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Summary
Acute lung injury (ALI) is a condition characterized by acute onset of severe hypoxemia and
bilateral pulmonary infiltrates. ALI patients typically require mechanical ventilation in an
intensive care unit. Low tidal volume ventilation (LTVV), a time-varying dynamic treatment
regime, has been recommended as an effective ventilation strategy. This recommendation was
based on the results of the ARMA study, a randomized clinical trial designed to compare low vs.
high tidal volume strategies (The Acute Respiratory Distress Syndrome Network, 2000) . After
publication of the trial, some critics focused on the high non-adherence rates in the LTVV arm
suggesting that non-adherence occurred because treating physicians felt that deviating from the
prescribed regime would improve patient outcomes. In this paper, we seek to address this
controversy by estimating the survival distribution in the counterfactual setting where all patients
assigned to LTVV followed the regime. Inference is based on a fully Bayesian implementation of
Robins’ (1986) G-computation formula. In addition to re-analyzing data from the ARMA trial, we
also apply our methodology to data from a subsequent trial (ALVEOLI), which implemented the
LTVV regime in both of its study arms and also suffered from non-adherence.
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1. Acute Lung Injury
Acute lung injury (ALI) is a condition characterized by acute onset of severe hypoxemia and
bilateral pulmonary infiltrates. Acute respiratory distress syndrome (ARDS) is a sub-set of
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ALI with more severe hypoxemia. The 1994 American-European consensus criteria for ALI
are (1) acute onset, (2) bilateral infiltrates on chest radiography, (3) pulmonary-artery wedge
pressure less than or equal to 18mm Hg when measured or the absence of clinical evidence
of left atrial hypertension, and (4) ratio of the partial pressure of arterial oxygen (PaO2) to
the fraction of inspired oxygen (FiO2) less than or equal to 300. A patient with ALI is
considered to have ARDS if the PaO2 : FiO2 ratio is less than or equal to 200 (Bernard et
al., 1994).

ALI can be caused by direct injury to the lung as in pneumonia and aspiration of gastric
contents, or indirect lung injury as in sepsis from a source other than the lung and
pancreatitis. The majority of deaths among ALI patients are due to sepsis or multi-organ
dysfunction rather than primary respiratory causes (Ware and Matthay, 2000). A recent large
prospective study of the incidence and mortality of ALI in the United States (Rubenfeld et
al., 2005) reported an incidence of 86 per 100,000 person-years with an in-hospital mortality
rate of 38.5 percent.

1.1. Mechanical ventilation for ALI
ALI patients frequently require mechanical ventilation in an intensive care unit (ICU). There
are many different ways to provide mechanical ventilation support for ALI patients. In this
paper, we focus on the assist-control (volume-control) mode of ventilation, during the most
acute phase of respiratory failure. This mode is often used immediately after initiation of
mechanical ventilation. In this mode, the physician selects a minimum respiratory rate and
tidal volume. If a patient's respiratory rate falls below the prescribed rate, the ventilator will
“control” the breathing by raising pressure in the airway to deliver breath at the prescribed
tidal volume and at the prescribed minimum respiratory rate. If a patient's respiratory rate
exceeds the prescribed minimum set rate, the ventilator assists the patient's inspiratory
efforts by raising pressure in the airway until the prescribed tidal volume is achieved. The
best ventilation strategy for ALI patients has been controversial. The resting tidal volume of
healthy people is about 6 to 7 ml per kilogram of predicted body weight (PBW) (Tobin et
al., 1983). The predicted body weight is calculated from sex and height, which are good
predictors of lung volume. Traditionally, a generous tidal volume of 10-15 ml/kg PBW was
recommended for ALI patients because they were useful for achieving clinical goals of gas
exchange. However, in ALI patients, the volume of aerated lung available for ventilation is
substantially reduced from the disease process. Consequently, generous tidal volumes may
cause injury to the aerated lung from over-distention, causing further lung injury, known as
barotrauma or volutrauma (Webb and Tierney, 1974; Dreyfuss and Saumon, 1998). This
issue has led to several clinical trials of lung-protective methods of mechanical ventilation
with low tidal volumes for patients with ALI (Fan et al., 2005).

1.2. The ARMA Trial
The National Heart, Blood and Lung Institute ARDS Clinical Network conducted a
randomized trial comparing mechanical ventilation using traditional tidal volumes versus
low tidal volume ventilation (The Acute Respiratory Distress Syndrome Network, 2000).
This study was dubbed the ARMA trial. A total of 429 and 432 patients were randomized to
traditional and low tidal volume ventilation, respectively. The assist-control ventilation
mode was used until a patient was ready to be weaned from the ventilator. Figure 1 shows a
flowchart of traditional and low tidal volume ventilation strategies. In the group treated with
traditional tidal volumes, the initial tidal volume was set to 12 ml/kg PBW. This tidal
volume was then adjusted downward if necessary to keep the airway pressure measured after
a 0.5-second pause at the end of inspiration (plateau pressure) less than or equal to 50 cm
H2O. If the plateau pressure subsequently decreased below 45 cm H2O, then tidal volumes
were increased so that plateau pressure was greater than or equal to 45 cm H2O or tidal
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volume was 12 ml/kg PBW. In the group treated with low tidal volumes, the tidal volume
was initially set to 6 ml/kg PBW and then decreased to a minimum of 4 ml/kg PBW if
necessary to maintain the plateau pressure less than or equal to 30 cm H2O. If the plateau
pressure subsequently fell below 25 cm H2O, then tidal volume was increased so that
plateau pressure was greater than or equal to 25 cm H2O or tidal volume was 6 ml/kg PBW.
Tidal volumes greater than 6 ml/kg PBW were allowed if patients experienced severe
dyspnea, provided the plateau pressure remained below 30 cm H2O. In both arms, plateau
pressures were allowed to go above the threshold levels (50 and 30 cm H2O for the
traditional and low tidal volume arms, respectively) if the tidal volume was 4 ml/kg PBW or
arterial pH was less than 7.15. In both study groups, most other aspects of the mechanical
ventilation strategies, including positive end-expiratory pressure (PEEP), FiO2, respiratory
rate set on the ventilator, and inspiratory:expiratory ratio (I:E) were controlled according to
explicit protocol rules.

The study demonstrated lower mortality, more ventilator-free days, and more organ failure-
free days in ALI patients who received mechanical ventilation with the LTVV versus
traditional strategy. The ARDS Network concluded that the LTVV strategy was better than
the traditional strategy and recommended that the LTVV strategy be used for clinical
management of ALI.

1.3. Controversy
The ARMA trial, its results, and the ARDS Network recommendation were considered
controversial by some clinicians and researchers. Some argued that the recommendation of a
tidal volume goal of 6 ml/kg PBW is not optimal because the traditional tidal volume
strategy used in the trial did not accurately represent usual care approaches that clinicians
were using when the trial was conducted (Eichacker et al., 2002; Tobin, 2000). In the trial,
the most common tidal volumes prescribed by clinicians before their patients were enrolled
were in the range of 9 - 11ml/kg PBW (Thompson et al., 2001). Another perspective that is
consistent with this concern was expressed in the editorial that accompanied the ARMA trial
publication (Tobin, 2000). The editorial argued that in 5 randomized trials of ALI
mechanical ventilation strategies (including the ARMA trial), clinical outcomes were better
in the study groups that received low tidal volumes only when the mean plateau pressures in
the traditional study groups exceeded 32 cm H2O. This was interpreted by some to suggest
that it was not necessary to reduce tidal volumes to 6 ml/kg PBW in patients whose plateau
pressures were below 32 cm H2O while they were receiving tidal volumes that exceeded 6
ml/kg (Tobin, 2004). In another review of these 5 clinical trials, the authors suggested that
clinical outcomes would be optimized in most ALI patients with intermediate tidal volumes
between 6 and 12 ml/kg and plateau pressures of 28-32 cm H2O (Eichacker et al., 2002).

In the ARMA trial, adherence to the LTVV protocol rules was not perfect. Since only the
selected tidal volume and resulting plateau pressure can be recorded, not the selection
procedure, a set of specifications has been carefully developed to determine whether the
LTVV protocol was followed, using the values of tidal volume, plateau pressure, arterial pH,
set respiratory rate, etc (see Table 1). Ventilation on a given day is considered adherent to
LTVV if the settings are adherent to both the plateau pressure specification and the tidal
volume specification. Plateau pressure adherence follows if lines 1 or 2 (Table 1) are
satisfied; tidal volume adherence follows if any of lines 3-7 are satisfied. In the ARMA trial,
clinicians sometimes deviated from these rules. Figure 2 (a) displays the observed plateau
pressure/tidal volume combinations in the LTVV arm of the ARMA trial. Dots and crosses
denote adherence and non-adherence with the LTVV protocol, respectively. Points falling
inside region (1) are adherent to LTVV. Points falling inside region (2) are not adherent.
Points falling inside regions (3), (4) and (5) must satisfy additional restrictions of arterial pH
and set respiratory rate to be adherent to LTVV. Overall, 28% of the observed ventilation
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days deviated from the LTVV protocol. It is important to note that the majority of the non-
adherent points within the regions (3), (4) and (5) of Figure 2 were due to violations of the
pH restriction, potentially due to clinicians’ concern regarding immediate adverse effect of
low pH. According to the LTVV protocol, each non-adherent (cross) point could have been
adherent (dot) by adjustment of ventilator settings. Consider a non-adherent (cross) point in
region (4), which does not satisfy the LTVV regime because pH greater than or equal to 7.2.
By lowering tidal volume (with a consequential decrease in plateau pressure), pH will
decrease, yielding adherence in the same region or movement to an alternative region (due
to change in tidal volume and plateau pressure).

Some have argued that physicians deviated from the LTVV protocol when they thought
specific aspects of the protocol were detrimental to their patients. For example, when
patients appeared to be very dyspneic (short of breath) while receiving 6 ml/kg PBW, some
physicians raised tidal volume above 6 ml/kg PBW in an attempt to alleviate the dyspnea.
By making these deviations, clinical outcomes of some patients could have improved (Deans
et al., 2005, 2006). Thus, there is continued controversy regarding the ARDS Network
recommendation to use LTVV. To address this controversy, we seek to draw inference about
the distribution of survival that would have resulted had all patients in the LTVV arm of the
ARDSNet study strictly adhered to the LTVV protocol. We will compare this distribution to
the observed LTVV survival curve that reflects imperfect adherence with the LTVV
protocol. We will also evaluate the effect of a simpler regime, which is easier for clinicians
to implement.

1.4. ALVEOLI Study
After the ARMA trial, the LTVV protocol was recommended by the ARDS Network and
was used in subsequent trials conducted by ARDS Network. For example, ALVEOLI was a
subsequent randomized trial to test the hypothesis that higher end-expiratory airway
pressure/lower FiO2 ventilation strategy would reduce mortality in patients with ALI when
compared to a lower end-expiratory airway pressure/lower FiO2 ventilation strategy (The
National Heart, Blood and Lung Institute ARDS Clinical Trials Network, 2004) . This
ALVEOLI trial was stopped due to lack of efficacy after a total of 549 patients were
enrolled. In the ALVEOLI trial, the LTVV regime was used in both study arms and non-
adherence was observed. Overall, 22% of the observed ventilation days were non-adherent
with the LTVV protocol. As with the re-analysis of the ARMA trial, in this paper, we will
estimate the distributions of survival under strict adherence to the complex LTVV protocols
and under a simpler regime. We will then compare these results to the observed survival
curve. Consistency of results across the ARMA and ALVEOLI studies will provide greater
support for our conclusions.

1.5. Statistical Challenges
There are two main challenges in the statistical analysis.

1.5.1. Time-Dependent Dynamic Treatment Regime—LTVV is a time-dependent
dynamic treatment regime. Dynamic treatment regimes are individually tailored treatments
(Murphy et al., 2001; Moodie et al., 2007). In a dynamic treatment regime, the treatment is
provided to patients only when it is needed and the level of treatment is adjusted based on
time-dependent measurements of the patient's need for treatment. About 40% of ALI
patients die in ICU generally while receiving mechanical ventilation. Recovering patients
who remain on mechanical ventilation are evaluated daily by a weaning procedure to assess
for discontinuation of ventilation. According to his/her performance in the weaning
procedure, the patient may begin unassisted breathing, change to other ventilation modes, or
remain on assist-control mode. Only if the patient is alive and on assist-control mode, is he/
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she eligible or ‘at risk’ for LTVV. In contrast, in a non-dynamic (static) treatment regime the
treatment level and type are specified before treatment is started. That is, the treatment
regime is not changed with a patient's response, for example, administering a fixed drug
dose for a fixed duration to a patient with a specific disease.

In observational studies of time-dependent treatments (dynamic or non-dynamic), there
often exist time-dependent covariates which are influenced by past treatments as well as
predict future treatments and the outcome. Such covariates are called time-dependent
confounders. They are sometimes called endogenous or internal variables in the survival
analysis literature (Kalbfleisch and Prentice, 2002). For example, a patient's organ failure
status may be worse for patients who have not received LTVV. Moreover, those with worse
organ failure also may be less likely to receive future LTVV (due to patients being perceived
as “too sick” for LTVV by their doctors) and are more likely to die in-hospital. In this
situation, the challenge is to isolate the effect of LTVV from the confounding effect of organ
failure and other time-dependent confounders. An analysis which estimates the survival
curve among those who are observed to adhere to LTVV will likely over-estimate the
counterfactual survival curve of interest. If LTVV is an effective regime, the counterfactual
survival curve will likely be higher than the observed (i.e, unconditional) survival curve. We
illustrate this phenomenon in Section 4.1.

There is a significant and growing body of literature focused ondrawing inference about
dynamic treatment regimes from observational data with time-dependent confounders. In
this paper, we will utilize the G-computation algorithm, as developed by (Robins, 1986,
1987b,a, 1988b,a) and described nicely in Lok et al. (2004), to estimate the counterfactual
survival curve of interest. Alternative approaches that could be used include marginal
structural (Murphy et al., 2001; Robins et al., 2000; Bembom and van der Laan, 2008;
Robins et al., 2008; Moodie, 2009b; Hernan et al., 2006; Robins, 1999a,b) and structual
nested (Robins, 1997, 1999b; Lok et al., 2004) modelling. Recently, the literature has been
focused on identifying optimal dynamic regimes (Robins et al., 2008; Moodie, 2009a; Rich
et al., 2010; Moodie and Richardson, 2010; Murphy, 2003; Moodie et al., 2007; Chakraborty
et al., 2010; Zhao et al., 2009; Robins, 2004; Orellana et al., 2010). Although a very
interesting direction of research, we will not seek to find the best ventilation strategy in this
paper.

1.5.2. Missing Data—In the ARMA and ALVEOLI studies, reference measurements of
ventilator parameters and other variables were taken on days 1,2,3,4,7,14,21,28. The
ventilator parameters on the other days were not recorded. In addition to the reference
measurements, the care providers recorded ventilator parameters, arterial pH and plateau
pressure daily at randomly selected times to assess the accuracy of the ventilator settings
relative to the protocol requirements. Because these random ventilator check data were
scheduled to be collected daily during the entire study, we used them for our data analysis.
However, missing data is a major problem for the random ventilator check data (see Table
2) and for many observational studies. We will address it by specifying a fully parametric
model for the distribution of the data that are scheduled to be collected and assuming that
the data that are not recorded are missing at random. In specifying our model, we must
recognize that some of the ventilation parameters have biologically bounded support.

1.6. Outline
In Section 2, we introduce the data structure and notation including the definition of
potential survival time under a dynamic treatment regime. In Section 3, we introduce
assumptions necessary for identification of the distribution of the potential survival time.
Section 4 introduces the G-computation method for estimating the potential survival curve
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of a dynamic treatment regime and our fully Bayesian implementation. In Section 5, we
apply the methods in the previous sections to our data. Section 6 is devoted to a discussion.

2. Data structure and notation
The notation used in this article is listed in Table 3. With this notation, the scheduled
observed data on day t (t = 1, . . ., 28) are

where St is the indicator of surviving day t; HSPt is the indicator of hospitalization on day t,
defined only when St = 1; ICUt is the indicator of being in the ICU on day t, defined only
when St = HSPt = 1; VNTt is the indicator of being on the assist-control mode of the
ventilator on day t, defined only when St = HSPt = ICUt = 1; Rt = I(HSPt = ICUt = VNTt = 1)
is the indicator of being at-risk on day t, defined only when St = 1; Gt = (PEt, LCt) includes
PEEP and lung compliance on day t, defined only when St = Rt = 1; Dt = (VTt, SRt) includes
tidal volume and set rate on day t, defined only when St = Rt = 1; Wt = (PHt, PPt, DSt, SOt)
includes pH, plateau pressure, indicator of severe dyspnea, and oxygen saturation on day t,
defined only when St = Rt = 1; and OFt is an indicator of organ failure on day t, defined
when St = HSPt = 1. When St = Rt = 1, the variables Gt, Dt and Wt are recorded
simultaneously at a random time during the day. From a causal inference perspective, we
will consider the variables that make up Lt to be sequentially measured in time; for example,
when St = Rt = 1, Gt is measured before Dt which is measured before Wt and OFt. This
implies that when St = Rt = 1, Dt can affect Wt and OFt, but not Gt.

In our study, L0 = (AP, OF0), where AP denotes the baseline APACHE III score. Let L ̄t =
(L0, ..., Lt). In general, we use a bar over a variable to denote that variable and all the past
values of that variable. The scheduled observed data are L ̄28. Our identification assumptions
in the next section will be based on a subset of the observed data. Towards this end, it is
useful to define H0 = AP, U0 = OF0, Ht = (HSPt, ICUt, VNTt, Gt) and Ut = (Dt, Wt, OFt), for
t = 1, . . ., 28. With this notation, note that Lt = (St, Ht, Ut).

When an individual is on the assist-control mode of ventilation, the tidal volume and set rate
are directly manipulable by the treating physician. If the treating physician had followed the
LTVV protocol (defined in the flowchart in Figure 1), there would be a unique ventilator
setting (i.e., Dt) for each patient. Since the dynamic process of setting the ventilator dials
was not recorded, a physician was considered to have followed the protocol if the tidal
volume and plateau pressure specifications in Table 1 are satisfied. When St = Rt = 1, the
adherence indicator on day t, At, is a deterministic function of Dt and Wt. That is,

, where  is the set of combinations of tidal volume, set rate, pH, plateau
pressure, and severe dyspnea, which satisfy the tidal volume and plateau pressure
specifications in Table 1. We let At = 1 if St = 0 or St = 1, Rt = 0. We denote the
counterfactual random variables (potential outcomes) that would have been observed had an
individual been sequentially treated according to the LTVV protocol with the superscript *
notation. The goal is to draw inference about the counterfactual survival curve, i.e.,

 for m = 1, . . ., 28.

3. Assumptions
There are four assumptions that we impose to identify the counterfactual survival curve of
interest.
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First, we assume that the potential survival outcome under the LTVV protocol is uniquely
determined. This is the stable unit treatment assumption (Rubin, 1986) or consistency
assumption (Robins, 1986). Under this assumption,  when Āt–1 = 1. This implies that,
for each t (t = 1, . . ., 28),

The LTVV protocol, as depicted in Figure 1, is designed to yield unique patient-level
ventilator settings. As administration of the protocol was not directly observed, we assume,
based on clinical considerations, that the physician followed the protocol if the tidal volume
and plateau pressure specifications in Table 1 are satisfied. Accordingly, the treatment for an
individual is unique and therefore her potential survival outcome is unique.

Second, we assume that the LTVV protocol is evaluable. Specifically, we assume that when
a group of patients have been treated with the LTVV protocol until day t, at least some of
them will continue to be treated with the protocol on day t + 1. This has been called the
positivity assumption (Hernan and Robins, 2006), or equivalently, the evaluable treatment
regime assumption (Lok et al., 2004). Mathematically, we require that, for each t and each
possible value of h̄t and ūt–1,

For the LTVV arm in the ARMA study and both arms in the ALVEOLI study, the positivity
assumption is reasonable since physicians were instructed to follow the LTVV protocol. In
the traditional tidal volume arm of the ARMA study, for example, the positivity assumptions
would not be plausible.

Third, we assume there is no unmeasured confounding. In particular, we assume that, for
individual on assist-control mode ventilation, adherence to the LTVV protocol is
sequentially randomized. That is, we assume, for each t (t = 1, . . ., 28),

(3.1)

This assumption will hold if H ̄t and Ūt–1 includes all risk factors, other than treatment
history, used by the physician to determine the patient's ventilator settings on day t. In the
ARMA and ALVEOLI studies, there are many possible reasons why physicians could have
deviated from the LTVV protocol, including respiratory acidosis resulting from LTVV and
poor lung compliance (a measure of stiffness of lungs) which might cause some clinicians to
increase the tidal volume in order to reduce acidosis. Therefore, arterial pH (a measurement
of acidosis) and lung compliance are considered two key confounders. Other confounders
considered in the analysis were baseline APACHE III score (a measurement of illness
severity), organ failure, PEEP, most recent ‘at-risk’ status (on assist-control mode or not)
and most recent LTVV adherence status.

The final assumption, which was alluded to earlier, is that missing data mechanism is
ignorable, the parameters that govern a model for missing data mechanism are variation
independent of those that govern the model for distribution of the data that are scheduled to
be collected, and that the data that are not recorded are missing at random in the sense of
Rubin (1976). Under this assumption, specification of a fully parametric model for L ̄28 will
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be sufficient for us to achieve our inferential objectives; the parameters of this model are
identifiable from the distribution of the observed data.

4. G-computation
Given the distribution of L ̄28 and the first three assumptions above, the potential survival
function at day m (m ≤ 28) is identified via the following G-computation formula (Robins,
1986). The identification formula is derived as follows. By conditioning on H0, U0 and S1
and H1, we can write

Under sequential randomization,

By further conditioning on U1, S2 and H2,

Using sequential randomization,

By continuing to condition sequentially in time and employing sequential randomization,

Finally, by employing stochastic consistency,

This latter multivariate integral has been called the “G-computation” integral or formula. To
illustrate how the formula works, consider the following example.

4.1. Example
Consider the treatment of patients with ALI on the first two days. Suppose that (1) all
patients survive day 1, (2) all patients are on assist-control or ‘at-risk’ on day one, (3) 70
percent of the patients on day 1 are treated with LTVV (A1 = 1) and the others with
traditional ventilation (A1 = 0), (4) the assignment of treatment on day one is completely
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random, (5) organ failure on day 1 is highly associated with treatment on day 1, with
patients on LTVV at much lower risk (20%) for organ failure as compared to those who are
not (80%), (6) the risk of death on day 2 is higher for those with organ failure on day 1 and
is lower for those treated with LTVV on day 1, (7) all surviving patients on day 2 are on
assist-control ventilation on day 2, (8) treatment with LTVV on day 2 is positively
associated with treatment with LTVV on day 1 and negatively associated with organ failure
on day 1, (9) organ failure on day 2 is positively associated with organ failure on day 1 and
negatively associated with treatment with LTVV on day 1 and (10) the risk of death on day
3 is higher for those with organ failure on day 2 and lower for those treated with LTVV on
day 2. The distribution of the observed data is displayed in Figure 3.

In this example, we are interested in comparing the probability of surviving past day 3 under
the LTVV regime to (a) the overall probability of surviving past day 3 and (b) the
probability of surviving past day 3 among patients who are observed to adhere to the LTVV
regime. Using the G-computation formula and noting that S1 = 1, , , Ut = OFt (t =
1, 2), we obtain

In contrast, the overall three-day survival probability is 0.60 and the survival probability
among those observed to adhere to the LTVV protocol is 0.844.

In this example, organ failure serves as a time-varying confounder. That is, organ failure on
day 1 is affected by treatment on day 1 and predicts subsequent treatment. Organ failure on
day 1 is also negatively related to survival on day 3. The three-day survival probability for
those who adhere to the LTVV regime is higher than the counterfactual survival probability
because those who adhere to therapy tend to have less organ failure than those who do not.
The overall three-day survival probability is even lower because non-adherence to therapy is
associated with greater organ failure and worse survival, regardless of organ failure status.

4.2. Additional Modeling Assumptions

The G-computation formula teaches us that the  is a functional of the distribution
of L ̄28. We can write the likelihood of L ̄28 as follows:

In our analysis, we assume that a patient's status on day t only depends on his most recent
history and the baseline APACHE III score (H0). Thus, the likelhood can be written as:

Further modeling restrictions result from structural features of our datasets as well as from
the clinical judgement of our physician co-authors (DN and RB). Structurally, we know that
all patients survive day one and whenever a patient is on ventilator on day t – 1, she either
dies or remains in the hospital and in the ICU at time t. Also, once a patient leaves the
hospital (ICU), she does not return the hospital (ICU). With these considerations, we write
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(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

where PDt = PPt – PEt, conditioning on Rt, HSPt, ICUt or VNTt implies that St = 1,
conditioning on ICUt or VNTt implies HSPt = 1 and conditioning on VNTt implies ICUt = 1.
It is important to note that we model PDt instead of PPt since we are conditioning on PEt
and that VTt does not appear in the likelihood because it is a deterministic function of LCt
and PDt (i.e., VTt = LCtPDt). The distributions on the right hand side of the above three
displays are modeled with separate regression models. The binary outcomes, St, HSPt, ICUt,
VNTt, DSt and OFt, are modeled using logistic regression. The continuous variables, H0,
LCt, PEt, PHt, PDt, SOt, and SRt, are linearly transformed to the range [0, 1] (using the
bounds displayed in Table 4) and modeled using Beta regression models (Ferrari and
Cribari-Neto, 2004). In these models, the logit of the mean (μ) is modeled as a function of
covariates and the variance is equal to μ(1 – μ)/(η + 1), where η is a scalar dispersion
parameter. In all regression models, there are separate intercepts for days 1 to 13, and
common intercepts for days 14 to 21 and days 22-28; there are no interactions between
covariates; the regression coefficients for time-varying covariates are assumed to be time-
invariant as the dispersion parameters (in the Beta regression models).
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4.3. Inference
We adopt a Bayesian approach to inference. We assume independently normally distributed
mean zero, variance 100 priors on all the regression parameters. For each model, we built up
a shrinkage prior on the time-varying intercept parameters as follows: the intercept on day
one was assumed to be normally distributed with mean zero with variance 5, the intercept on
day t (t = 2, . . ., 13) was assumed to be normally distributed with mean equal to the intercept
on day t – 1 and variance σ2, the common intercept for days 14 to 21 (days 22 to 28) was
assume to be normally distributed with mean equal to the intercept on day 13 (day 21) and
variance σ2, and σ2 was assumed to be uniform on the interval [0, 5]. Finally, the dispersion
parameters η in the Beta regression models were assumed to be uniform on the interval [0,
100].

The posterior sampling for the model parameters was performed in WinBUGS. Twelve-
thousand iterations of which six-thousand were used for burn-in were performed. Trace plots
of multiple chains were examined to check for convergence. For each iteration, we evaluated
the G-computation formula by Monte-Carlo integration. The Monte-Carlo scheme is
complicated by the fact that the integration requires us to sample from dF(St|St–1 = 1, At–1,
Ht–1, Ut–1, H0), dF(Ht|St = 1, At–1 = 1, Ht–1, Ut–1, H0, St = 1) dF(Ut|St = 1, At = 1, Ht, Ut–1,
H0) instead of dF(St|St–1 = 1, Ht–1, Ut–1, H0), dF(Ht|St = 1, Ht–1, Ut–1, H0), dF(Ut|St = 1, Ht,
Ut–1, H0), where we know that At is a deterministic function of Ut.

Our sampling scheme proceeds according to Figure 4. For the sake of completeness, we
document the procedure in each of the letter-marked boxes. In Box (A), the model in (4.1) is
used. The sampling in Box (B) proceeds as follows:

• If ICUt–1 = 0, sample HSPt from (4.2), else set HSPt = 1.

• If ICUt–1 = 1 and VNTt–1 = 0, sample ICUt from (4.3), elseif Rt–1 = 1, set ICUt = 1,
else set ICUt = 0.

• If Rt–1 = 1, sample VNTt from (4.4) else sample VNTt from (4.5);

the sampling in Box (C) proceeds as follows:

• If Rt–1 = 1, sample LCt from (4.6), else sample LCt from (4.7);

the sampling in Box (D) proceeds as follows:

• If Rt–1 = 1, sample PEt from (4.8), sample PHt from (4.10), sample PDt from
(4.12), sample SOt from (4.14), sample SRt from (4.16) and sample DSt from
(4.18); else sample PEt from (4.9), sample PHt from (4.11), sample PDt from
(4.13), sample SOt from (4.15), sample SRt from (4.17) and sample DSt from
(4.19);

and sampling in Box (E) proceeds as follows:

• If Rt = 1, sample OFt from (4.20), elseif Rt = 0 and Rt–1 = 1, sample OFt from
(4.21), elseif Rt = 0, Rt–1 = 0, ICUt–1 = 1, sample OFt from (4.22), else sample OFt
from (4.23).

This scheme is repeated 10,000 times and the resulting survival curves are averaged. As this
is performed for each posterior draw from the model parameters, we obtain 6000 posterior
draws of the survival curve of interest.

To evaluate, at least in part, the goodness of fit of our model, we can use a modification of
the above procedure to obtain posterior draws for the distribution of the “observed” survival
curve and compare it to the empirically observed survival curve. We note that we can
express the “observed” survival curve as the following integral:
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This suggests that we can obtain posterior draws by using the same algorithm above, except
that, in Fugure 4, we omit the evaluation of whether At = 1 or not.

5. Analysis of ARMA and ALVEOLI Studies
In this section, we apply the G-computation formula to the ARMA and ALVEOLI trials.
Figure 5 and Table 5 present the empirical observed (gray lines), posterior mean observed
(black dashed lines), and posterior mean potential (black lines) survival curves for the
ARMA and ALVEOLI studies. The table includes 95% posterior credible bands for these
three curves and the figure depicts the confidence band for the potential survival curve by
the shaded region. For reference, the empirical survival curves for those who were observed
to adhere to the LTVV algorithm are included in the figures (gray dashed lines); this
represents 92 and 141 patients in the ARMA and ALVEOLI studies, respectively. By visual
comparison of the empiricial observed and posterior mean observed survival curves,
empirical and model-based, we see that our model provides a reasonable fit to the observed
data. The posterior mean potential survival curve is below the posterior mean observed
survival curve in the ARMA study, but the curves are barely indistinguishable for the
ALVEOLI study. In both studies, the empirical survival curve for the adherers drops steeply
during the first 7 days and then tapers off. This reflects the fact that those who are observed
to adhere are those who either die or recover quickly, so that their need for ventilation is
limited; those with longer ventilation periods are less likely to be reflected in these curves as
they have a greater chance of violating the LTVV protocol or have missing data that
precludes evaluation of their adherence status.

In displays not shown, we evaluated the posterior mean difference between the observed and
potential survival curves along with a 95% posterior credible band. In both studies, the 95%
credible bands for the difference include zero for all time, which does not statistically
support the theory that imperfect adherence to the protocol led to improved outcomes.

Despite these non-significant findings, it is interesting to speculate why the potential
survival curve under LTVV adherence is noticeably lower than the observed survival curve
in the ARMA study, but virtually identical in the ALVEOLI study. We suspect that, with the
positive results in ARMA, many doctors were more comfortable using a strategy that
targeted lower tidal volumes and plateau pressures. With these data, doctors were more
willing to allow their patients to stay on lower tidal volumes. With more experience they
learned that patients may experience some “agitation” (e.g., dysynchrony with the
mechanical ventilator) early in their clinical course on lower tidal volumes, but this
“agitation” improves within a couple of days. In ALVEOLI, the use of heavy sedation or
neuromuscular blockade (which would address this dysynchrony with the mechanical
ventilator) was more limited, primarily occurring in the first couple of days, whereas in
ARMA many patients remained heavily sedated or neuromuscular-blocked for more
extended periods of time. It is this difference in medication use which may explain the
discrepancy between the results across trials.

6. Discussion
In this paper, we used the G-computation formula to estimate the potential survival
distribution under the dynamic LTVV treatment regime for patients with acute lung injury.
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Our results demonstrate that strict adherence to the LTVV algorithm does not lead to
increased mortality, as has been suggested in the clinical literature.

Our methodology relies on the untestable assumption of no unmeasured confounding. That
is, we have assumed that we have measured all the time-dependent confounders that, when
conditioned upon, make compliance with LTVV on a given day, a random process, akin to
flipping a possibly biased coin (Assumption 3.1). While this assumption cannot be
empirically validated from the observed data, the clinical experts on our team (Dale
Needham and Roy Brower) have come to feel comfortable with this assumption. The key
question here is why some physicians deviate from the LTVV protocol. The concern of such
physicians is that a low tidal volume may cause worse gas exchange, especially among those
hard patients with stiff lungs (lungs that are more difficult to ventilate). Gas exchange can be
measured by arterial pH and the stiffness of lungs can be measured by lung compliance.
With these two variables and a few others included, we feel that we have captured the key
factors that govern adherence to the LTVV protocol. Nonetheless, future work should focus
on exploring the sensitivity of our conclusions to deviations from this assumption.

The G-computation has been criticized because it can suffer from the “null paradox.” When
one uses the G-computation formula to estimate the means of a collection of counterfactual
outcomes indexed by levels of treatment, the paradox states that one can falsely reject the
null hypothesis of no variation in means across of levels of treatment because of the need
(due to the curse of dimensionality) to parametrically specify the component distributions in
the G-computation integral. Since we are not using the G-computation formula in this
fashion, we do not think this paradox is a major concern.

There are alternatives to our G-computation analysis. Murphy et al. (2001) proposed an
inverse-weighting procedure in which individuals who adhere to the dynamic treatment
regime are inverse-weighted by their probability of being adherent through their course of
follow-up. In our study, these weights are the inverse of the product of as many as 28
conditional probabilities. In implementing this procedure, we found that some of the weights
became prohibitly large and the variances of the resulting estimates were too large to be of
practical use. Truncation of weights was considered as a way of trading o bias with variance,
but the results were highly sensitive to the choice of the truncation threshold. Weight
stabilization is not an option here as our interest is in the marginal survival curve.

Another approach that has been advocated is structural nested failure time models (Lok et
al., 2004). In these models, one specifies, for each day t, the conditional (on time-varying
factors up to day t) quantile-quantile mapping between the distribution of the counterfactual
survival time had patients followed the dynamic regime through day t and not followed the
regime after day t and the distribution of the counterfactual survival time has patients
followed the regime through day t – 1 and not followed the regime after day t. This is an
interesting avenue to explore, which may ultimately involve less overall modeling than the
G-computation algorithm and does not suffer from the “null paradox”.

We hope that this unique illustration of the complexities of analyzing a dynamic treatment
regime will serve to make these methods more accessible to statisticians and their clinical
collaborators.

References
Bembom O, van der Laan MJ. Analyzing sequentially randomized trials based on causal effect models

for realistic individualized treatment rules. Statistics in Medicine. 2008; 27:3689–3716. [PubMed:
18407580]

Wang et al. Page 14

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bernard GR, Artigas A, Brigham KL. The American-European Consensus Conference on ARDS.
Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of
Respiratory and Critical Care Medicine. 1994; 149:818–24. e. a. [PubMed: 7509706]

Chakraborty B, Murphy S, Strecher V. Inference for non-regular parameters in optimal dynamic
treatment regimes. Statistical Methods in Medical Research. 2010; 19:317–343. [PubMed:
19608604]

Deans KJ, Minneci PC, Cui X, Banks SM, Natan-Son C, Eichacker PQ. Tidal volumes in acute
respiratory distress syndrome: One size does not fit all. Critical Care Medicine. 2006; 34:264–267.

Deans KJ, Minneci PC, Cui X, Banks SM, Natanson C, Eichacker PQ. Mechanical ventilation in ards:
One size does not fit all. Critical Care Medicine. 2005; 33:1141–1143. [PubMed: 15891350]

Dreyfuss D, Saumon G. Ventilator-induced lung injury: Lessons from experimental studies. American
Journal of Respiratory and Critical Care Medicine. 1998; 157:294–323. [PubMed: 9445314]

Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C. A meta-analysis of ali and ards trials
testing low tidal volumes. American Journal of Respiratory and Critical Care Medicine. 2002;
166:1510–1514. [PubMed: 12406836]

Fan E, Needham D, Stewart T. Ventilatory management of acute lung injury and acute respiratory
distress syndrome. Journal of the American Medical Association. 2005; 294(22):2889–2896.
[PubMed: 16352797]

Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. Journal of Applied
Statistics. 2004; 31(7):799–815.

Hernan M, Lanoy E, Costagliola D, Robins J. Comparison of dynamic treatment regimes via inverse
probability weighting. Basic and Clinical Pharmacology and Toxicology. 2006; 98:237–242.
[PubMed: 16611197]

Hernan MA, Robins JM. Estimating causal effects from epidemiological data. Journal of
Epidemiology and Community Health. 2006; 60:578–586. [PubMed: 16790829]

Kalbfleisch, JD.; Prentice, RL. The Statistical Analysis of Failure Time Data. 2nd ed.. Wiley; 2002.
Lok J, Gill R, van der Vaart A, Robins J. Estimating the causal effect of a time-varying treatment on

time-to-event using structural nested failure time models. Statistica Neerlandica. 2004; 58(3):271–
295.

Moodie E, Richardson T, Stephens D. Demystifying optimal dynamic treatment regimes. Biometrics.
2007; 63:447–455. [PubMed: 17688497]

Moodie EM. A note on the variance of doubly-robust g-estimators. Biometrika. 2009a; 96:998–1004.
Moodie EM. Risk factor adjustment in marginal structural model estimation of optimal treatment

regimes. Biometrical Journal. 2009b; 51:774–788. [PubMed: 19816876]
Moodie EM, Richardson T. Estimating optimal dynamic regimes: Correcting bias under the null.

Scandinavian Journal of Statistics. 2010; 37:126–146.
Murphy S. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society - Series B.

2003; 65:331–355.
Murphy S, van der Laan M, Robins J. Marginal mean models for dynamic regimes. Journal of the

American Statistical Association. 2001; 96:1410–1423. [PubMed: 20019887]
Orellana L, Rotnitzky A, Robins J. Dynamic regime marginal structural mean models for estimation of

optimal dynamic treatment regimes. The International Journal of Biostatistics. 2010; 6
Rich B, Moodie EM, Stephens D, Platt R. Model checking with residuals for g-estimation of optimal

dynamic treatment regimes. International Journal of Biostatistics. 2010; 6
Robins J. A new approach to causal inference in mortality studies with sustained exposure periods:

Application to control of the healthy worker survivor effect. Mathematical Modelling. 1986;
7:1393–1512.

Robins J. Addendum to ”A new approach to causal inference in mortality studies with sustained
exposure periods: Application to control of the healthy worker survivor effect”. Computers and
Mathematics with Applications. 1987a; 14:923–945.

Robins J. A graphical approach to the identification and estimation of causal parameters in mortality
studies with sustained exposure periods. Journal of Chronic Disease. 1987b; 40:139S–161S.

Wang et al. Page 15

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Robins J. The control of confounding by intermediate variables. Statistics in Medicine. 1988a; 8:679–
701. [PubMed: 2749074]

Robins, J. Health Service Research Methodology: A Focus on AIDS. U.S. Public Health Service,
National Center for Health Services Research; Washington, D.C.: 1988b. Chapter The analysis of
randomized and non-randomized AIDS treatment trials using a new approach to causal inference
in longitudinal studies; p. 113-159.

Robins, J. Structural nested failure time models.. In: Armitage, P.; Colton, T., editors. The
Encyclopedia of Biostatistics. John Wiley and Sons; Chichester, UK: 1997.

Robins, J. Optimal structural nested models for optimal sequential decisions.. In: Lin, D.; Heagerty, P.,
editors. Proceedings of the Second Seattle Symposium on Biostatistics. Springer; 2004.

Robins J, Hernan M, Brumback B. Marginal structural models and causal inference in epidemiology.
Epidemiology. 2000; 11:550–560. [PubMed: 10955408]

Robins J, Orellana L, Rotnitzky A. Estimation and extrapolation of optimal treatment and testing
strategies. Statistics in Medicine. 2008; 27:4678–4721. [PubMed: 18646286]

Robins JM. Association, causation, and marginal structural models. Synthese. 1999a; 121:151–179.
Robins, JM. Statistical Models in Epidemiology: The Environment and Clinical Trials. Springer-

Verlag; New York: 1999b. Chapter Marginal structural models versus structural nested models as
tools for causal inference; p. 95-134.

Rubenfeld G, Caldwell E, Peabody E, Weaver J, et al. Incidence and outcomes of acute lung injury.
The New England Journal of Medicine. 2005; 353:1685–93. [PubMed: 16236739]

Rubin DB. Comments on “Statistics and causal inference”. Journal of the American Statistical
Association. 1986; 81:961–962.

The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared
with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
The New England Journal of Medicine. 2000; 342:1301–1308. [PubMed: 10793162]

The National Heart, Blood and Lung Institute ARDS Clinical Trials Network. Higher versus lower
positive end-xxpiratory pressures in patients with the acute respiratory distress syndrome. The
New England Journal of Medicine. 2004; 351:327–336. [PubMed: 15269312]

Thompson B, Hayden D, Matthay M, Brower R, Parsons P. Clinicians approaches to mechanical
ventilation in acute lung injury and ards. Chest. 2001; 120:1622–1627. [PubMed: 11713144]

Tobin M. Culmination of an era in research on the acute respiratory distress syndrome. The New
England Journal of Medicine. 2000; 342:1360–1361. [PubMed: 10793169]

Tobin M, Chadha TS, Jenouri G, Birch SJ, Gazeroglu HB, Sackner MA. Breathing patterns. Chest.
1983; 84:202–206. [PubMed: 6872603]

Ware LB, Matthay MA. The acute respiratory distress syndrome. New England Journal of Medicine.
2000; 342:1334–49. [PubMed: 10793167]

Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure
ventilation with high pressures. American Review of Respiratory Disease. 1974; 110:556.
[PubMed: 4611290]

Zhao Y, Kosorok M, Zeng D. Reinforcement learning design for cancer clinical trials. Statistics in
Medicine. 2009; 28:3294–3315. [PubMed: 19750510]

Wang et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Flowchart of the traditional and low tidal volume ventilation strategies in ARMA study.
Numbers in parentheses are for low tidal volume ventilation.
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Fig. 2.
Observed plateau pressures and tidal volumes. Additional restrictions of LTVV adherence
for points in region (1) none (3) pH < 7.2 (4) pH < 7.2 and set respiratory rate ≥ 35 (5) (pH
< 7.2 and set respiratory rate ≥ 35) or severe dyspnea. Points in region (2) are not adherent.
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Fig. 3.
Hypothetical example of G-Computation
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Fig. 4.
Sampling scheme
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Fig. 5.
Empirical observed survival curves (gray line). Empirical survival curve for adherers (gray
dashed line). Posterior mean observed (black dashed line) and potential (black line) survival
curves. Shaded area denote 95% posterior credible band for the potential survival curve.
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Table 1

Specifications to Determine Adherence to LTVV

Plateau pressure specification Additional specification

1 ≤ 30

2 > 30 tidal volume ≤ 4.5 or pH < 7.2

Tidal volume specification Additional specification

3 tidal volume ≥ 8.5 pH < 7.2 and set respiratory rate ≤ 35

4 6.5 < tidal volume ≤ 8.5 (pH < 7.2 and set respiratory rate ≥ 35) or (plateau pressure ≤ 30 and severe dyspnea)

5 5.5 ≤ tidal volume ≤ 6.5 Plateau pressure≤ 30 or pH < 7.2

6 4.5 < tidal volume < 5.5 25 ≤ Plateau pressure ≤ 30

7 3.5 ≤ tidal volume ≤ 4.5 Plateau pressure ≥ 25
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Table 2

Missing values in the ARMA and ALVEOLI Studies

ALI (n=2994) ALVEOLI (n=2908)

Tidal Volume 2.8% 1.7%

Plateau Pressure 11.6% 13.2%

Set Rate 3.3% 1.4%

Arterial pH 28.7% 8.7%

Oxygen Saturation 16.7% 33.9%

PEEP 2.5% 1.4%

* n denotes the number of at-risk person-days
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Table 3

Variable Definitions

Var Definition and Description

Lt (St, Ht, Ut), t = 0, . . ., 28

St Indicator of surviving day t, S0 = 1

HSPt Indicator of hospitalization on day t (defined only when St = 1)
If HSPt = 0 then Sm = 1 for all m > t. HSP0 = 1

ICUt Indicator of being in ICU on day t (defined when St = HSPt = 1)
If ICUt = 0 then ICUm = 0 for m > t. If ICUt = 1 then HSPt+1 = 1. ICU0 = 1

VNTt Indicator of being on ventilator on day t (defined when St = HSPt = ICUt = 1)
If VNTt = 1 then HSPt+1 = ICUt+1 = 1. VNT0 = 0

Rt I(HSPt = ICUt = VNTt = 1) (defined when St = 1)

Gt (PEt, LCt) (defined when St = Rt = 1)

Dt (VTt, SRt) (defined when St = Rt = 1)

Wt (PHt, PPt, DSt, SOt) (defined when St = Rt = 1)

OFt Indicator of organ failure (defined when St = HSPt = 1)

Ht (HSPt, ICUt, VNTt, Gt) (defined when St = 1); H0 = AP

Ut (Dt, Wt, OFt,) (defined when St = 1); U0 = OF0

PEt Positive end-expiratory pressure (defined when St = Rt = 1)

PPt Plateau pressure (defined when St = Rt = 1)

PDt PPt – PEt (defined when St = Rt = 1)

VTt Tidal volume (defined when St = Rt = 1)

LCt Lung compliance, VTt/PDt (defined when St = Rt = 1)

SRt Respiratory set rate (defined when St = Rt = 1)

SOt Oxygen saturation (defined when St = Rt = 1)

PHt pH (defined when St = Rt = 1)

DSt Indicator of severe dyspnea (defined when St = Rt = 1)

AP Baseline APACHE III score

At Indicator of LTVV adherence, I ((Dt, Wt) ∈ S), where S is defined in Table 1
If St = 0 or if St = 1 and Rt = 0, At = 1.
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Table 4

Bounds of selected variables

Variable Minimum Maximum

APACHE III Score (AP) 0 299

Lung Compliance (LCt) 0.11 1.26

PEEP (PEt) 0 28

pH (PHt) 6.6 7.6

Plateau Pressure - PEEP (PDt) 7 40

Oxygen Saturation (SOt) 45 100

Set Rate (SRt) 6 40
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Table 5

Survival Rates with 95% Confidence Band

Study ARMA

Day Observed (Empirical) Observed (Model-Based) Potential

1 0.991(0.964, 0.998) 0.988(0.978, 0.997) 0.988(0.978, 0.997)

2 0.978(0.947, 0.991) 0.971(0.957, 0.984) 0.966(0.951, 0.982)

3 0.946(0.906, 0.970) 0.953(0.935, 0.972) 0.944(0.921, 0.968)

4 0.933(0.890, 0.960) 0.938(0.916, 0.960) 0.924(0.894, 0.955)

5 0.916(0.870, 0.946) 0.923(0.898, 0.949) 0.906(0.869, 0.942)

6 0.905(0.857, 0.938) 0.910(0.882, 0.939) 0.889(0.847, 0.931)

7 0.897(0.847, 0.931) 0.898(0.867, 0.929) 0.873(0.826, 0.920)

14 0.809(0.749, 0.855) 0.824(0.783, 0.865) 0.776(0.704, 0.849)

21 0.768(0.705, 0.819) 0.779(0.731, 0.827) 0.721(0.638, 0.804)

28 0.748(0.684, 0.801) 0.752(0.700, 0.805) 0.690(0.603, 0.776)

Study ALVEOLI

Day Observed (Empirical) Observed (Model-Based) Potential

1 0.976(0.948, 0.989) 0.981(0.970, 0.992) 0.981(0.970, 0.992)

2 0.967(0.936, 0.983) 0.967(0.952, 0.981) 0.968(0.953, 0.982)

3 0.954(0.920, 0.974) 0.955(0.937, 0.972) 0.956(0.939, 0.973)

4 0.949(0.913, 0.970) 0.943(0.923, 0.963) 0.945(0.925, 0.965)

5 0.936(0.897, 0.960) 0.932(0.909, 0.955) 0.934(0.912, 0.956)

6 0.925(0.884, 0.951) 0.920(0.895, 0.945) 0.923(0.898, 0.947)

7 0.908(0.865, 0.938) 0.910(0.882, 0.937) 0.912(0.885, 0.939)

14 0.859(0.809, 0.896) 0.848(0.812, 0.884) 0.848(0.809, 0.886)

21 0.807(0.753, 0.851) 0.807(0.766, 0.849) 0.801(0.755, 0.848)

28 0.778(0.721, 0.825) 0.783(0.737, 0.828) 0.773(0.722, 0.824)
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