but small difference in the overall mean methylation level.

In this study, we have demonstrated the power and feasibility of the proposed three-
component mixture model to detect differentially methylated loci with a case-control design.
Although the results from the application on the United Kingdom Ovarian Cancer
Population Study are promising, we note the limitations of the proposed three-component
mixture model, and future studies are needed to improve the current method or to develop
new methods for the detection of differentially methylated loci. With the mixture model,
usually a large sample size is needed to obtain accurate estimates. Also the optimization of
the two nuisance parameters t; and T, complicates the computation. We plan to improve
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estimates and computation and to take dependence among DNA methylation loci on a gene
into account in our future research.
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Histograms of several representative markers
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Figure 1.
Histograms of DNA methylation measures of several representative markers in cancer and

normal groups from the ovarian cancer data.
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Histograms of selected differentially methylated markers identified by the proposed method but not the t-test
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Figure 2.

Histograms of the DNA methylation 3 values of the cancer and normal groups at four
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selected differentially methylated loci identified by the proposed method but not the t-test.
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Histograms of selected differentially methylated markers identified by the t-test but not the proposed method
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Figure 3.

Histograms of the DNA methylation (3 values of the cancer and normal and groups at four
selected differentially methylated loci identified by the t-test but not the proposed test.
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Permuted p-values of the markers identified by one of the methods (with permuted p-values 0.001) but not

both methods using the ovarian cancer data.

Marker

Proposed

t-test

Part I: Markers identified by the proposed method but not the t-test

€g02136132 0.001 0.380
€g02508567 0.001 0.462
€g05500015 0.001 0.164
€g08876665 0.001 0.620
€g11375622 0.001 0.879
€g13682722 0.001 0.083
€g13830624 0.001 0.537
€g18053505 0.001 0.056
€g18943195 0.001 0.562
€g20812929 0.001 0.337
€g22184145 0.001 0.523
€g23070249 0.001 0.267
€923311628 0.001 0.223
€g24530795 0.001 0.173
€g25163476 0.001 0.209
€g25428451 0.001 0.127

Part 11: Markers identifie

d by the t-test but not the proposed method

€g03251079 0.058 0.001
€g04754011 0.163 0.001
€g05595345 0.803 0.001
€g06836736 0.062 0.001
€g14094960 0.074 0.001
€g15250507 0.055 0.001
€g18239753 0.058 0.001
€g26200585 0.482 0.001
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