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Abstract

G-Protein coupled receptors (GPCRs) are intensely studied as drug targets and for their role in 

signaling. With the determination of the first crystal structures, interest in structure-based ligand 

discovery has increased. Unfortunately, most GPCRs lack experimental structures. The 

determination of the D3 receptor structure, and a community challenge to predict it, enabled a fully 

prospective comparison of ligand discovery from a modeled structure versus that of the 

subsequently released crystal structure. Over 3.3 million molecules were docked against a 

homology model, and 26 of the highest ranking were tested for binding. Six had affinities from 0.2 

to 3.1μM. Subsequently, the crystal structure was released and the docking screen repeated. Of the 

25 compounds selected, five had affinities from 0.3 to 3.0μM. One of the novel ligands from the 

homology model screen was optimized for affinity to 81nM. The feasibility of docking screens 

against modeled GPCRs more generally is considered.
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GPCRs are a large family of membrane proteins that are critical for signal transduction. 

They have been a major focus of pharmaceutical research and are the primary targets of 

almost 30% of approved drugs1. All of these drugs were discovered without the aid of 

receptor structures by classical, ligand-based medicinal chemistry. Accordingly, many of 

these drugs reflect their origins as mimics of the natural signaling molecules. With the 

determination of the first drug-relevant GPCR structures in the last four years2-4, the 

opportunity for structure-based discovery of more novel scaffolds has arisen. Docking 

screens to these crystal structures have been unusually fruitful, with high hit-rates returning 

novel and potent ligands5-7. Still, the structures of most GPCRs remain undetermined. There 

are thought to be just over 360 pharmaceutically relevant GPCRs in the human genome8, 

and to date only five have had experimental structures determined, all by dint of 

extraordinary effort and innovation. For structure-based efforts to impact ligand discovery 

for most GPCRs, certainly in the near term, homology modeling of GPCR structures 

remains essential.

In the past, the structure of rhodopsin and, before that, bacteriorhodopsin9, were used to 

explore GPCR function and ligand recognition10-18. Several efforts to use homology models 

for ligand discovery, via docking, have also been undertaken19-25. With rare exceptions26,27, 

such docking screens use a hierarchy of pharmacophore filtering and ligand similarity to 

focus the molecules being docked. This will typically reduce an “unbiased” library by 10- to 

100-fold to one more dominated by precedented chemotypes. Whereas this can be effective, 

such a combination of filtering and docking perforce removes unexpected chemotypes that a 

stand-alone, structure-based approach might otherwise find. Interestingly, two of these early 

studies included work on dopamine receptors, based on rhodopsin as a template20,21. 

Whereas both screens had high hit-rates, the pharmacophore filtering appears to bias the 

ligands discovered toward well-established chemotypes, a point to which we will return. 

More generally, the pharmacophore approach does not address those targets for which 

ligand information is weak, and does not illuminate how these models compare to what 

might be achieved with an experimental structure.

The opportunity to prospectively investigate how homology models compare to 

experimental structures for ligand discovery, and by extension to investigate what fraction of 

GPCRs might be exploitable for ligand discovery, emerged recently by way of a community 

challenge28. After the determination of the structure of the dopamine D3
29 and CXCR4 

GPCRs in complex with antagonists (for D3, eticlopride, 1, Figure 1), the modeling 

community was asked to predict the structures of each complex before the coordinates were 

released. This provided an opportunity to not only predict the configuration of the single 

ligand bound to the complex, but also to use the homology model that emerged to discover 

new ligands, via structure-based docking screens, before the crystal structure was released. 

Once released, the same screen was prosecuted against the crystal structure. Since in each 

case the putative ligands would be tested for affinity, we could compare the two results to 

illuminate how successful the homology model was compared to the crystal structure in a 

situation where the predictions were truly blind.

We thus undertook the following calculations and experiments. Once we had submitted 

models of the D3/eticlopride complex, we turned to ligand discovery calculations. In these, 
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over 3 million commercially available molecules were screened by docking to identify 

putative ligands that complemented the structure of the homology model. Before the crystal 

structure was released, 26 high scoring small molecules were purchased and tested for D3 

receptor affinity (compounds 2-27). Finally, when the crystal structure was released several 

months later, a second docking campaign was prosecuted based on that structure; twenty-

five more high scoring small molecules from this second screen were purchased and tested 

for D3 receptor affinity (compounds 28-52).

These calculations and experiments enabled the following investigation: Could a homology 

model—blinded to the (unknown) crystal structure—template the discovery of new ligands? 

How well would the homology model compare to the subsequent crystal structure, in terms 

of hit rate and affinity?

These questions thus directly addressed the possibility of using homology models for at least 

some of the vast majority of GPCRs whose structures will likely remain undetermined in the 

near term. More subtly, because the homology model was refined for its ability to enrich 

known D3 ligands, we wondered if ligands discovered against it would be biased toward 

known D3 chemotypes, and might therefore be less novel than those discovered using a 

crystal structure for docking-based discovery? From a chemical biology standpoint, we also 

wondered how ligand specificity would compare between the two screens. The template for 

the homology model was the β2 adrenergic receptor, and one might predict that the screened 

molecules might retain an activity for this target, or might be less specific than those 

screened against an experimental structure. Similarly, from a chemical probe standpoint, it is 

important to optimize for affinity, and we were unsure whether a homology model, selected 

for its ability to recognize general dopaminergic chemotypes, would be competent for such 

optimization. Here, we explored these questions by undertaking prospective docking screens 

against first a homology modeled structure of the D3 receptor and subsequently the crystal 

structure of the same receptor. Since the crystal structure was released after the screen was 

completed against the model structure, both screens were fully prospective. To our surprise, 

we found that the hit rates against both the modeled and experimental structures were not 

only high, but essentially equivalent. Notwithstanding the opportunities for bias toward 

known chemotypes in optimizing the homology model, both screens returned new scaffolds 

at a similar rate.

Results

Prediction of the Dopamine D3–Eticlopride Structure

The results of the D3/eticlopride structure prediction and docking challenge have been 

reported elsewhere 28 but will be briefly summarized here as they influence what follows. 

We were tasked with predicting the structure of the D3/eticlopride complex, without 

knowing either. We used the docking enrichment of known ligands among the top scoring 

molecules, from among a large number of decoys, as a criterion of model accuracy26,30,31. 

Almost 200,000 homology models were built using the program MODELLER-9v832 

templated on the β1
3 and β2

2 adrenergic receptor crystal structures, and elastic network 

models calculated by the program 3K-ENM33 also based on these two structures. The top 

ranked 2964 of these 200,000 models, judged by MODELLER's internal DOPE score34, 
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were advanced for docking. Up to 1,300 known dopaminergic ligands, along with up to 

110,000 property-matched decoys, were docked35. Modeled receptor structures were 

prioritized for their ability to highly rank the known ligands compared to the decoys in the 

screens. Whereas this demanded a substantial amount of docking — 98,700,000 complexes 

calculated overall — it was largely automated. Our top model enriched the known ligands 

versus the decoys by 32-fold over what is expected at random among the 1% top ranking 

molecules. This enrichment was substantially higher than that found for docking of 

dopaminergic ligands against the β1 and β2 adrenergic templates used for the modeling, 

where the enrichments were 2 and 1, respectively.

Eticlopride was docked into each of the top models; five were selected for submission to the 

D3/eticlopride structure prediction and docking28. As was true of the predictions from 

several groups, our predicted structures showed overall fidelity to the subsequently released 

crystal complex. Our highest-ranked model had an overall Cα RMSD of 3.4Å, with an 

eticlopride RMSD of 1.65Å and an RMSD of the orthosteric site residues of 1.65Å (Figure 

1). Most of the key ligand interactions14 observed in the crystal structure29 were also 

observed in this model, including the salt-bridge between the aminergic nitrogen of 

eticlopride and the recognition Asp1103.32 (Ballesteros-Weinstein numbering36). Similarly, 

two internal hydrogen bonds in eticlopride were captured by both the model and the crystal 

structure37. Intriguingly, all of the models that both enriched known ligands and docked 

eticlopride correctly were based on the templates from elastic network backbones; the higher 

range of motion explored by such models presumably contributed to the ultimate fidelity of 

the model to the experimental result. The 3K-ENM model captured backbone movements in 

several helices (III, IV, V and VI) that influence the shape of the binding site, e.g. a 1Å 

movement of transmembrane helix III in the region of Asp1103.32.

Docking for new D3 ligands

With this receptor model in hand, we next turned to ligand discovery. Over three million 

commercially available compounds were screened for complementarity to the receptor 

model, using DOCK3.638,39. Each molecule was fit into the site in an average of 1170 

orientations, relative to the receptor, and for each orientation an average of 789 

conformations, (thus over 900,000 configurations in total). Each configuration was scored 

for van der Waals and electrostatic complementarity, corrected for ligand desolvation39; thus 

for the 3.1 million compounds screened about 2 trillion complexes were evaluated. Prior to 

the release of the crystal coordinates, 26 top ranking compounds (2-27), all among the top 

0.02% of docking-ranked molecules, were selected for experimental testing. The top scoring 

docking hits were dominated by mono-cationic molecules that all appeared to ion-pair with 

the key aminergic recognition residue Asp1103.32; most had overall good van der Waals 

complementarity to the orthosteric site. In the selecting the particular molecules for 

experimental testing, we corrected for energetic terms not included in the scoring function 

such as high ligand internal energy and receptor desolvation (detailed in Supplementary 

Methods). As far as we know, none had been previously tested for activity against 

dopaminergic receptors. Six of these, a hit-rate of 23%, bound to D3 measurably, with 

affinities ranging between 200 nM and 3.1 μM (Table 1, Figure 2, Figure 3 and 

Supplementary Results, Supplementary Figure 3). The similarity of the new compounds 
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versus dopamine receptor ligands was assessed by calculating the Tanimoto coefficient (Tc) 

to the 10400 D3 annotations in the ChEMBL database (http://www.ebi.ac.uk/chembl). Four 

of the active compounds (2, 4, 5, and 7) resembled known ligands, with ECFP_4-based Tc 

values greater than 0.4. The two other active ligands, compounds 3 and 6, were 

topologically dissimilar to dopamine receptor ligands in the ChEMBL database (best 

Tc<0.35 by ECFP_4 fingerprints; novelty was also observed using Daylight fingerprints in 

Supplementary Table 2). These therefore appeared to be novel chemotypes for the D3 

receptor.

With access to the crystal structure (PDB code 3PBL)29, we then carried out a second 

docking screen of the 3.6 million lead-like molecules from ZINC40. Unlike the homology 

model, where side chain positions were optimized to enrich known ligands, the crystal 

structure heavy atom positions were unmodified. We selected 25 molecules (compounds 

28-52) from among the top 0.02% of the crystal structure based screen for experimental 

testing. Five of these, molecules 28 to 32, were active, with Ki values between 300 nM and 3 

μM, a hit-rate of 20% (Table 2, Figure 3, Figure 4 and Supplementary Figure 3). Whereas 

two of these, 28 and 30, resembled previously known scaffolds, and compound 32 was of 

intermediate similarity, two others, 29 and 31, represented novel scaffolds. Intriguingly, 

though 29 explored new substituents distal to the aminergic group, its aryl-amide core 

resembled that of eticlopride; such a chemotype was not observed among the actives from 

the homology-model screen. We note that compound 6, chosen from the homology model 

screen, also scored among the top 0.04% of the docking prioritized molecules from the 

crystal structure screen.

Ligand Bias in the Docking Screens

The homology model had been selected based on its ability to enrich known dopaminergic 

ligands and, in retrospective calculations it enriched known ligands substantially better than 

the crystal structure. Among those chemotypes most strongly enriched were phenyl-

piperazines, which are characteristic for this target. The difference in enrichments between 

the screens was reflected in the compounds that were highly ranked in the prospective 

calculations. Overall, the overlap of the top 1000 docking hits from the two screens was only 

90 molecules, two of which were selected for experimental evaluation; both were inactive. 

Eight of the compounds purchased for experimental testing from the homology model 

screen closely resembled known dopaminergic ligands, with ECFP_4 Tc values greater than 

0.45 to annotated ligands in ChEMBL, but only four of the molecules purchased from the 

crystal structure screen had this level of similarity. The one instance where we observed a 

higher bias towards dopaminergic ligands from the crystal structure screen was in similarity 

to eticlopride itself. Indeed, nine of the molecules selected for testing had the aryl-amide-

aminergic chemotype characteristic of eticlopride and its congeners, reflecting the many 

high-ranking molecules with this feature from the crystal structure screen. Conversely, only 

one compound from the homology model screen had this aryl-amide-aminergic chemotype. 

Notwithstanding these apparent biases going into experimental testing, novel chemotypes 

were ultimately confirmed for both screens.
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The different ligands selected by the two screens reflect differences between the structures 

of the orthosteric sites in the homology model and the crystal structure. Whereas these two 

sites only differed by 1.65Å RMSD when superimposed, this was enough, when interrogated 

at a docking level, to change the identity, if not the nature, of the high-scoring docked 

molecules. The main difference between the two orthosteric sites is that the homology 

model is slightly more open and thus larger. For instance, the distance between the Cα 

atoms of Asp1893.32 and Ser1925.42 grew from 11.9Å in the crystal structure to 12.9Å in the 

model. More locally, Ile183 differs by 3.6Å between the two structures, while Val1895.39, 

Phe3456.51 and Phe3466.52 differ by 0.8 to 1.5Å. This overall opening reflects how the 

model was optimized: we docked ligands of all sizes to the model, and looked for 

enrichments. The model structure that was chosen could accommodate known ligands across 

a relatively wide size range, whereas the same site in the crystal structure more tightly 

encloses eticlopride, a relatively small ligand. Thus, many known phenyl-piperazine ligands 

that were enriched well by the model would clash with residues such as Val1895.39, 

Phe3456.51 and Phe3466.52 in the crystal structure.

Ligand Selectivity

An important challenge in dopaminergic receptor pharmacology is finding ligands that are 

specific for the D3 versus the D2 receptor. With few exceptions41, most D3 receptor ligands 

are also active on D2, making their use as chemical probes problematic. Methodologically, 

we were interested to learn if the new ligands derived from the homology-model docking 

retained activity for the β2 adrenergic receptor, from whose template the D3 model was 

derived. Active ligands were therefore counter-screened against the D2 and β2 receptors 

(Table 3). None had measurable activity against β2 AR at 10μM, suggesting that no 

significant template bias remained, and, also, that ligands specific for dopaminergic 

receptors had emerged. No effort was made to find D3 selective ligands, so achieving 

selectivity among the dopamine receptor subtypes would be fortuitous. Whereas most 

compounds showed little selectivity between D3 and D2, a few of the more novel scaffolds 

did, with affinities 6- and 20-fold better for the D3 over the D2 receptor for compounds 3 
and 7, respectively (Table 3).

Optimization for Affinity

We were also interested in progressing a novel series for affinity, both as an end in itself and 

to explore whether model-based approaches could effectively guide this effort. Twenty 

analogs of compound 3, among the most dissimilar to known dopaminergic ligands, were 

found that had good complementarity to the D3 modeled structure (Table 4 and 

Supplementary Table 4, compounds 53 through 72). In its docked pose, the two hydroxyls 

and the aliphatic amine of compound 3 interacted with Asp1103.32 and Tyr3737.43. As it was 

difficult for these two residues to optimally interact with all the three ligand donors, we 

wanted to explore the possibility that the hydroxyls were not crucial for affinity. 

Commercially available molecules with this feature were extracted from the ZINC 

database40 and docked to the orthosteric site of the homology model. The docked poses 

were inspected and a set of analogs representing the diversity found in the database were 

selected for testing. All of these compounds retained the key Asp1103.32—cationic 

interaction, but explored variations in the hydroxyl groups and the substituents of the phenyl 
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ring. In particular, we focused on compounds that preserved the meta-substituent on the 

phenyl ring, which fills a hydrophobic pocket formed by the side chains of residues 

Phe1643.28, Val1653.29, and Ser1684.57. Eleven analogs had substantially improved 

affinities, ranging from 4 to 20-fold better than the lead compound 3, with the most active 

reaching 81 nM (Table 4, Figure 2, Figure 3, and Supplementary Figure 3).

Functional Activity of the Docking Hits

In previous docking screens against the GPCR crystal structures5-7, there has been a close 

correspondence between the function of the ligand co-crystalized with the receptor, either 

inverse agonist or neutral antagonist, and that of the docking hits. To explore whether this 

(presumably structural) bias was present in the D3 screens undertaken here, the docking hits 

(compounds 2-7 and 28-32) and several analogs of compound 3 (55-57 and 63) were 

investigated for agonism of the D3 and D2 receptors. With the possible exception of 

compound 28, which showed very weak partial agonism (Supplementary Figure 4 and 

Supplementary Table 3), none of these 15 compounds were agonists against either receptor 

and all appeared to function as antagonists. This corresponds with the known function of 

eticlopride, with which the receptor was co-crystalized and on whose binding mode the 

model was predicated.

Discussion

The determination of the structures of pharmacologically relevant GPCRs2-4 has sparked 

intense interest42. A crucial question is not only how these structures may themselves be 

exploited for ligand discovery, but what is the range of homologous targets that they 

illuminate. An astonishing result of this study was that the docking screen against the 

homology model was no less effective than that against the crystal structure; we would have 

been satisfied with the converse answer. The hit rates for both screens were high, at 23% 

and 20%, and their affinity ranges fully overlapped, with several molecules with 200 to 300 

nM affinity from each screen. These predictions were likely right for the right reasons: the 

ligand poses overlapped with those adopted by eticlopride in its D3 complex, and this 

complex was itself well-predicted in the original blinded challenge. Homology models of 

proteins have been previously used for ligand discovery, including for GPCRs19-27. What 

was unusual, and perhaps unique to this study, was that a docking screen was prosecuted 

prospectively against a homology model and then, subsequently, the crystal structure. The 

results were thus doubly unbiased—the crystal structure was unknown at the time of the 

docking, and what we ultimately compared were new, experimentally-tested ligands.

A concern we harbored was whether the active molecules from the model-based screen—

assuming any would be found—would be highly biased toward known dopaminergic 

ligands. A criterion for selecting effective models was their ability to enrich known ligands, 

and it seemed possible, even likely, that any actives that emerged from such a screen against 

it would simply recapitulate known D3 ligands. Indeed, the high-ranking molecules from the 

homology-model screen more closely resembled known dopaminergic ligands than did those 

from the crystal structure screen. Some of this bias can be seen among the experimentally 

tested molecules: for the model, three aryl-piperazines were confirmed as active, whereas 
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for the crystal screen one eticlopride-like ligand was confirmed, the latter consistent with 

this structure's own conformational bias. In this sense the concern regarding bias was 

justified and may affect future studies. In the end, however, the experimentally active 

molecules were no more biased toward known ligands in one screen than the other. 

Meanwhile, from each screen emerged two novel scaffolds, four overall, and these not only 

differed from known ligands but also differed among themselves. Just as compelling, the 

active molecules from the homology model screen showed no measurable affinity for the β2-

adrenergic receptor, which templated its modeling (Table 3). The model thus appeared to not 

only have captured the broad similarity that exists among aminergic GPCR targets, but also 

to have represented features specific to the D3 receptor. The lack of overlap among the hits 

from the two screens, and the observation that many ligands that dock well into the modeled 

structure did not fit into the corresponding crystallographic site, may reflect the many low 

energy conformations that GPCRs sample, both active and inactive43. The modeled and the 

experimental structures may thus represent different but viable low energy D3 receptor 

conformations, both likely inactive ones. This was also consistent with the satisfactory 

fidelity of the original D3/eticlopride structure prediction that was the point of departure for 

this study (Figure 1).

The relatively high affinities of the docking hits undoubtedly reflected the bias, among even 

large commercial libraries, toward molecules resembling known aminergic GPCR 

ligands5,7. It was encouraging that novel chemotypes could nevertheless be discovered. This 

is, after all, the promise of the structure-based enterprise: that based on complementarity to a 

protein structure novel ligands can be discovered and from these novel biologies might 

emerge. In this sense, it was instructive to compare the results of this study, which leveraged 

complementarity to a modeled structure alone in ligand selection, with an study that used a 

pipeline of pharmacophore filtering for dopaminergic chemotypes followed by docking20. 

Whereas this earlier study was in many ways path-breaking, and the hit rates and affinities 

achieved were high, the molecules discovered were typically much more similar to known 

dopaminergic ligands than those found here. This can be seen by inspection of the structures 

and comparison to the previously known ligands (Supplementary Table 5), or more 

quantitatively by considering the ECFP_4 Tanimoto coefficient values (Tc values). The Tc 

values averaged 0.55 to the most similar known dopaminergic, whereas, for the molecules 

discovered here, the average Tc value to the nearest known dopaminergic was 0.42, a large 

difference for this fingerprint that is born out by visual inspection (Table 1 and 

Supplementary Table 5).

Admittedly, the Ki of compound 3, which was among the most novel, was only 1.6 μM, 

probably too high (poor) to be useful as a probe or lead. As a new chemotype for this target, 

we wondered if its affinity could be improved. Structure-guided analog exploration led to 

derivatives of 3 with up to 20-fold improved affinity (Table 4), which may owe to 

elimination one of ethanolic group and exploration of small groups on the meta-position of 

the aryl ring. The most potent of these analogs, compound 56, had a Ki 81 nM, much more 

in the probe range and as potent as many approved dopaminergic drugs. With only 20 non-

hydrogen atoms, 56 is only slightly larger than a fragment and is thus far from optimized; its 
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ligand efficiency of 0.49 is promising for further elaboration44. This series may merit further 

consideration as D3 receptor probes.

Apart from bias in the ligand libraries, docking hits against GPCRs have previously 

recapitulated the functional properties of the ligand with which the receptor was co-

crystalized, presumably reflecting a bias in the receptor structure used. Thus, earlier 

structure-based screens against inactive structures of GPCRs found only antagonists and 

inverse agonists5-7. This was true here too, both the ligands discovered against the 

homology model and those discovered against the crystal structure were essentially all 

antagonists. This likely reflected the inactive D3 conformation selected, from among those 

sampled in solution, by eticlopride in the experimental structure, and the bias toward such a 

structure from the modeling of a conformation competent to recognize the drug in the 

homology model. Additionally, most of the known ligands chosen for docking against the 

homology model were also antagonists.

GPCRs are central to cell signaling and are key targets for medicinal chemistry. The 

determination of the structures of pharmacologically-relevant GPCRs illuminates why they 

are so fruitful for drug discovery—their orthosteric sites are particularly well-suited to 

accommodate small organic molecules. This, and the substantial bias of chemical libraries 

towards the ligands of these targets, explains the high-potency of hits emerging from 

structure-based, and indeed high-throughput screens against them5-7. In this sense, the 

docking screens against the D3 receptor reprise what we learned from those against the β2-

adrenergic and A2A adenosine receptors—hit rates are high, as are the affinities of the hits.

What was new to this study, in addition to the particular ligands discovered, was the direct, 

prospective comparison of the ability of homology models of GPCRs to template ligand 

discovery. The model used here was fully blinded from the crystal structure, but it was 

ultimately as effective in prioritizing active D3 ligands as judged by the hit-rate, the potency, 

and the novelty of the new ligands. Whereas we did not expect this result, it was 

encouraging for the structure-based enterprise against GPCRs. These receptors have 

advantages for homology modeling: the conservation of the seven trans-membrane helixes, 

and several strongly conserved residues, e.g. the DRY and NPXXY motifs, allow registry in 

sequence alignment to be determined with greater confidence than is typically possible. At a 

conservative cut-off of 35% transmembrane sequence identity, the five structures 

determined to date resemble 59 other GPCRs45(Supplementary Table 6). Whereas each new 

GPCR crystal structure will provide a rich vein for ligand discovery, their luster may reflect 

on a much larger number of exploitable targets.

Methods

Homology Models

The initial alignment was generated using PROMALS3D46 using a sequence profile that 

included all dopamine receptor sequences as well as the β1 and β2 adrenergic receptor 

sequences (PDB: 2VT4(chain B)3 and 2RH1(chain A)2). The initial alignment was manually 

refined to correctly align the residues forming the conserved disulfide bonds (C103-C181 

and C355-C358). Alternative alignments of the extracellular loop 2 (EL2), which contacts 
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the binding site14-16 were evaluated, resulting in the final alignment (Supplementary Figure 

2). All homology models were built with MODELLER-9v832. The models were based on 

two types of templates: (1) the crystal structures of the β1
3 and β2

2 adrenergic receptors and 

(2) 710 elastic network models produced by 3K-ENM33, based on each of these two crystal 

structures. This led to almost 200,000 homology models. These were scored using DOPE34 

resulting in 2964 models scoring well by modeling criteria, 4 from each 3K-ENM backbone, 

64 from each crystal structure backbone.

The 2964 models were then evaluated for their ability to enrich known ligands among a 

large number of decoys. The models were ranked based on their adjusted logAUC and the 

enrichment factor at 1% (EF1) of the database39. Models had to score in the top quartile for 

logAUC and EF1, and more than 60% of the best scoring ligands had to form the conserved 

salt-bridge interaction with Asp1103.32, to be considered. The conformational sampling of 

eticlopride was restricted to conserve the internal hydrogen bonds observed in the 

Cambridge Structural Database47. Before the release of the crystallographic structure, five 

modeled eticlopride/D3 structures were submitted to the GPCRDOCK2010 competition28Of 

these, models #1 and #4 had ligand poses and orthosteric residue positions that resembled 

that of the crystal structure (to 1.65Å or better).

Molecular Docking Screens

A version of DOCK3.5.54 with an improved treatment of ligand solvation and with 

improved speed, DOCK3.638,39 (http://dock.compbio.ucsf.edu/), modified with scripting 

drawn from DOCK Blaster (http://blaster.docking.org) was used in docking calculations 

against the homology model and the crystallographic structure of the dopamine D3 receptor 

(PDB 3PBL29). The flexible-ligand sampling algorithm in DOCK3.6 superimposes atoms of 

the docked molecule onto binding site matching spheres, which represent favorable 

positions for individual ligand atoms. Forty-five matching spheres were used; for the crystal 

structure these were derived from the position of eticlopride while the spheres for the 

homology models were derived from overlaid docking poses of known ligands. The degree 

of ligand sampling is determined by the bin size, bin size overlap, and distance tolerance, set 

to 0.4Å, 0.1Å, and 1.5Å, respectively, for both the matching spheres and the docked 

molecules. Complementarity of each ligand pose is scored as the sum of the receptor–ligand 

electrostatic and van der Waals interaction energy, corrected for ligand desolvation39. The 

best scoring conformation of each docked molecule is then subject to 100 steps of rigid-

body minimization. Partial charges from the united atom AMBER force field were used for 

all receptor atoms except for Ser1925.42, Ser1935.43, and Ser1965.46, for which the dipole 

moment was increased as previously described5. From the ZINC lead-like set of 

commercially available molecules, over 3 million compounds were docked. Prior to 

selecting compounds for experimental testing, the hit list was filtered to remove a previously 

known high internal energy motif that results in unreasonably favorable docking scores48, 

using automated scripts. The rankings reported here reflect this filtering (see Supplementary 

Methods for details).
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Binding affinity and functional activity of the docking-predicted compounds

Affinities for D3, D2 dopaminergic and β2 adrenergic receptors were determined by 

radioligand competition binding at the NIMH Psychoactive Drug Screening Program49. 

Briefly, crude P2 (21,000 × g) membrane preparations were prepared from cell lines 

transiently expressing recombinant human GPCRs at about 50μg protein/microliter of 

50mM Tris, 1% BSA, pH 7.4 (assayed by Bradford using a BSA standard). 50μL of 

membrane suspension were added to the wells of a 96-well plate containing 100μL of 

binding assay buffer, 50μL of radioligand present at five times its Kd, and 50μL of candidate 

ligand at a concentration five times that desired in the assay (Supplementary Table 1). 

Reactions were incubated for 60 to 90 min at room temperature in the dark and then 

harvested onto 0.3% PEI-treated GF/A filtermats (Wallac). After three washes with ice-cold 

wash buffer (50 mM Tris, pH 7.4), filter mats were dried in a microwave oven and 

impregnated with Meltilex scintillant (Wallac). Residual radioligand binding, measured by 

scintillation using a TriLux microbeta counter (Wallac), was plotted as a function of 

competitor and regressed using “one-site competition” in Prism4.0 (GraphPad) to obtain 

IC50 values. Ki values were calculated from the IC50 values using the Cheng-Prusoff 

approximation.

To investigate the functional activity of the new ligands (i.e., agonism or antagonism) at D2 

and D3 receptors, we measured recruitment of β-arrestin2 to agonist-occupied receptors 

using the Tango assay50 (summarized here, see Supplementary Methods). HTLA cells were 

transfected with plasmid encoding either the hD2V2 Tango receptor or the hD3V2 Tango 

receptor. As a negative control, cells were transfected with pEYFP-N1 (Clontech). 

Subsequently, the cells were trypsinized, resuspended to 1 × 104 cells/50μl growth medium, 

and seeded in poly-D-lysine-coated glass-bottom 384-well plates (Costar). The next day, the 

medium was replaced with serum-free DMEM (Cellgro), and the cells were stimulated with 

reference agonist (Quinpirole), reference antagonist (Chlorpromazine), or test compounds. 

Assay concentrations of all compounds ranged from 3pM to 30μM. After an overnight 

incubation with reference or test compounds, the medium was removed and replaced with 

1× BriteGlo (Promega). Luminescence was counted using a TriLux (PerkinElmer) plate 

reader. Quinpirole (Sigma-Aldrich), Chlorpromazine (Sigma-Aldrich), and the test 

compounds were all inactive on HTLA cells not expressing a Tango receptor. In additional 

control experiments, HTLA cells were transfected with a plasmid encoding the human V2 

Tango receptor50; Quinpirole and Chlorpromazine had no effect on HTLA cells expressing 

this receptor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Predicted Structure of the Dopamine D3 Receptor Binding Site
(a) Comparison of the homology model of the dopamine D3 receptor in complex with 

eticlopride (light blue) to the crystal structure (yellow) visualized with PyMOL. The 

structures have been aligned using 15 binding site residues. Polar interactions for the crystal 

structure are shown in black dotted lines. (b) Chemical structure of eticlopride (compound 

1).
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Figure 2. Predicted binding modes of ligands found from the homology model screen
Predicted binding poses for four ligands discovered in the docking screen against the 

dopamine D3 receptor homology model, visualized with UCSF Chimera: (a) 3 (b) 4 (c) 6 (d) 

7 Predicted binding modes for the two analogs of compound 3 based on docking to the 

homology model (e) 56 and (f) 57.
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Figure 3. Dose-response curves of discovered ligands
Representative radioligand ([3H]N-methylspiperone) competition binding isotherms for 

compounds 3, 4, 7, 28, 30 and 31 (a-f). Data for a reference compound (chlorpromazine, 

black curve) are shown along with data for the test compound (red curve). Assays are 

performed using a final radioligand concentration between (0.5 × KD) and (1 × KD), where 

KD equals the radioligand dissociation constant, which is determined for each crude 

membrane preparation by radioligand saturation binding analysis. Data represent mean 

values ± standard error, performed on triplicate experiments.

Carlsson et al. Page 17

Nat Chem Biol. Author manuscript; available in PMC 2012 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Predicted binding modes of ligands found from the crystal structure screen
Predicted binding poses for the ligands discovered in the docking screen against the 

dopamine D3 receptor crystal structure, visualized with UCSF Chimera: (a) 28 (b) 29 (c) 31 
(d) 32.
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Table 3
Ligand selectivitiy for the dopamine D3, D2, and the β2 adrenergic receptor

Receptor Affinity (Ki, μM)a

Dopamine Adrenergic

# D3 D2 β2

2 3.1 1.3 >10

3 1.6 >10 >10

4 0.2 0.4 >10

5 1.8 0.4 >10

6 1.3 4.5 >10

7 0.5 >10 >10

28 0.3 0.9 n.d.

29 2.2 3.9 n.d.

30 0.3 >10 n.d.

31 1.6 >10 n.d.

32 3.0 3.8 n.d.

n.d.; Not determined

a
The uncertainty in each measured Ki is ±30%.
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Table 4
Binding Affinities for eleven analogs of compound 3 against the dopamine D2 and D3 

receptors

# Structure TC
a

Receptor Affinity
(Ki, μM)b

D3 D2

53 0.24 0.2 0.5

54 0.29 0.2 0.2

55 0.28 0.2 0.2

56 0.25 0.08 0.3

57 0.24 0.3 2.6

58 0.27 0.3 0.8

59 0.24 0.3 1.2

60 0.24 0.1 0.6

61 0.23 0.1 0.2

62 0.26 0.1 0.6
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# Structure TC
a

Receptor Affinity
(Ki, μM)b

D3 D2

63 0.33 0.5 1.7

a
The Tanimoto similarity (Tc) to the most similar dopamine receptor ligand in the ChEMBL database.

b
The uncertainty in each measured Ki is ±30%.
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