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Abstract
Meta-analysis of genome-wide association studies involves testing single nucleotide
polymorphisms (SNPs) using summary statistics that are weighted sums of site-specific score or
Wald statistics. This approach avoids having to pool individual-level data. We describe the
weights that maximize the power of the summary statistics. For small effect-sizes, any choice of
weights yields summary Wald and score statistics with the same power, and the optimal weights
are proportional to the square roots of the sites' Fisher information for the SNP's regression
coefficient. When SNP effect size is constant across sites, the optimal summary Wald statistic is
the well-known inverse-variance-weighted combination of estimated regression coefficients,
divided by its standard deviation. We give simple approximations to the optimal weights for
various phenotypes, and show that weights proportional to the square roots of study sizes are
suboptimal for data from case-control studies with varying case-control ratios, for quantitative trait
data when the trait variance differs across sites, for count data when the site-specific mean counts
differ, and for survival data with different proportions of failing subjects. Simulations suggest that
weights that accommodate inter-site variation in imputation error give little power gain compared
to those obtained ignoring imputation uncertainties. We note advantages to combining site-
specific score statistics, and we show how they can be used to assess effect-size heterogeneity
across sites. The utility of the summary score statistic is illustrated by application to a meta-
analysis of schizophrenia data in which only site-specific p-values and directions of association
are available.
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Introduction
Combining data from multiple genome-wide association studies (GWAS) of a common
outcome has emerged as a major tool for identifying susceptibility loci for human disease
and other conditions [Scott et al., 2007; Zeggini et al., 2007; Shi et al., 2009]. The goals are
to discover new variants missed by the individual studies, to identify variants for outcomes
not considered when the data were collected (e.g. cancer survival), and, for associated
variants, to assess effect-size and its possible variation across sites. A challenge to achieving
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these goals is the need to assess and accommodate inter-site differences in study
characteristics, such as demographic attributes of the populations studied, phenotypic
aspects such as disease severity and extent of censoring of survival data, the SNPs included
in the genotyping platforms used, and the choice and coding of covariates in need of
adjustment.

The pooled analysis of individual-level data on phenotypes, genotypes and covariates has
several advantages. Quality control can be implemented uniformly for all sites, and SNP
genotypes can be imputed using data from all sites. Covariates common to multiple studies
can be coded uniformly and their regression coefficients can be estimated with all available
data. Optimal likelihood-based methods can be used to test whether SNP regression
coefficients are nonzero and whether they vary across study sites. Offsetting these
advantages is the labor involved in assembling the raw data from each site and coding
common covariates, and privacy issues which could limit the sharing of genotypes.

An alternative to pooled analysis is the meta-analysis of site-specific test statistics, each
having approximately a standard normal distribution under the null hypothesis of no
association. Here each site types or imputes genotypes for a common set of SNPs, and then
calculates a covariate-adjusted statistic for each SNP. The site-specific statistics are either
Wald statistics (ratios of regression coefficient estimates to their estimated standard
deviations (SDs), or score statistics (ratios of efficient scores to estimates of their null SDs)
[Soranzo et al., 2009; Tanaka et al., 2009]. The coordinating center then computes a
weighted sum of these statistics as a summary test statistic for the SNP [Cantor et al., 2010].
For reviews of issues in GWAS meta-analysis, see [Ioannidis 2007; Ioannidis et al., 2007; de
Bakker et al., 2008; Guan and Stephen, 2008; Zeggini and Ioannidis, 2009; Cantor et al.,
2010].

When SNP effect size is constant across sites, the optimal summary Wald statistic is the
well-known inverse-variance-weighted combination of estimated regression coefficients,
divided by its estimated standard deviation [Cohran 1954]. However there are practical
advantages to combining score statistics rather than Wald statistics for GWAS meta-
analyses. First, the score statistics do not require iterative parameter estimates for each SNP
to be tested. Estimates for the site-specific covariate effects need be calculated just once
under the global null hypothesis of no effect for any SNP; thus score statistics provide fast
assessment of the statistical significance of large numbers of SNPs. Second, a SNP score
statistic can be computed even when the site has provided only the SNP's p-value and
direction of association. Third, the summary score statistic may be easier to interpret when
the sites differ with respect to the covariates included in their regression models or with
respect to their phenotype definition, measurement or coding. For example, a GWAS of
nicotine addiction among current and former smokers might include sites whose outcome is
a count of smoking cessation attempts, and other sites that simply classified subjects
according to presence or absence of a successful cessation attempt. For a meta-analysis such
as this, a combination of site-specific score statistics may be easier to interpret than a
combination of site-specific Wald statistics, since the SNP regression coefficients in the
latter are not comparable. Finally, site-specific score statistics have straightforward
extensions to accommodate uncertainty due to imputation of unobserved genotypes, and we
shall show that they can be used to assess heterogeneity of effect-size across sites.

Here we focus on optimal weights for combining site-specific statistics to identify new
variants and, for associated variants, to assess possible effect-size variation across sites.
Asymptotically optimal weights for combining Wald statistics have been known for more
than half a century [Cochran 1954; DerSimonian and Laird, 1986]. Surprisingly however,
despite their practical advantages, optimal weights for combining score statistics are not well
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known. In fact, some investigators suggest or use weights proportional to the square roots of
the study-specific sample sizes [Soranzo et al., 2009; Willer et al., 2010; Hu et al., 2011].
We show that this strategy can be suboptimal when combining data from sites whose
phenotypes have different null distributions. Instead, for the small effect-sizes expected of
GWAS meta-analysis, the optimal weights for combining score statistics are essentially the
same as those used to combine Wald statistics. We provide explicit forms for the optimal
weights for a general class of phenotypes that includes binary outcomes, quantitative traits,
counts of events and censored survival outcomes.

In the following Methods section we begin by reviewing the score and Wald statistics for
testing the null hypothesis of no SNP-phenotype association at a single site, with application
to case-control studies, quantitative traits, count data and censored survival data. We also
show how the site-specific score statistics can be extended to handle imputation
uncertainties, as noted by Marchini et al., [2007]. Then, for each of these phenotypes, we
describe the optimal weights for combining site-specific score or Wald statistics. We also
extend the weights to handle SNP effect-sizes that vary across sites, and we show how the
site-specific score statistics can be used to assess inter-site heterogeneity. The Methods
section is followed by an evaluation of power for various summary score and Wald
statistics, based on simulated case-control and censored survival data. An application to
schizophrenia data shows that for binary outcomes, the score statistics can be used to assess
inter-site effect-size heterogeneity even when only site-specific SNP p-values and direction
of association are available. The final section concludes with a brief discussion.

Methods
Score and Wald Statistics for One Site

For simplicity we model the effects of each SNP as additive on an appropriate scale (the so-
called trend or gene dosage model), though other genotype models can be used. Let (y, g, x)
= {(yj, xj, gj), j = 1, …, n} represent the data for the n study subjects. For subject j, yj is the
phenotype, xj is a column vector of covariates whose first component may be one to
accommodate an intercept, and gj = (gj1, gj2, …) is a vector of minor allele counts for each
of the SNPs under study. We focus on testing association for just one of these SNPs, and
omit its subscript. We assume that the loglikelihood ℓ(y∣x, g; θ) for the phenotypes y
conditional on covariates x and genotypes g depends on a parameter θ = (α, β). Here α is a s-
dimensional vector of parameters corresponding to an intercept and/or any covariates used
by the site, and β specifies the trend relating phenotype to SNP minor allele count.

We wish to test the null hypothesis H0: θ = θ0 = (α, 0). To do so, we introduce the Fisher
information for θ, given by

(1)

Here iαα is the s × s matrix whose entries are the negative expectations of the second
derivatives of the loglikelihood function for θ with respect to α, and the other submatrices

are defined analogously. Also let  denote the (s + 1)-dimensional score vector
whose entries are the derivatives of the loglikelihood function with respect to θ = (α, β). The
covariate-adjusted efficient score for testing β = 0 is Uβ = Uβ (α̂(0), 0), where α̂(0) satisfies
Uα (α̂k (0), 0) = 0. Under H0 and mild regularity conditions [Cox and Hinkley, 1979], Uβ has
an asymptotic Gaussian distribution with mean zero and variance
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(2)

evaluated at (α̂(0), 0).

The score and Wald statistics are

(3)

where îβ is a consistent estimate of iβ evaluated at β = 0, β ̂ is the maximum likelihood

estimate (MLE) of β, and  evaluated at β ̂. The two statistics are locally
asymptotically equivalent, i.e., they are asymptotically equivalent when β = 0 and are
approximately so when β is small in absolute value [Cox and Hinkley, 1979]. Their
noncentrality parameters (NCPs) are , with iβ evaluated at θ0 = (α, 0) for Zscore and
at θ = (α, β) for ZWald. In the following we shall approximate iβ for the Wald statistic by
evaluating it at its null value, and refer to a common NCP ξ for both statistics.

We now specialize the score and Wald statistics to specific phenotypes of relevance to
GWAS. We first consider phenotypes whose relation to genotypes and covariates can be
described by generalized linear models (GLMs) [McCullagh and Nelder, 1989]. Special
cases of particular relevance are the binary phenotypes of case-control studies, quantitative
traits such as height or weight, and counts of events such as attempts to quit smoking, and
censored survival data.

Example: generalized linear models
GLMs assume that the mean but not the dispersion parameter of the phenotype distribution
depends on genotypes and covariates, so that their effects can be modeled as a function of a
linear predictor ηj = αxj + βgj. The first component of the covariate vector xj may equal one,
in order to accommodate an intercept. The loglikelihood is

(4)

where a (·), b (·) and c (·) are known functions, and ϕ is the dispersion parameter of the
model. The score for β corresponding to (4) is

(5)

where μ̂j is the fitted mean of y under H0, and φ ̂ is a consistent estimate of ϕ. The null Fisher
information (1), with θ = θ0, and ηj = αxj is
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(6)

In the absence of covariates xj = 1, ηj = α1 where α1 is the intercept, and (6) reduces to

(7)

where p = 1 − q is the SNP minor allele frequency (MAF). Using (7) in (2), we find that the
null Fisher information for β is

(8)

For binary phenotypes yj is coded as one if subject j has the trait and zero otherwise, and the
logistic model corresponds to ϕ = a (ϕ) = c (y; ϕ) = 1, and b (ηj) = ln [1 + eηj]. In a case-
control study with n1 cases and n0 = n − n1 controls, b″ (α1) can be estimated consistently by
n0n1/n2.

Substituting these expressions in (8) gives

(9)

For quantitative traits whose distribution is (possibly after transformation) Gaussian with

mean μj = ηj and variance ϕ, we have a (ϕ) = ϕ,  and .
Thus b″ (α1) = 1. Substitution of these values for a (ϕ) and b″ (α1) into (8) gives

(10)

where ϕ̂ is a consistent estimate of the phenotype variance.

For Poisson count data, a (ϕ) = 1, b (ηj) = eηj and c (y; ϕ) = 0. Thus b″ (α1) = eα1 = μ, where
μ is the null mean of the counts. Substituting these values into (8) gives

(11)

Example: censored survival data

Here the data are  where for subject j, tj is survival time
and εj is a failure indicator. We assume independent times to failure and censoring, each
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with hazard that may vary across studies. We also assume that the failure distribution
follows a proportional hazards model of the form h (t; xj, gj) = h* (t) eαxj+βgj, where h* (t) is
the baseline hazard, and that the m failures occur at distinct times. Inferences are based on
the log of a partial likelihood function for β, given by

, where m is the number of failures, gi1 and xi1 are,
respectively, the genotype and covariates of the ith failure, and Ri is the set of subjects at risk
just before this failure, i = 1, …, m. The corresponding score for β is

(12)

In the absence of covariates, the null Fisher information for β, as given by (2) and (1), is

(13)

Accommodating imputed genotypes
Meta-analysis of site-specific statistics requires local imputation at the study sites. This
involves calculating posterior probabilities Pjg for each subject's unobserved SNP minor
allele count g, with Pj0 + Pj1 + Pj2 = 1. Here Pjg is the conditional probability that subject j
has allele count g, given the observed genotype data Obs, and the haplotypes in a reference
panel such as HapMap2 [International HapMap Consortium et al., 2007]. Louis [1982]
provided a likelihood-based extension to the score statistic to accommodate this imputation.
Inferences are based on the probability of phenotypes conditional on observed genotype data
Obs, and covariates x:

(14)

Here g denotes a vector of genotypes for the nk subjects, and the posterior probabilities Pr
(g∣Obs) = Pr(g) / Σg′∈G Pr (g′), where Pr (g) is based on the Hardy-Weinberg MAF, and the
sum is taken over genotypes in the set G consistent with the observed data Obs and the
haplotypes in the reference panel. The posterior probabilities can be computed using
available imputation software [Li and Abecasis 2006; Scheet and Stephens, 2006; Browning
BL and Browning SR, 2009; Howie et al., 2009]. As shown by Louis [1982], the score for β
is

(15)

where  is the complete data score and the expectation is taken with respect to the posterior
distribution Pr (g∣Obs) for the SNP of interest. The null variance of Uβ is given by (2) and
(1), but with the Fisher information for the observed data reduced by a penalty due to the
uncertainty in genotypes:
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(16)

where Jc is the negative of the second derivative matrix for the complete data. The score
statistic is Zscore = Uβ/îβ;where îβ is obtained from (2) and (16).

The score Uβ of (5) and (12) for GLMs and survival data depends linearly on the genotypes
gj. Thus in the presence of unobserved genotypes, the posterior expectation (15) can be
obtained simply by replacing the unobserved allele counts with their posterior means, as
noted by Schaid et al., [2002] and Marchini et al., [2007]. In addition, the entries of the
information matrix (16) are quadratic forms in the genotypes. Thus their posterior
expectations can be computed as functions of the first and second moments of the posterior
genotype distributions. In practice however, imputation uncertainties are generally ignored
for both score and Wald statistics; instead, subjects' unknown minor allele counts are
replaced by their posterior means Pj1 + 2Pj2.

Meta-Analysis of Data from K Sites
Suppose now that each of K sites has computed a score or Wald statistic using a regression
model that may include an intercept and/or covariates. We wish to combine these site-
specific statistics into a single summary statistic to assess the overall evidence for or against
association between a SNP and a given phenotype. We assume that subjects participate in
only one study (see [Lin and Sullivan, 2009] for methods applicable to studies with
overlapping study subjects). We first describe the weights optimal under the assumption that
the SNP effect-size β is common across sites (homogeneous effect-size), and then consider
the weights optimal when the effect-sizes β1, …, βK vary across sites (heterogeneous effect-
size).

Homogeneous effect-size
Here the null hypothesis to be tested is H0: θ = θ0 = (α1, …, αK, 0), where αk is the sk-
dimensional nuisance parameter for study k, k = 1, …, K. The summary statistics used for

this purpose in GWAS meta-analysis are weighted sums , where Zk is either a
site-specific score statistic or a site-specific Wald statistic, and where the weights wk are

nonnegative constants with . Under H0, both summary statistics, Zscore and ZWald,
have standard Gaussian distributions asymptotically [Cox and Hinkley, 1979]. The optimal
weights wk are defined as those that maximize the summary statistic's NCP, given by ξ =
Σkwkξk, where ξk is the NCP for the score and Wald statistics at site k, k = 1, …, K. We have
seen that the NCP for both site-specific score and site-specific Wald statistics are ;

thus . A straightforward application of the Cauchy-Schwartz inequality
shows that the weights wk that maximize ξ under local alternatives are proportional to .
Thus the optimal summary score and Wald statistics are given by

(17)
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They are asymptotically equivalent for testing θ = θ0 under the null hypothesis and under
local alternatives. Replacing the the terms Zk:score with the score statistics of (3) in the first
equality of (17) shows that the summary Zscore is just the well-known stratified score
statistic, i.e., the one obtained from the sum of the K loglikelihood functions:

For case-control data, Zscore is the Mantel-Haenzel test for trend in a 2 × K table [Breslow
and Day, 1980]. Moreover, replacing the terms Zk:Wald with the Wald statistics of (3) in the
second equality of (17) shows that the summary ZWald is the commonly deemed inverse-
variance-weighted summary statistic proposed by Cochran [1954] and given by

(18)

The term “inverse-variance-weighted” refers to the fact β ̂ is a weighted sum of the site-
specific regression coefficients β ̂k, weighted in inverse proportion to their estimated
variances:

Table 1 gives the optimal weights for case-control data, quantitative trait data, Poisson count
data and censored survival data, when the participating sites do not include covariates in the
model, and do not adjust for imputation. The weight wk for a given site and phenotype is
proportional to the square root of the corresponding estimated null information îkβ for β, as
given by the appropriate choice of expressions (9-13). In contrast, the weights based on
study size are proportional to . Comparison of these size-based weights to those in
Table 1 shows that, even though SNP allele frequencies may be similar across sites, the size-
based weights are suboptimal for case-control data from studies with varying case-control
ratios, for quantitative trait data with varying trait variances, for count data with varying null
expected counts, and for censored survival data with varying numbers of failures. Since the
variance of a quantitative trait depends on the covariates included in the regression model
which may vary across sites, using a common trait variance may in some circumstances be
substantially suboptimal.

In the presence of site-specific adjustment for covariates and/or imputation uncertainty, the
optimal weights are more complex than those shown in Table 1. According to (17), they are
proportional to the square roots of the null SNP information îkβ, which depend on the
covariate distributions, covariate effects, and imputation uncertainty specific to each site. In
principal, the values îkβ could be provided by the sites. Instead, Zaitlen and Eskin [2010]
have suggested accommodating imputation uncertainty by incorporating in each site's
weight an estimate of the correlation coefficient rk between true and imputed SNP allele
counts. In the following section we use simulations to evaluate the power of this strategy.

Heterogeneous effect-size
Site-specific effect-size variation is plausible for several reasons. First, the studies may have
used different genotyping platforms with different numbers and locations of SNPs. This
results in differences across sites in levels of genotype measurement error, creating different
levels of regression coefficient attenuation across sites. Second, when covariates or their
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coding differ across sites, different levels of control for confounding can affect SNP effect-
sizes. For example, genetic ancestry may be associated with both phenotype and genotypes,
and variable control for ancestry may induce differential levels of residual confounding.
Third, for survival data, site-specific variation may occur if effect-size changes over time
and the studies differ in level and type of censoring. Finally, the SNP of interest may interact
with other risk factors whose prevalences vary across sites, which would cause variation in
effect-size.

The site-specific Wald statistics have the form Zk:Wald = β ̂k/SD (β ̂k), where β ̂k is the MLE for

β and . These quantities lend themselves naturally to evaluating SNP effect-size
heterogeneity across sites, using the methods of Cochran [1954] and DerSimonian and Laird
[1986]. Here we show that the components of the site-specific score statistics

 also can be used for this purpose. Specifically, when βk is small in absolute
value, the asymptotic mean φk of Ukβ can be approximated as φk∼ βkikβ (see Appendix). This

approximation suggests estimating βk by , with SD (β ̂k) estimated as , k = 1,
…, K. Then Cochran's homogeneity test can be applied with β ̂k equal to either the MLE or

the quantity .

For either the score-based or Wald-based estimates β ̂1, …, β ̂K, Cochran's test is based on the
statistic Q = Σkîk (β ̂k − β ̂)2, where β ̂ is given by (18). Under the homogeneity hypothesis β1 =
… βK = β, Q has a chi-squared distribution on K − 1 degrees of freedom (DF). When
homogeneity is rejected, DerSimonian and Laird [1986] propose estimating the inter-site
variance τ2 of the βk as

where , r = 1, 2. The overall effect-size is estimated as

Corresponding summary statistics for testing β1 = … = βK = 0 are

(19)

and Zk denotes either Zk:score or Zk:Wald. When Cochran's test does not reject homogeneity
and τ̂2 is set to zero, the two summary statistics (19) reduce to their usual forms (17) optimal
for homogeneous effects.

In conclusion, one can choose between four types of summary statistics, each formed as a
weighted sum of site-specific statistics. The four summary statistics differ according to the
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site-specific statistics (score vs Wald) and whether the weights are chosen to be optimal
under effect-size homogeneity (ZHM) or heterogeneity (ZHT).

Simulations
We simulated case-control and survival data to evaluate the performances of the optimal
summary score and Wald statistics, and to compare them to that of the size-weighted
summary ZSZ, obtained using weights proportional to the square roots of study sizes. For
each replication, we generated data assuming both homogeneous and heterogeneous effect-
sizes, with and without imputation error, and then computed the various summary statistics.
We flagged those exceeding certain thresholds, and then computed for each statistic the
proportion of all replications in which it was flagged.

Type-1 Error
To evaluate type 1 error, we compared nominal to empirical type-1 error rates, defined as
the proportion of replications in which the summary test statistic exceeded the standard
Gaussian threshold for the nominal two-sided p-value. We considered two null hypotheses.
The first homogeneity null hypothesis specifies that the true values of the βk satisfy β1 = …
= βK = 0 The second heterogeneity null hypothesis specifies that the βk are a random sample
from a Gaussian distribution with mean zero and variance τ2 > 0. Under the homogeneity
null hypothesis, we found good agreement between nominal and empirical p-values for all
summary test statistics considered. In contrast, under the heterogeneity null hypothesis all
summary statistics showed inflated empirical error rates relative to their nominal values,
with the extent of inflation somewhat attenuated when the summary statistics were
heterogeneity-weighted compared to homogeneity-weighted (data not shown). We shall
return to this finding after a comparison of test power.

Power
Case-control data—We simulated the meta-analysis of K = 3 case-control studies having
the sample sizes shown in Table 2. We generated genotypes for a single SNP assuming
Hardy-Weinberg allele frequencies, and then used a logistic regression model with study-
specific intercepts (α1, α2, α3) = (−3.0, −2.5, −2.5) and one of three effect-size triples (β1,
β2, β3) to generate case and control phenotypes until we had achieved the targeted numbers
of cases and controls. Two triples correspond to effect-size homogeneity, as given by β1 =
β2 = β3 = ln (1.3) = 0.26, and β1 = β2 = β3 = ln (1.4) = 0.34. The third triple (β1, β2, β3) = (0,
0.34, 0.26) corresponds to effect-size heterogeneity across the three sites. Power was taken
as the proportion of the 1000 replications in which the test statistic exceeded the threshold
for a p-value of 10−8.

Table 2 shows power for summary score and Wald statistics with weights determined by
assumptions of homogeneous (ZHM) and heterogeneous (ZHT) effect-sizes, and with size-
based weights (ZSZ). As expected given their asymptotic equivalence, the score-based and
Wald-based summary statistics performed similarly for any given choice of weights. For all
types of data, the homogeneity-weighted summary statistics were most powerful. When the
data were generated under the homogeneous effect-size assumption, both homogeneity- and
heterogeneity-weighted statistics ZHM and ZHT consistently outperformed the size-weighted
statistic ZSZ. However when the data were generated according to heterogeneous effect-
sizes, the heterogeneity-weighted statistic ZHT performed poorly compared to the other two.
This finding, which is consistent with that reported in other applications [Clayton and Hills,
1993], reflects power loss due to sampling error in estimating the inter-site effect-size
variance τ2.
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Survival data—We also generated censored survival data for a total of 2,483 subjects of
European ancestry from Heidelberg Germany, Ontario Canada, and Seattle US who have
been genotyped for 600,000 SNPs using the Illumina 610Quad chip as part of an ongoing
GWAS of early-onset breast cancer. To mimic a meta-analysis based on K = 6 study sites,
we split the subjects from each of the three regions into two subsets, which yielded six sites
with the sample sizes shown in Table 3. We focused on 1000 SNPs in a 6-MB region of
chromosome 2 (positions 1,000,713 to 6,488,209). To generate subjects' survival times, we
assumed independent exponentially distributed times to failure and censoring with site-
specific baseline and censoring hazards λk, μk, k = 1, …, 6, independent of nongenetic
covariates. These values are shown in Table 3. Subjects who had not failed by time t = 1
were censored at that time. We assumed that the site-specific failure hazards also depend,
via a proportional hazards model, on the minor allele counts of SNP rs17360123 at position
5,531,665 (MAF = 0.2) and SNP rs4072375 at position 3,565,156 (MAF = 0.4).
Specifically, we assumed that the failure hazard at site k was λk exp(βkgkj), where gkj is the
SNP minor allele count for the jth subject at site k, k = 1, …, 6. For the homogeneity model
we took the common β to be 0.25, 0.30 and 0.35, and for the heterogeneity model we took β
= 0 for sites 1 and 2, and β = 0.35 for the remaining sites.

Table 4 shows the power of homogeneity-weighted, heterogeneity-weighted and size-
weighted summary score and Wald statistics under these generating models. The same
patterns found for the case-control data in Table 2 are evident here: the homogeneity
weighted summary statistics are consistently most powerful, and when the data were
generated with homogeneous SNP effects, the size-weighted statistic is least powerful. In
the presence of heterogeneous SNP effects, however, the heterogeneity-weighted test
statistic is least powerful, most likely because of power loss associated with error in
estimating the variance parameter τ2.

The poor power of the heterogeneity-weighted test statistics mitigates against their use in
GWAS meta-analysis. In general, these statistics are used to guard against false positives
when the null hypothesis specifies varying site-specific effect-sizes whose overall mean is
zero. However the primary null hypothesis in the GWAS setting specifies zero SNP effect-
size at all K sites. This suggests the strategy of testing all SNPs using a homogeneity-
weighted summary statistic, and investigating heterogeneity for those SNPs whose p-values
suggest departures from this primary null hypothesis.

Finally, we evaluated how imputed genotypes affect the power of the homogeneity-weighted
score-based test by masking and imputing some sites' genotypes in regions containing SNPs
rs17360123 and rs4072375. These two SNPs were assumed associated with survival with a
common effect-size β = 0.35 across the six sites. We masked and imputed either: i) the
associated SNPs and their nearest flanking markers (a total of three SNPs imputed); or ii) the
associated SNPs and their nearest two flanking markers (a total of five SNPs imputed).
SNPs were masked and imputed for: a) one study (study 1); b) three studies (studies 1,3,5);
and c) five studies (studies 1-5). We conducted the imputations using the HapMap2
reference panel in an eight megabase region containing 9262 SNPs. The five studies with
masked SNPs had estimated correlation coefficients between imputed and actual
rs17360123 minor allele counts of (r ̂1, …, r ̂5) = (0.62, 0.66, 0.57, 0.56, 0.60) when three
SNPs were imputed, and (0.59, 0.58, 0.51, 0.52, 0.49) when five SNPs were imputed. The
corresponding values for rs4072375 were (0.82, 0.77, 0.57, 0.62, 0.68) and (0.54, 0, 58, 0,
49, 0.46, 0.45). These estimates were obtained as described by Li and Abecasis [2006]. In
total, we considered the 12 data sets described in Table 5. We imputed all masked SNPs
using the Caucasian data from the HapMap2 reference panel and the imputation software
BEAGLE [Browning BL and Browning SR, 2009]
(http://faculty.washington.edu/browning/beagle/beagle.html). We evaluated the power of

Zhou et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://faculty.washington.edu/browning/beagle/beagle.html


three statistics adapted from the homogeneity-weighted summary score statistic ZHM. The
first is the likelihood-based score statistic given by equations (15, 16) that accounts for
imputation uncertainty. The second statistic replaces subjects' unobserved SNP minor allele
counts by their posterior means, ignoring imputation uncertainties. The third statistic also is
based on subjects posterior mean minor allele counts, but with weights proportional to

, a strategy similar to that proposed by Zaitlen and Eskin [2010].

Table 5 shows power for each of these three summary statistics as applied to each of the 12
data sets. For comparison, the power for the optimal tests with completely observed data
was 0.827 for SNP rs17360123 and 0.954 for SNP rs4012375 (Table 4). Several results are
noteworthy. First, as expected, the power of all tests dropped increasingly with the masking
of increasingly many SNPs at increasingly many sites. Moreover the rs4012375 SNP suffers
more power loss from masking five rather than three SNPs than does rs17360123. This
difference mirrors the correspondingly larger loss of imputation accuracy for rs4012375 than
rs17360123, as measured by their estimated correlation coefficients, described in the
preceding paragraph. Second, substituting posterior means performed as well as the
likelihood-based score statistics. In fact, substituting the posterior means for the unobserved
genotypes gives exactly the observed data score  (15), since the complete data score is a
linear function of the unobserved genotypes. Moreover the Fisher information computed by
substituting posterior means for unobserved genotypes is an approximation to the Fisher
information  for the observed data, given by (16), and it accounts for genotype
uncertainty by its reduced inter-subject variation for poorly imputed SNPs. So it is not
surprising that these two statistics show similar power. Third, the statistic formed by

weighting by  did not perform as well, most likely due to inaccuracies in the
estimates r ̂k and sensitivity of the weights to such error. These results contrast with those of
Zaitlen and Eskin [2010] who found slightly increased power using this strategy; further
investigation of this matter would be useful.

Application to GWAS Meta-Analysis
We illustrate the summary score-statistics by application to the meta-analysis of three case-
control GWAS studies of schizophrenia in European-Americans described by Shi et al.,
[2009]. The three studies are the SGENE Consortium [Stefansson et al., 2009], The
International Schizophrenia Consortium [ISC; International Schizophrenia Consortium,
2009] and The Molecular Genetics of Schizophrenia study, [MGS: Shi et al., 2009]. These
studies enlisted a total of 8,008 cases and 19,077 controls, as shown in Table 6. For the
meta-analysis, only site-specific p-values and the directions of association for the logistic
trend test were available for each of a common set of SNPs in six regions containing SNPs
satisfying a predetermined threshold for statistical significance in at least one of the three
studies. For the meta-analysis the authors converted each p-value to a score statistic
determined as the quantile corresponding to the appropriate tail of the standard Gaussian
distribution. They then evaluated SNPs using the summary score statistic of (17), with
weights proportional to the square roots of the estimates îkβ of (9). GWAS tag SNPs are
selected to have common frequencies in different Caucasian populations; thus the authors
assumed that the SNP MAFs are approximately the same across the three sites, which gives
weights wk proportional to [(nk0nk1) / (nk0 + nk1)]1/2.

We computed three test statistics for each of the 28 SNPs in the major histocompatibility
complex class I and II identified by the authors as significantly associated with
schizophrenia risk. These test statistics are: 1) the homogeneity-weighted statistic (17) used
by Shi et al., [2009]; 2) the heterogeneity-weighted statistic (19); and 3) the size-weighted
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statistic with weights proportional to (nk0 + nk1)1/2. For the heterogeneity-weighted statistic,
we found that the estimated inter-study variances τ̂2 were zero for all SNPs, and Cochran's Q
test did not reject homogeneity at a significance level of 0.1. (An alternate measure of
heterogeneity, defined as I2 = 1 − [(K − 1) /Q], estimates the percentage of total inter-site
variation beyond chance, with heterogeneity suggested by values I2 > 0.5 [Ioannidis et al.,
2007]. For these data, I2 was negative for all 28 SNPs, showing no evidence of
heterogeneity.) Thus the heterogeneity- and homogeneity-weighted score statistics were
equal for all 28 SNPs. Figure 1 shows that this summary score statistic yielded smaller p-
values than the size-weighted statistic.

This example illustrates three points. First, site-specific data can be combined optimally
simply by sharing p-values, the directions of association, and the null information estimates
(as obtained from case and control sample sizes). Second, heterogeneity across studies can
be evaluated even with such minimal information from the sites. Finally, as expected from
the theory and simulations, the optimally-weighted summary score-statistic is more powerful
than the size-weighted score-statistic. For case-control data such as these, optimal weighting
achieves the greatest power gain relative to size-based weighting when case and control
numbers are roughly the same for some studies, but substantially different for others (as in
the present example). Power gains also can be substantial for meta-analysis of censored
survival data when censoring levels differ among the studies.

Discussion
We have reviewed SNP association tests based on weighted sums of site-specific score and
Wald statistics. We have shown that when SNP effect-size β is constant across sites, the
optimal weights for both statistics are approximately proportional to the square roots of the
sites' null Fisher information for the SNP of interest, and we have described these weights
for the phenotypes commonly studied with GWAS. These optimal weights have simple
forms in the absence of site-specific differences in covariates and their effects, and in the
absence of accommodation for site-specific differences in imputation uncertainty. Their
optimality in these circumstances is supported by simulation results. In the presence of
covariate adjustment, the simple weights described here should be nearly optimal unless the
sites differ strongly in choice of covariates or their effect-sizes. The simulations also suggest
little power loss in using weights that ignore imputation uncertainties. This finding is
consistent with the similarities in the two statistics noted in the Methods section.

We also have shown how to use the site-specific score statistics to obtain SNP effect-size
estimates for assessing inter-site effect-size heterogeneity. An application to schizophrenia
data shows that for case-control GWAS meta-analysis, such heterogeneity can be assessed
even when only site-specific SNP p-values and directions of association are available. Both
simulations and the data application support the conclusion of others that Cochran's test has
poor power to detect effect-size heterogeneity, particularly when the number of sites is small
[Clayton and Hills, 1993]. Thus we suggest performing GWAS meta-analysis using the
homogeneity-weighted summary statistics and examining heterogeneity for the hit SNPs,
with the caveat that lack of evidence for heterogeneity can be interpreted only as ruling out
very large differences across sites.

A limitation of all meta-analysis is its need for site-specific estimates of regression
coefficients for covariates that are common to all or several sites (e.g. age, sex, ancestry).
The simulations of Lin and Zeng [2010a; 2010b] suggest that site-specific regression
coefficient estimates for such covariates do not produce substantial bias or power loss.
Although this conclusion seems plausible unless the covariates are strongly associated with
both genotype and phenotype, more evidence would be useful.
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Appendix: Approximating the Asymptotic Mean of the Score uβ
Let U (θ0) = (Uα (θ0), Uβ (θ0))T denote the vector of efficient scores for θ, evaluated at θ0 =
(α, 0). Thus E [U (θ0); θ0] = 0. To approximate this expectation over local alternatives for θ,
we evaluate it over a distribution governed by a value near to but not equal to θ0. Thus we
write θ = θ0 + δ, where δ = (0, β)T, and β is small in absolute value. Using a multivariate
version of the argument given by Cox and Hinkley [1979, p 109]; we can write

where i (θ0) is the Fisher information for θ evaluated at θ0. Similarly, the covariance matrix
of U (θ0) is

These results, when used with standard normal theory, show that, conditional on θ0 = (α̂ (0),
0), the asymptotic distribution of Uβ (α̂ (0), 0) = Uβ is normal with mean βiβ + o (|β|) and
variance iβ+ O (|β|). Here iβ is given by (2) with i(θ) = i (θ0).
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Fig. 1.
p-values of size-weighted statistics (y-axis) versus summary score statistics with
homogeneity weights(x-axis) for 28 top schizophrenia SNPs
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Table 1
Optimal Weights in GWAS Meta-analysis without Covariates

Phenotype Optimal Weight wk for kth Studya

Case-control Statusb

Quantitative Traitc

Poisson Count Datad (nkμkpkqk)1/2

Censored Survival Datae (mkpkqk)1/2

a)wk are optimal under effect size homogeneity across sites, and are given up to a proportionality factor determined by the constraint .
pk = 1-qk is the SNP MAF and nk is the number of subjects in study k.

b)
nkj is the number of cases (j=1) and controls (j=0).

c)ϕk is the trait variance.

d)
μk is the null expected count

e)
mk is the number of failures.
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