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Summary
Since the early 1940s, group testing (pooled testing) has been used to reduce costs in a variety of
applications, including infectious disease screening, drug discovery, and genetics. In such
applications, the goal is often to classify individuals as positive or negative using initial group
testing results and the subsequent process of decoding of positive pools. Many decoding
algorithms have been proposed, but most fail to acknowledge, and to further exploit, the
heterogeneous nature of the individuals being screened. In this paper, we use individuals’ risk
probabilities to formulate new informative decoding algorithms which implement Dorfman
retesting in a heterogeneous population. We introduce the concept of “thresholding” to classify
individuals as “high” or “low risk,” so that separate, risk-specific algorithms may be used, while
simultaneously identifying pool sizes that minimize the expected number of tests. When compared
to competing algorithms which treat the population as homogeneous, we show that significant
gains in testing efficiency can be realized with virtually no loss in screening accuracy. An
important additional benefit is that our new procedures are easy to implement. We apply our
methods to chlamydia and gonorrhea data collected recently in Nebraska as part of the Infertility
Prevention Project.
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1. Introduction
Chlamydia and gonorrhea are the two most common sexually transmitted diseases (STDs) in
the United States. In addition to the 1.5 million new infections that are diagnosed annually,
it has been estimated that an additional 2.1 million cases go unreported each year (Centers
for Disease Control and Prevention, CDC, 2009). Both infections are usually asymptomatic,
so positive individuals, perhaps unaware of their status, can spread the infections to others.
Left untreated, both infections can lead to serious medical conditions, including pelvic
inflammatory disease (PID), ectopic pregnancy, and sterility (Kacena et al., 1998a, 1998b).
It also has been suggested that chlamydia and gonorrhea facilitate the transmission of other
STDs, including HIV (Farley, Cohen, and Elkins, 2003).
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Many countries have developed national programs to screen for chlamydia and gonorrhea
infections. In the United States, one of the largest such programs is the Infertility Prevention
Project (IPP), which is funded by the CDC. Since its origination in 1988, the primary goals
of the IPP have been to screen for chlamydia and gonorrhea in high risk populations and to
administer treatment to those who are infected. All 50 states participate in the IPP. The state
of Nebraska does so through its Sexually Transmitted Diseases and Infertility Control
Program. At clinic sites throughout the state, urine and swab specimens are collected on
individuals. These individual specimens are then transported to the Nebraska Public Health
Laboratory (NPHL) in Omaha for testing.

With increasing public health costs, our medical colleagues at the NPHL have expressed an
interest in adopting group testing (pooled testing) for chlamydia and gonorrhea
identification. Group testing dates back to Dorfman (1943), who proposed that it be used to
screen World War II soldiers for syphilis. When testing for low prevalence diseases, pooling
specimens (e.g., blood, urine, swabs, etc.) through group testing is a novel way to increase
screening efficiency, and, when compared to individual testing, there is overwhelming
evidence that group testing can maintain high levels of classification accuracy. Since
Dorfman’s seminal work, group testing has been used to screen individuals for various
STDs (see, e.g., Kacena et al., 1998a, 1998b; Mine et al., 2003; Pilcher et al., 2005) and also
for other infectious agents including West Nile Virus (Alter, 2004) and the avian influenza
virus H5N1 (Hourfar et al., 2007). In addition to blood/plasma donation screening in the
United States and elsewhere (Tabor and Epstein, 2002; Mine et al., 2003), group testing has
been utilized in screening individuals for drug use (Gastwirth and Johnson, 1994), in
preventing the potential spread of bioterrorist agents (Schmidt et al., 2005), in genetics
(Gastwirth, 2000), and in drug discovery (Xie et al., 2001; Remlinger et al., 2006).

The group testing literature contains a myriad of classification (decoding) algorithms which
vary in their level of complexity. Kim et al. (2007) provide an excellent review of existing
algorithms and derive their operating characteristics in the presence of testing error. In
practice, testing errors (false positives/negatives) can occur when diagnostic tests do not
have perfect sensitivity and specificity. Kim et al. (2007) consider array-based and
hierarchical algorithms. Array testing involves placing individual specimens in a square or
rectangular array and testing its rows and columns. These responses give information about
the location of positive individuals, although further retesting is needed if there are
ambiguities. A hierarchical algorithm involves retesting non-overlapping subsets of
individuals from positive pools, possibly in multiple stages, until each individual is
classified as positive or negative. Dorfman’s original procedure, where each individual is
retested separately, is an example of a two-stage hierarchical algorithm. Higher-stage
hierarchical algorithms often improve efficiency but are generally more difficult to
implement. Likely because of its simplicity, Dorfman’s procedure is the most commonly
used classification algorithm in practice.

Statistical research in the group testing classification problem has generally proceeded under
the assumption that each individual has the same probability of infection; see, e.g., Kim et
al. (2007). However, in most screening situations, including the Nebraska IPP, there are
covariates available that offer information as to which individuals have a higher risk of
infection. For example, it is well known that age, race, gender, socioeconomic status, and
the number of sexual partners are excellent predictors of both chlamydia and gonorrhea
positivity (CDC, 2009). Therefore, if the goal is to develop efficient screening protocols for
the Nebraska IPP and elsewhere, one should exploit this available information.

Among all group testing algorithms in the literature, however, very few acknowledge
population heterogeneity. Hwang (1975) generalized Dorfman’s original procedure to allow
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individuals to have different levels of risk and proposed an optimal grouping strategy that
minimizes the number of tests needed to classify all individuals. Unfortunately, Hwang’s
approach assumes that the probability of testing error is zero, which is unreasonable in the
Nebraska IPP and in most screening applications involving human subjects. More recently,
Bilder, Tebbs, and Chen (2010) have proposed a framework to incorporate covariate
information using modifications of Sterrett’s (1957) algorithm. However, while the
“informative retesting” procedures in Bilder et al. (2010) are effective at reducing the
number of tests, Sterrett-type algorithms are inherently complex and may not be logistically
feasible in some screening environments. This is especially true for the NPHL, where the
use of complicated decoding algorithms could considerably lengthen the time needed to
screen all individuals.

In this paper, we propose new hierarchical screening procedures that utilize Dorfman
retesting in a heterogeneous population. Unlike Hwang’s approach, our algorithms allow for
imperfect diagnostic testing, and when compared to the higher-stage Sterrett-type algorithms
in Bilder et al. (2010), ours are easier to implement. In Section 2, we describe a general
informative Dorfman algorithm that uses individual risk probabilities to assign individuals to
pools, and we derive the operating characteristics of this algorithm in the presence of testing
error. In Section 3, we propose three versions of this algorithm which incorporate two
important criteria: the determination of optimal pool sizes and the use of risk thresholds
(cutoffs) to classify subjects according to their level of risk. In Section 4, we provide
simulation evidence to demonstrate the effectiveness of our new procedures, and, in Section
5, we illustrate their use with data from the Nebraska IPP. In Section 6, we provide a
summary discussion.

2. Informative Dorfman Algorithm
2.1 Preliminaries

Suppose that N individuals are to be screened for the presence of a binary trait, such as
chlamydia status, and denote by pi the (true) probability of positivity for the ith individual

, i = 1, 2, …, N. The true status of  is a binary random variable denoted by , where
. We assume throughout that the statuses  are independent random variables.

To derive the operating characteristics of our algorithms, we initially assume that the true
probabilities pi are known (this assumption is relaxed later; see Section 5). We start by
ordering the N individuals from low to high in terms of their risk probabilities, producing

 corresponding to . Ordering the probabilities
isolates those individuals who are at the highest risk for infection. This allows us to
determine optimal pool sizes and formulate the use of thresholding; see Section 3.

Let cj denote the pool size for the jth pool, j = 1, 2, …, J. Dorfman’s (1943) original strategy
begins by assigning each individual, at random, to exactly one pool. Those pools which test
negative are declared to contain all negative individuals and are not examined further.
Positive pools are decoded by retesting each subject individually. Instead of random
assignment, our Informative Dorfman (ID) algorithm specifies that individuals are assigned
to pools based on their ordered risk probabilities. In particular, pool  consists of
individuals , pool  consists of individuals ,
and so on; in general, pool  consists of the cj lowest risk subjects which remain after

constructing the first j − 1 pools; i.e., , for j = 2, 3,
…, J. Positive pools are then decoded in the same way as in Dorfman’s (1943) algorithm.
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2.2 Operating Characteristics

To streamline our notation, let  denote the kth ordered individual in the jth pool and let
pj(k) denote the corresponding risk probability, for j = 1, 2, …, J and k = 1, 2, …, cj. To
derive the operating characteristics of ID, we assume that the test sensitivity Se and
specificity Sp are known constants which do not depend on cj. Previous research has
proceeded under this assumption (Vansteelandt, Goetghebeur, and Verstraeten, 2000; Kim et
al., 2007; Kim and Hudgens, 2009), and numerous empirical studies have shown this to be
reasonable for sensible values of cj. For example, a number of chlamydia and gonorrhea
studies have shown that assay tests based on nucleic acid technology (NAT) possess high
sensitivity and specificity with negligible dilution effects for groups up to size cj = 10 when
pooling urine or swabs (Kacena et al., 1998a, 1998b; Butylkina et al., 2007; Shipitsyna et
al., 2007). Similar findings have been documented for other infectious diseases when
pooling blood or serum samples. For example, Mine et al. (2003) use cj = 50 for hepatitis B/
C screening in Japan. Pilcher et al. (2005) use pools of size cj = 90 for HIV screening in
North Carolina.

Let  if the jth pool is truly positive; i.e.,  contains at least one positive individual,
 otherwise, for j = 1, 2, …, J. Similarly, let Gj = 1 if  tests positive, Gj = 0 otherwise.

Let the random variable T denote the total number of tests needed to decode all N
individuals. For the ID algorithm, we show in Web Appendix A that

where I(·) denotes the usual indicator function,

, and pr(Gj = 0) = 1 − pr(Gj = 1). In general,
we refer to E(T) as the efficiency, as is common in the group testing literature.

The quality of a decoding algorithm is often measured through its efficiency. However, it is
also important to characterize how well an algorithm correctly classifies individuals as being
positive or negative. To explore this, , if the kth individual in the jth pool is truly

positive, so that , and , otherwise. We define the pooling

sensitivity  and the pooling specificity  as
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and derive expressions for  and  under ID when cj > 1. Let gj(k) = 1, if the kth
individual in the jth pool tests positive, gj(k) = 0, otherwise. As in Kim et al. (2007), we
assume that diagnostic test results are independent, conditional on the true status of the pool
(individual) being tested; see Litvak, Tu, and Pagano (1994) for discussion. This implies that
the testing result for any pool (individual), given its true status, is independent of previous
testing results. For ID, individual  is classified as positive when its group test and its
subsequent individual test are both positive. Therefore,

This is identical to the pooling sensitivity of Dorfman’s strategy in a homogeneous
population; see Kim et al. (2007). This equivalence would not result if an assay test’s
performance was somehow related to an individual’s risk probability pj(k). However, our
medical colleagues have found no plausible reason for this to be true with any of the

commonly used assays. To derive the pooling specificity , note that

From the Law of Total Probability, the first term

where . Similarly, the second term

Combining the terms and simplifying, we obtain

Unlike the homogeneous case,  is potentially different for different individuals. When

pj(k) = p; i.e., each individual has the same probability of infection, our expression for 
reduces to equation (7) in Kim et al. (2007), the pooling specificity for Dorfman retesting in
a homogeneous population.
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Two additional classification measures are commonly used in the group testing literature.
The pooling positive predictive value, , is the probability that the kth individual in
the jth pool is truly positive, given that it is classified as positive. Similarly, the pooling
negative predictive value, , is the probability that the kth individual in the jth pool is
truly negative, given that it is classified as negative. By Bayes Rule,

Like , these measures are individual-specific; thus, they can provide substantial
information about the true statuses on a per-individual basis. On the other hand, treating the
population as homogeneous provides constant values of PPV and NPV, offering no
knowledge about which individuals are more likely to be misclassified. We would envision
this additional per-individual information to be especially useful in developing informative
back-end screening protocols (Gastwirth and Johnson, 1994; Johnson and Pearson, 1999),
not only in chlamydia and gonorrhea surveillance, but also in blood screening, where
Dorfman retesting is used extensively.

3. Optimized Informative Dorfman Procedures
Having developed the operating characteristics of ID, our goal is to now construct sets of
heterogeneous pools to maximize testing efficiency; i.e., to minimize E(T). As stated in
Section 1, Hwang (1975) finds the optimal solution to this problem when Se = Sp = 1, a
simpler and perhaps unrealistic setting. Because an extension of Hwang’s method to the
imperfect testing case appears to be intractable, we propose three specific versions of ID
which minimize E(T) subject to given pooling constraints. Our new algorithms are “greedy”
in nature, forming optimal sets of pools in accordance with the specified constraints.

3.1 Optimal Dorfman
Consider using the ID algorithm with a common pool size cj = c, for j = 1, 2, …, J (with cJ <
c if N < cJ), and let T(c) denote the number of tests needed to decode all N individuals when
pools of size c are used. We call the ID procedure that uses c = copt, where

the Optimal Dorfman (OD) algorithm. In other words, OD is a special case of ID where the
common pool size c = copt minimizes E(T(c)). Computing copt can be done by performing a
search over values of c deemed acceptable by the investigator. For example, if one is
worried about dilution effects for pool sizes larger than M, say, the minimization procedure
can be carried out over {c : c = 1, 2, …, M}. In the objective function above, we point out
that J = [N/c], a function of c. If c = 1 (individual testing), then J = N.
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3.2 Thresholding
The goal of OD is to maximize testing efficiency by identifying the best common size for all
pools. We now consider a different approach to accomplish the same goal.

Suppose, hypothetically, that the N individuals to be screened are partitioned into the two
distinct classes  and ; that is, 
consists entirely of negative (positive) individuals. In the absence of testing error, the best
possible decoding algorithm, in terms of minimizing E(T), would be to test all individuals in

 in one pool and each individual in  separately. Of course, one never gets to construct
this partition in practice; however, the salient point is that efficiency can always be increased
if positive subjects are removed and are tested individually. With this in mind, suppose,
more realistically, that one partitions the N individuals into the two classes

 and , where p* ∈ [0, 1] is a
thresholding value; i.e., a value that distinguishes “low risk” individuals (in ) from those
that are “high risk” (in ). By classifying individuals as high risk in  before testing
begins, one is more likely to a priori isolate those who are positive. Our Optimal Dorfman
with Threshold (TOD) procedure specifies that individuals in  are tested in pools of
optimal equal size and that those in  are tested individually.

The threshold p* can be specified by the investigator; however, it is not necessary to do so,
as our TOD algorithm identifies its optimal value. To explain this point,  denote the
number of tests needed to decode the jth pool. When a common pool size is specified, say

c0, the per-pool efficiencies  satisfy  whenever
Se + Sp ≥ 1; see Web Appendix B. Therefore, starting with the highest risk individuals, the

TOD algorithm seeks to find the value of j, say j*, where  and .

For j = j*, j* + 1, …, J (the high risk pools), the per-pool efficiency  is larger than or
equal to c0; that is, it is more (as) costly to pool than (as) it is to screen individually.

Subsequently, p* is taken to be , the average of the risk probabilities
for the highest risk subject in  and the lowest risk subject in . Subjects in pools

 are classified as “high risk,” placed into , and are tested individually.
Subjects in pools  are classified as “low risk,” placed into , and are

decoded using OD with , the optimal common pool size for those individuals in
.

Small details regarding TOD warrant brief remarks. First, if N < c0J, then the lowest risk
pool  will contain c1 < c0 individuals, but the ordering

 will still hold. Second, we have found through
simulation that the choice of c0 does not have a large effect on the efficiency of TOD.
Generally, as c0 increases, the number of individual tests from  also increases. However,
this increase is typically offset by a fewer number of tests required to decode “low risk”

individuals in . Third, if  for all j = 1, 2, …, J, then TOD reduces to OD.
Intuitively, this is more likely to occur when the overall prevalence is very low. On the other

hand, if  for all j = 1, 2, …, J, then one would classify all individuals as “high

McMahan et al. Page 7

Biometrics. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



risk.” This rarely occurs when c0 is chosen sensibly. We recommend choosing c0 ≈ copt, the
optimal pool size identified by OD for all N individuals.

3.3 Pool-Specific Optimal Dorfman
The OD and TOD algorithms share a common characteristic; namely, each uses a common
pool size. OD uses a common size for all pools, while TOD uses a common pool size for all
individuals who are “low risk.” Therefore, with regards to implementation, OD and TOD are
simple procedures, requiring only individual testing and testing pools of common size (with
the possible exception of one remainder pool). However, using a common pool size may not
be the best way to exploit individual heterogeneity, especially if the individual probabilities
exhibit a large amount of variability. With this in mind, we propose a final procedure that
determines optimal sizes for each pool and call this the Pool-Specific Optimal Dorfman
(PSOD) procedure. The idea behind PSOD is motivated by the fact that E(T) can be
expressed as a sum of the efficiencies on a per-individual basis. If we can reduce the
expected testing expenditure for each individual, we simultaneously reduce E(T).

Specifically, the goal of PSOD is to identify the pool sizes cj, j = 1, 2, …, J, that minimize
the expected per-individual testing expenditure on a pool by pool basis, starting with the
lowest risk pool  and continuing until the highest risk pool  has been formed. To

describe how PSOD determines the jth pool size cj,  denote the total number of

individuals in the j − 1 lowest risk pools combined; i.e.,  and , for j = 2,

3, …, J.  and define  to be the number of tests needed to decode ,
where  consists of the cj lowest risk subjects remaining after  have been
formed. For Dorfman retesting, the expected per-individual testing expenditure is the same
for each individual belonging to a common pool. Therefore, PSOD identifies

, where

and defines  as the optimal size for the jth pool. The full algorithm for PSOD is given
in Web Appendix B.

Because individuals are ordered a priori in terms of their risk, the pool sizes cj identified by
PSOD, like those identified by Hwang’s method, are guaranteed to satisfy c1 ≥ c2 ≥ ⋯ ≥ cJ.
This is a characteristic that makes PSOD and Hwang’s method attractive because higher risk
pools should use smaller pool sizes. It is straightforward to amend PSOD to guard against
excessively large pool sizes. One could simply minimize the expected per-individual testing

expenditure  over , where  and M is the
maximum allowable pool size. This guarantees that each pool will not contain more than M
individuals. Hwang’s method can be amended similarly. It is important to note that even
when Se = Sp = 1, the situation in which Hwang’s solution is globally optimal, PSOD and
Hwang’s method are different procedures, because PSOD is a greedy algorithm that makes
pool size selections sequentially. Overall, PSOD and Hwang’s method do acknowledge
heterogeneity more directly than OD or TOD. However, this also means that PSOD and
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Hwang’s method may be more difficult to implement, as different pool sizes are needed to
complete the identification process.

4. Simulation Evidence
To assess the impact of incorporating heterogeneity, we first compare Dorfman’s original
procedure (D), where individuals are assigned to pools at random, to OD, TOD, PSOD, and
Hwang’s method (H). We generate true probabilities pi, i = 1, 2, …, N, from a beta(1, θ)
distribution; note that θ determines the mean prevalence, p = 1/(1 + θ), and the amount of
heterogeneity in the population. We consider values of p = 0.0001, 0.0002, …, 0.0099 to
investigate rare infections and also p = 0.01, 0.02, …, 0.50 to examine higher prevalence
infections. Our decision to consider larger values of p may seem unsuited because group
testing is typically used when the infection rate is small. However, as we demonstrate, the
optimized Dorfman procedures consistently confer savings over individual testing even
when p is large. We use values of Se ∈ {0.80, 0.90, 0.91, …, 1} and Sp ∈ {0.80, 0.90, 0.95,
0.99, 1} and let the maximum allowable pool size M = 10, 20, or 30. Recall that using M =
10 is consistent with the chlamydia and gonorrhea screening literature; see Section 2. Also,
recall that Hwang’s grouping method depends on neither Se nor Sp.

Figure 1 displays a representative subset of the results; more extensive comparisons are in
Web Appendix C. In Figure 1, we display the overall expected per-individual testing
expenditure, E(T)/N, when M = 10 and N = 1000. For each (p, Se, Sp) combination, OD,
TOD, PSOD, and H use their own procedure-specific pool size(s). To ensure the fairest
possible comparison, we use the optimal pool size for D throughout; i.e., the pool size c that
minimizes the expected number of tests per pool, 1+c{Se+(1−Se−Sp)(1−p)c}. The results in
Figure 1, along with those in Web Appendix C, show that the gains in efficiency from OD,
TOD, and PSOD (over D) are generally very small when p < 0.01 but increase notably as p
increases. When p > 0.01, we have consistently seen that PSOD is more efficient than TOD,
that TOD is more efficient than OD, and that OD remains more efficient than D as long as
the prevalence is not too large (roughly p < 0.35; see Web Appendix C). Figure 1 also shows
that PSOD and H are nearly identical when Se and Sp are close to unity. However, for lower
values of Se and Sp, OD, TOD, and PSOD each can outperform H, especially when p is
larger. For very large p, we have found that TOD, PSOD, and H each consistently
outperform individual testing even when the prevalence is as high as 50%. This prevalence
is likely not to be encountered when screening for sexually transmitted diseases, but it could
be of interest in other applications where the use of pooling for identification has not been
previously envisioned.

Using the same values of p, Se, Sp, and M, we also compare OD, TOD, and PSOD to
noninformative array testing (A). Like Dorfman screening, A is a two-stage classification
procedure; that is, rows and columns are tested initially followed by individual testing if
needed. Higher stage procedures are included for comparison purposes in Section 5. The
salient features of A were summarized in Section 1; we restrict attention to two-dimensional
square arrays (Phatarfod and Sudbury, 1994; Kim et al., 2007; Hudgens and Kim, 2011) in
the comparison. We make this comparison using the optimal array size for A; that is, for
given values of p, Se, and Sp, we compare OD, TOD, and PSOD with the c×c array
procedure that minimizes the expected number of tests; see equation (13) in Kim et al.
(2007).

Figure 2 shows how OD, TOD, and PSOD compare with A in terms of efficiency when M =
10 and N = 1000. For given values of p, Se, and Sp, we first compute ,
where  and E(T|·) is the efficiency for a given procedure. Values of

 that are negative (positive) indicate that the informative Dorfman
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procedure  is more (less) efficient than A; this is represented in Figure 2 using dark (light)
grey coloring. Heat maps of scaled values of  are in Web Appendix C.
From Figure 2, one sees that OD, TOD, and PSOD are all preferred to A, for nearly all (Se,
Sp) combinations, when the mean prevalence p is larger (e.g., p > 0.10). The optimized
Dorfman procedures also outperform A for very small p when M = 10 is used as a maximum
allowable pool size, although additional results in Web Appendix C show that A
outperforms OD, TOD, and PSOD for most values of p < 0.08 (roughly) when larger arrays
are allowed (e.g., M = 20, 30). Of course, as stated in Section 2, using larger pool sizes may
not be possible with some diagnostic tests for fear of dilution effects. In addition, array
testing generally requires more resources than Dorfman screening; this may make its use
prohibitive in some screening applications (Westreich et al., 2008).

Finally, we have also compared D, OD, TOD, PSOD, H, and A in terms of the screening
accuracy measures from Section 2. To summarize, when compared to D, there are no
substantial changes in screening accuracy that arise from using our new informative
Dorfman algorithms and H in realistic settings. Furthermore, in regions where A is more
efficient, Dorfman procedures can improve overall pooling sensitivity and pooling negative
predictive value. Complete details are given in Web Appendix C.

5. Nebraska IPP Data
We now apply our new Dorfman screening algorithms to chlamydia and gonorrhea data
collected during 2008-2009 as part of the Nebraska IPP. For each infection, we create four
strata by cross-classifying each individual according to gender and specimen type (swab/
urine). A complete summary of the data, including the number of individuals screened per
stratum, values of Se and Sp (provided by the NPHL), and individual covariates, is given in
Table 1. Across strata, there were 23,146 individuals screened in 2008 and 27,551
individuals screened in 2009. All individuals were screened for both infections. The NPHL
estimates that individual swab (urine) tests cost about $11 ($16) each.

Up until now, we have assumed that individuals’ risk probabilities are known. While this is
not realistic, in most screening situations, investigators will often have access to data
recorded from previous periods of screening. These data can be used to estimate the risk
levels for new individuals to be screened. For example, in the Nebraska IPP, using a
“training” data set is realistic, since testing is performed daily at the NPHL. For purposes of
illustration, we treat the 23,146 individual diagnoses in 2008 and the individual covariates
(see Table 1) as training data. For purposes of illustration, we fit a first-order logistic
regression model using all of the available covariates for each infection and specimen type.

We regard the 2009 individual diagnoses as the true responses and, for OD, TOD, PSOD,
and H, assign the 2009 individuals to pools based on their estimated probabilities  from the
2008 model fits. For noninformative D (A), we assign the 2009 individuals to pools (arrays)
chronologically based on the specimen arrival date using optimal pool (array) sizes
determined from the 2008 estimated mean prevalence levels; see Table 1. A maximum pool
size M = 10 is used for all procedures. Simulated pool diagnoses are then determined using
the Se and Sp levels in Table 1. For OD, TOD, PSOD, and H, we first create “blocks” of
individuals of size N = 50, 100, and 200, ordered chronologically by the specimen arrival
date; decoding is then completed within each block (the last block formed in 2009 is
potentially of smaller size). We choose to implement retesting in this manner to
acknowledge the sequential nature in which specimens are tested at the NPHL; it is not
realistic to wait until all individual specimens from 2009 have been collected to start the
screening process. Note that with noninformative D, the last pool formed is potentially of
smaller size; for A, the last array formed is potentially smaller.
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Table 2 displays the number of tests expended when screening individuals for chlamydia
and gonorrhea in 2009. Because the 2009 diagnoses are simulated for each infection, we
implement each procedure 1000 times for each gender-infection-specimen type
configuration; values in Table 2 are averages over these 1000 simulations. First, the
informative Dorfman procedures always provide a reduction in the number of tests when
compared to the best noninformative D procedure, and this reduction can be substantial. For
OD, TOD, PSOD, and H, it is difficult to identify a relationship between the blocking size
(50, 100, 200) and efficiency, although this relationship likely depends on the order in which
individual specimens arrive at the NPHL for testing. Second, although H is more efficient
than PSOD in a small majority of the cases examined, the differences are often minor and
could perhaps be explained by the fact that testing responses are simulated; recall also from
Section 4 that PSOD and H are nearly identical for smaller prevalence levels. Not
surprisingly, PSOD does outperform H for the lowest Se cohort (female-chlamydia-urine).
Finally, the informative Dorfman procedures perform on par with the best noninformative A
procedure. OD, TOD, and PSOD are each more efficient (regardless of blocking size) in
four of the eight gender-infection-specimen type strata; A is more efficient in three of the
strata, and the remaining stratum (male-gonorrhea-urine) offers mixed results.

Web Appendix D contains further analyses of the Nebraska IPP data, including a summary
of the screening accuracy measures, histograms of the estimated individual probabilities in
2009, and additional comparisons which include three-stage halving and the best
informative Sterrett procedure from Bilder et al. (2010). As expected, higher stage
procedures can reduce the number of tests expended for the Nebraska IPP, but at the cost of
increased complexity and, in some cases, screening accuracy.

6. Discussion
In this paper, we have proposed new Dorfman identification algorithms which use optimal
pool sizes and thresholding in a heterogeneous population. Our informative algorithms
account for imperfect diagnostic tests, compete strongly with other available screening
procedures in terms of efficiency and accuracy, and preserve the simplicity of Dorfman
retesting. To disseminate this work, we have written R programs to implement all of the
algorithms in this paper. We are happy to provide these programs to those who request them.

We have illustrated the use of our new informative Dorfman procedures using chlamydia
and gonorrhea data collected as part of the Nebraska IPP. We believe that our informative
algorithms could also find successful application in blood and plasma donation screening,
mainly because (noninformative) Dorfman retesting is already widely used to screen
donations in the United States and elsewhere (Dodd, Notari, and Stramer, 2002; Tabor and
Epstein, 2002; Mine et al., 2003; Seed, Kiely, and Keller, 2005). Our procedures are only
minimally more involved than classical Dorfman retesting, and they can provide a
substantial reduction in the number of tests without sacrificing classification accuracy. The
development of enhanced back-end screening procedures is also possible as predictive
probabilities can be estimated on a per-individual basis.

To implement any informative classification algorithm, it is necessary to estimate the levels
of risk for individuals entering the screening procedure. In our collaboration with
researchers from the NPHL and the American Red Cross (ARC), we have found that
training data from past individuals are usually plentiful. For example, the NPHL screens
around 25,000 individuals per year for chlamydia and gonorrhea, and the ARC screens about
6 million donations annually for a variety of infectious diseases (Zou et al., 2004). When
training data are not available, one could use the regression methods of Vansteelandt et al.
(2000) or Xie (2001) to estimate individual infection probabilities using responses from the
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initial pools, regroup individuals in positive pools based on these estimates, and then decode
using our informative Dorfman techniques. We have found that this approach provides about
the same level of benefit when compared to the results found in this paper. Of course,
suitable diagnostics should always be performed to assess the fit of the model used to
produce the risk estimates.

In closing, we believe that group testing in heterogeneous populations is a fertile area of
research. We are currently developing informative extensions of the array testing procedures
outlined in Kim et al. (2007) and the (hierarchical) halving algorithms proposed in Litvak et
al. (1994). We also believe that developing informative procedures to screen for the
presence of multiple infections simultaneously would be worthwhile.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of Dorfman algorithms. Expected per-individual efficiency, with M = 10 and N
= 1000, for p = 0.01, 0.05, 0.10, 0.20, and 0.30. The optimal pool size for D has been used.
A more comprehensive comparison among D, OD, TOD, PSOD, and H is in Web Appendix
C.
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Figure 2.
Comparison of Dorfman algorithms (OD, TOD, and PSOD) with A when M = 10 and N =
1000. Top: OD versus A; Middle: TOD versus A; Bottom: PSOD versus A. Regions in dark
grey denote those where the Dorfman procedures are more efficient. The optimal (square)
array size for A has been used for each (p, Se, Sp) configuration.
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