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Abstract
Advances in genotyping and sequencing technologies have revolutionized the genetics of complex
disease by locating rare and common variants that influence an individual’s risk for diseases, such
as diabetes, cancers, and psychiatric disorders. However, to capitalize on this data for prevention
and therapies requires the identification of causal alleles and a mechanistic understanding for how
these variants contribute to the disease. After discussing the strategies currently used to map
variants for complex diseases, this Primer explores how variants may be prioritized for follow-up
functional studies and the challenges and approaches for assessing the contributions of rare and
common variants to disease phenotypes.

Most common diseases are complex: many genetic and environmental factors mediate the
risk for developing the disease and each individual factor explains only a small proportion of
population risk (Cardon and Abecasis, 2003). Genome-wide genotyping with high-
throughput approaches has led to the identification of >2,600 associated common risk
alleles, with convincing associations in >350 different complex traits (most with modest
effect size of odds ratio <1.5) (Hindorff et al., 2009). More recently, low cost, high
throughput sequencing of exomes and whole genomes are giving investigators access to the
spectrum of rare inherited variants and de novo mutations. Once an associated allele is
discovered, a critical step to characterizing pathogenesis is the definition of the causal allele,
that is the functional allele that influences disease susceptibility and explains the observed
association. However for the vast majority of associated alleles, the identities of causal
genes and variants, as well as the function of these variants, remain uncertain. This Primer
discusses the population genetics features of rare and common alleles, strategies for
connecting these alleles to disease, and strategies to prioritize them for functional follow up
studies.

© 2011 Elsevier Inc. All rights reserved.
†Correspondences should be addressed to: Soumya Raychaudhuri, Harvard Medical School New Research Building, 77 Avenue Louis
Pasteur, 250D, Boston, MA 02115, USA, soumya@broadinstitute.org, Phone: 617-525-4484, Fax: 617-525-4488.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Cell. Author manuscript; available in PMC 2012 September 30.

Published in final edited form as:
Cell. 2011 September 30; 147(1): 57–69. doi:10.1016/j.cell.2011.09.011.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



POPULATION GENETICS OF RARE AND COMMON ALLELES
Geneticists have long debated the extent to which rare and common alleles contribute to
complex disease (Pritchard, 2001; Pritchard and Cox, 2002; Reich and Lander, 2001). While
there is evidence of susceptibility alleles across the frequency spectrum in many complex
diseases, it is important to realize that rare alleles and common alleles have different
population characteristics that are relevant to medical genetics.

The exact distinction between rare and common alleles is to an extent an arbitrary one. We
define common alleles as those with frequencies >1%; these alleles are frequent enough that
they can be queried by genotyping in standard marker panels. Rare alleles are polymorphic
alleles with <1% frequency that might now be effectively studied with sequencing
technologies. The rarest alleles are seen in only a handful of individuals or are private to a
single individual –and require sequencing for discovery.

The Origin of Polymorphic Alleles
De novo mutations occurring spontaneously in individuals are constantly and rapidly
introduced into any population. These mutations are initially “private” to the individual that
they occurred in, but might then be passed on to progeny. Most of these mutations are
quickly filtered out or lost by genetic drift and will never achieve appreciable allele
frequencies. I illustrate this concept by a simulation in which de novo neutral mutations
(conferring no effect on fitness) are introduced into a population of 2,000 diploid
individuals. In 31 generations 95% of these mutations disappear from the general
population, and not one of these mutations achieves an allele frequency of >1% in 200
generations (see Figure S1). Mutations that are deleterious are even more rapidly purged
from the populations. While any de novo mutation is very unlikely to become a common
allele, even a somewhat deleterious mutation may persist for a few subsequent generations
as a rare allele before disappearing.

Thus populations harbor many rare alleles, most of which have been derived recently, but
relatively few common ones. In fact, there is only about one common variant on average per
~500 bp in European populations (The 1000 Genomes Project Consortium, 2010). On the
other hand, recent and rapid expansion of human populations has resulted in the presence of
many rare alleles. At the extreme of the allele frequency spectrum are de novo mutations;
each individual harbors ~40 de novo point mutations that may not be present in any other
individuals (Conrad et al., 2011).

Common alleles tend to be more ancient than rare ones as it takes many generations for a
rare allele to rise to a reasonable allele frequency. There are important exceptions to these
generalizations. An ancient allele may be rare because it is being depleted from the
population. A common allele may be recent, if it confers a critical survival advantage or has
emerged after a rapid population expansion from a small founder population.

Linkage Disequilibrium and Haplotypes
Genetic linkage is the tendency of alleles at nearby loci to be transmitted together; two
nearby loci are in linkage disequilibrium (LD) when recombination events occur between
them very infrequently. Two common metrics quantify pairwise LD between bi-allelic
markers (see Figure 1A). The R-squared (r2) between two markers is their correlation across
chromosomes within a population. If two markers have r2=1, then alleles are always in
phase (or in cis) with each other; in a genetic study their association statistics will be
identical. The D-prime (D’) between two markers is inversely related to the fraction of
chromosomes that have had historical recombination between them. If D’=1, two bi-allelic
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variants constitute only two or three haplotypes, while if D’<1, all four possible haplotypes
are present in the population. If D’=0 or r2=0 then the two markers are unlinked and
statistically independent of each other.

Recombination events break down pairwise linkage between markers over time, and reduce
the length of haplotypes in a population. Recombination events are much more likely to
occur in hotspot regions in the genome than other regions (Myers et al., 2005). As a result,
markers without a recombination hotspot between them are often linked over long periods of
time and have high pairwise D’. Those markers can often be grouped into a set of limited
number of common haplotypes (see Figure 2). Phasing algorithms can be applied to
determine markers in cis and to define the most likely haplotypes.

Rare alleles generally sit on long haplotypes while common alleles sit on shorter ones. When
a mutation first occurs de novo on a chromosome, it occurs on the background of a single
rare haplotype defined by all markers on that chromosome (see Figure 1B). Since the de
novo mutation appeared as a random event, it initially has no correlation with other markers
on that chromosome (r2=0). In initial generations, prior to a recombination event, the
mutation has D’=1 with other markers across the chromosome. But, if the mutation survives
generations and becomes a common allele, repeated recombination events fragment that
haplotype and reduce its length. The allele retains high D’ to only proximate markers that
are not separated from it by a recombination hotspot. As the variant becomes more frequent,
so does the haplotype that it occurs on; over time the emerging variant develops correlation
(r2≫0) with the markers on that short haplotype (see Figure 1C).

Finding Pathogenic Variants, Both Rare and Common
Common variant associations to phenotype are often facile to find. Their high frequencies
allow case-control studies to be adequately powered to detect even modest effects. Their
high r2 to other proximate common variants allows for association signals to be discovered
by genotyping the marker directly, or other nearby correlated markers. But mapping those
associated variants to the specific variant that functionally influence disease risk can be
challenging since the statistical signals invoked by inter-correlated variants are difficult to
disentangle.

On the other hand, individual rare variant associations are challenging to find. Their low
frequency renders current cohorts underpowered to detect all but the strongest effects, and
lack of correlation to other markers often prevents them from being picked up by a standard
genotyping marker panels. But, once a rare associated variant is identified, mapping the
causal rare variants is relatively facile since recent ancestry is likely to limit the number of
inter-correlated markers.

Functional properties of pathogenic variants, both rare and common
Since common alleles tend to be ancient, they have weathered the influences of purifying
negative selection. Therefore, common variants that influence disease risk are likely to have
functionally modest effects that are compatible with their high population frequency. There
are two possibilities outlined by Kruyokov et al that might allow for this (Kryukov et al.,
2007). First, common variants that are medically detrimental act subtly or specifically to
confer disease without altering evolutionary fitness. As an example consider a variant that
confers risk of addiction to tobacco (Thorgeirsson et al., 2008). Such a variant might have
little impact on survival historically, but might have specific neuropsychiatric effects that
mediate the risk of 21st century diseases such as lung cancer or coronary artery disease that
play a role later in life after reproduction. Second, forces that select specifically for these
common variants counteract their medically detrimental qualities; the variant while causing
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disease also offers evolutionary benefit simultaneously. For example common ApoL1
variants that confer high risk of chronic kidney disease in African Americans, but protects
from Trypanosoma brucei rhodesiense infection at the same time (Genovese et al., 2010).

Since rare alleles are more recent, they have not been subjected to the same negative
selective pressures yet and may include among them more relatively deleterious mutations.
Rare alleles therefore often include those more likely to have more dramatic functional
consequences. This is supported by data indicating that rare deletions are more likely than
more common deletions to remove entire genes, exons, promotors, or stop codons (Conrad
et al., 2009). Similarly, rare variants are twice as likely as common ones to be to be non-
synonymous (The 1000 Genomes Project Consortium, 2010). Since rare variants are
relatively unrestricted in terms of their functional impact in general, a subset of rare
pathogenic variants with large effect might offer more obvious insight about disease
mechanism.

COMMON VARIANTS
Detecting common variants with high throughput SNP arrays

High throughput genotyping of standard marker panels of common SNPs has become
possible with microarrays (Gunderson et al., 2005). Their application to large case-control
sample collections has facilitated detection of even the most modest risk alleles, with odds
ratios of 1.1 or less. There are a finite number of common variants present in the general
population, i.e. <6 million are estimated in European populations (The 1000 Genomes
Project Consortium, 2010). But nearby common SNPs are in LD with one another and
define a limited number of haplotypes (see Figure 2A); so the effective number of
independent variants is much fewer. Thus genotyping a limited number of common variants
genome-wide has the effect of covering many more common variants. In European
populations, the Affymetrix 5.0 array with 440K SNPs has r2>0.8 for 57% of common
variants, and the Affymetrix 6.0 array with roughly double the number of SNPs (900K) has
r2>0.8 for 66% of common variants (Bhangale et al., 2008).

Genome-wide genotyping also allows investigators to use imputation to estimate genotypes
of markers not directly genotyped; in doing so it becomes possible to combine samples
genotyped on different platforms. Probabilistic multipoint imputation algorithms, using a
limited number of genotyped common variants, can determine the genotypes of
ungenotyped common variants by comparing to a reference panel of comprehensively
genotyped individuals, (see Figure 2A). Most of these methods currently use probabilistic
Hidden Markov Model approaches to infer the local LD structure (Browning, 2008; de
Bakker et al., 2008).

Selecting populations for study
Initial efforts to map complex traits emphasized selected isolated populations, for example
the Finish populations (Peltonen et al., 2000). These populations can offer the advantage of
increased inbreeding, more uniform genetic and environmental backgrounds, detailed
genealogical records, availability of intact extended families, and longer LD intervals.
Populations that have undergone rapid population expansion may be of particular use since
LD intervals are longer. The most successful validation of this approach is represented by
the deCODE genetics and their study of a wide-range of complex diseases in Iceland.

Now, investigators are increasingly focused on the Inclusion of individuals from multiple
ethnic backgrounds in order to enhance the ability of studies to discover risk alleles with
variable allele frequencies across different backgrounds (Rosenberg et al., 2010). Different
ethnic backgrounds might highlight different mechanisms of disease pathogenesis, including
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differences in environmental exposures, as well as reflect different degrees of genetic
diversity and linkage disequilibrium patterns. A striking example of this is the discovery of
an IL18B variant that predicts response to hepatitis C treatment with equivalent effect in
European, African, and Hispanic American patients; allele frequency differences of the
variant explains about half of the differences in treatment response across populations (Ge et
al., 2009).

Genome-wide association studies
In a case-control genome-wide association study (GWAS) samples are genotyped for a set
of 100,000 – 2,000,000 markers; case and control allele frequencies are compared directly to
each other. Statistical significance is assessed with a simple 2×2 chi-square test, or with
logistic regression when genotypes are probabilistic (e.g. from imputation).

Critical to the success of GWASs has been the application of stringent statistical
significance thresholds that result in reproducible associations that account for the large
number of simultaneous tests (Risch and Merikangas, 1996). Testing for common variant
associations throughout the genome represents about ~1 million independent tests (Hoggart
et al., 2008). Thus investigators routinely use a genome-wide significance threshold
representing a Bonferoni correction for multiple tests (p=0.05/106 = 5×10−8).

Since effect sizes for most common variants are modest, large sample sizes and careful
adjustment for subtle technical artifacts that can easily obscure results or produce false
positive associations are of paramount importance (Balding, 2006; Clayton et al., 2005;
McCarthy et al., 2008). The genomic inflation factor is an important metric that indicates the
extent of inflation due to stratification and other technical confounders. Fortuitously, the
strength of genome-wide genotyping goes beyond simply measuring case-control allele
frequency differences throughout the genome. It also allows investigators to look at patterns
in the genotyping data to identify key technical confounders. For instance, patterns of
excessive “missing” genotype data for an individual indicates that intensity data could not be
clustered into genotype, likely as a function of low DNA quality or concentration. Another
key confounder is population stratification, that is the presence of the systematic allele
frequency differences observed in a population as a consequence of ancestry rather than
case-control status. As a dramatic example, Campbell et al, showed that even in studies
using only European populations that not carefully adjusting for an individual’s country of
origin results in a highly statistically significant false-positive association for height at a
lactase SNP (Campbell et al., 2005). Genome-wide genotype data allow investigators to
identify and correct for case-control population stratification.

Once markers are identified with having statistically significant allele frequency differences
in cases and controls, they are ideally replicated in independent populations. The value of
replicating in an independent population not only adds statistical confidence to the results,
but also adds confidence that the results of the initial study is not the consequence of
technical confounding or stratification.

Identifying an associated marker rarely clarifies if the marker itself is the functional allele
that causes altered disease susceptibility. The observed association at a marker might be the
result of an underlying causal allele with high r2 with the associated variant, a rare
functional allele on a shared haplotypic background as the associated variant, or multiple
functional alleles that cause an apparent association. Nevertheless, the causal alleles must
closely correlate and be in LD with associated variants.
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Fine-mapping common variant loci
Dense genotyping of markers in the region, followed by fine-mapping can identify the
causal allele, or at least reduce the number of potential candidates. The underlying
assumption is that the causal allele will most parsimoniously explain the entirety of the
evidence of association. In many instances, however, fine mapping is complicated if the
association is not being driven by a marker that has been genotyped; in those instances it
might be possible to identify a risk haplotype defined by genotyped markers, and to then
sequence selected individuals to identify the causal allele. Thus in order to fine map
effectively, dense genotyping to include all known markers in the region is key. Fine-
Additionally, in many instances there might be multiple causal alleles, and in order to be
powered to detect multiple effects it is often necessary to densely genotype a large number
of samples, perhaps more than those used to discover the association.

After densely genotyping a large number of samples, there are two major statistical tools
utilized in fine-mapping common variants. The first is conditional regression. If a single lead
marker (or another marker in perfect LD with it) is causal, then applying conditional
regression adjusting for that lead marker should obviate all other association in the region.
The second statistical tool is conditional haplotype analysis. With conditional haplotype
analyses, investigators start with data from a subset of the genotyped markers and phase
genotypes to define haplotypes. If the selected markers are causal then the defined
haplotypes should parsimoniously explain the risk at that locus. That is the addition of
additional markers (and thus creation of more haplotypes) should not explain risk better, and
removal of any marker (and thus removal of haplotypes) should reduce the explained risk.
With both approaches, if the causal allele is in perfect LD (r2=1) with other markers, then
identifying statistically indistinguishable associations may not be possible.

One striking example of fine-mapping was an effort by Pereyra et al where with a GWAS
they demonstrated that multiple HLA-B classical alleles are associated with long-term viral
load control in HIV infected individuals (Pereyra et al., 2010). Then, with conditional
haplotype analysis, they were demonstrated that allelic risk was best defined by amino acid
variation at a few sites along the binding groove of HLA-B.

Data from multiple ethnic populations may be particularly useful to fine-map associations
(Rosenberg et al., 2010). Ideally a single allele might explain risk across multiple ethnic
groups. This approach is effective only if the same causal allele is present with a high allele
frequency in both, and there are ethnic differences in local LD structure. The inclusion of
African populations might be particularly useful since LD patterns are generally shorter.
This approach might be complicated if multiple different alleles in populations influence
disease susceptibility within the same locus. Adrianto et al looked at SNPs associated with
systemic lupus erythematosus (SLE) spanning the TNFAIP3 gene (Adrianto et al., 2011).
When they looked at markers associated in Asian and European populations they were able
to fine-map the associated region from a span of ~100 kb to ~50 kb. Subsequent sequencing
identified a novel AA>T single base pair deletion polymorphism that acts to disrupt an NF-
κb binding site. This single variant explained the associated risk of the locus.

RARE VARIANTS
It is possible that associated rare variants for complex diseases will be more facile to fine-
map and to evaluate for functional impact. The discovery of a rare variant near a common
variant might be particularly informative. A rare variant is clearly impacting one of the
multiple nearby candidate genes in LD with the common variant might clarify the
pathogenic gene and offer clues about mechanism of the common variant. There have been
several examples of this reported in the literature already. Five genes with confirmed type II
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diabetes common risk alleles, PPARg, HNF1A, KCNJ11, WFS1 and HNF1B, also have
known familial forms as a consequence of nearby rare mutations (Voight et al., 2010).
Similarly, 18 of the 95 known common variants associated with serum lipid levels are near
genes that have been implicated in monogenic lipid disorders (Teslovich et al., 2010).
Indeed studies to find rare coding variants near common risk loci have already shown
success in type I diabetes (Nejentsev et al., 2009), age-related macular degeneration
(Raychaudhuri et al., In Press), and Crohn’s Disease (Momozawa et al., 2011).

The extent to which rare variants explain complex disease susceptibility in general remains
an open question. It has been speculated that the gap between the heritability explained by
known common variants and that which might be predicted from family studies might be
explained by rare variants (Bansal et al., 2010), and that even many observed common
variant associations might be the consequence of functional undiscovered are variants
(Anderson et al., 2011; Dickson et al., 2010). Other investigators have suggested that
undiscovered common variants themselves might explain much of that missing heritability
(Purcell et al., 2009; Yang et al., 2010).

Identifying rare variants with high throughput sequencing
Advances in DNA capture and sequencing technology has greatly facilitated targeted,
exome, and whole genome sequencing (Maxmen, 2011; Ng et al., 2010), and has in the
process enhanced the search for rare variants. While the cost of sequencing is rapidly
dropping, the computational and statistical challenges to rapidly aligning sequences to
reference sequences, separating variant calls (SNPs, indels, and structural variants) from
sequencing artifact, data storage, and establishing associations are mounting (McKenna et
al., 2010).

Second-generation sequencing technologies have now come online, and are distinct from
prior approaches in that they do not use Sanger chemistry, and are characterized by high
sequencing yield with shorter reads (Shendure and Ji, 2008). The Illumina HiSeq 2000
system for example generates >1 billion 100 bp paired-end useable reads per run. Efficiently
mapping a large volume of short reads to the reference genome accurately has been an
important area of methodological progress (Li and Homer, 2010). Look-up (or hash-table)
based methods map reads quickly, but are not as accurate as less-efficient alignment-based
methods. Accurate alignment is especially important in regions with short insertions or
deletions (indels); poor alignment in such regions can result in false positive SNP calls and
false negative indel calls. Repetitive genomic regions and regions with homology can be
challenging to map, and in some instances may not be possible to query effectively. Paired-
end sequencing generates two sequence reads generated from opposite ends of the same
contiguous genomic fragment, and helps overcome some of these alignment issues.

To sensitively and accurately call a heterozygote non-reference base, a minimum of ~20x
coverage is necessary to overcome the uncertainty resulting from sampling short sequence
reads across a diploid genome. Additional coverage may be necessary to compensate for
random and non-random sequencing error, which may vary across technologies. Even with a
high-coverage sequencing experiment, the coverage is typically non-uniform across the
targeted region. Non-uniform coverage can be related to biases in DNA capture
technologies, in unequal pooling of amplicon products from different genomic regions or
individuals, and intrinsic sequence properties (Harismendy et al., 2009). Careful
experimental technique and sample normalization can minimize some biases in coverage.
Average coverage of an experiment is thus not as useful of a metric as is the percentage of
target genomic region achieving more than a prespecified coverage threshold. A set of
independently genotyped SNPs to verify sequence-based genotype calls and assess the
accuracy of sequencing studies is useful to confirm accuracy.
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Sequencing can be applied to a set of samples to discover variants or genotype variants. For
variant discovery, sequence data can be pooled across multiple samples to boost power to
detect a non-reference base. After application of sequencing to discover rare variants,
confirming the presence of the variant in discovery samples with TaqMan or capillary
electrophoresis sequencing is useful before exploring in independent samples to establish
disease association.

Power considerations and significance testing
One of the challenges to convincingly establishing a common variant association in human
populations and families is the rarity of SNP itself. Genetic studies are more poorly powered
to detect a rare SNP association than they are to detect more common association with the
same effect size (see Figure 3). Thus to detect associations at the same statistical threshold,
larger sample collections might be necessary than ones currently used. Establishing
association of a de novo or private mutations may not be possible since they may be seen
only once in an entire study.

For rare variant associations, the field has not yet defined accepted standards for statistical
significance that account for the burden of multiple hypothesis testing. Since there are many
more rare variants than common ones, and they are not typically inter-correlated with each
other, a more stringent threshold may be necessary than applied for common variants. One
conservative approach is to correct for the total number of bases genome-wide, ie
p=0.05/3000000000 ~ 10−11 as a significance threshold. Most recent studies have limited
themselves to exomes or to a subset of targeted genes; in these instances the multiple-
hypothesis testing burden might be significantly less. But with spectre of genetic studies
with genome-sequencing in the very near future this conservative threshold may ultimately
turn out to be appropriate.

Despite limitations in power and the need for achieving greater significance, rare variant
associations with strong effects might be imminently detectable. For instance Holm et al
was able to identify a rare variant for sick sinus syndrome as part of a genome-wide study
(Holm et al., 2011).; the coding variant that explained the association was highly statistically
significant in a modestly sized cohort since it had such a large effect size (OR>12). One
strategy to further enhance the prospects of discovery is to identify those individuals most
likely to have highly penetrant rare mutations. For example, individuals with younger onset
or more severe disease, familial forms of disease, or those individuals that have disease
despite a lack of other clinical or genetic risk factors might be promising candidates for rare
variant association studies.

Burden testing
If a genomic region is critical to disease pathogenesis rare mutations may modulate disease
susceptibility. Then many affected individuals may have rare mutations more frequently in
that region, though the mutations may be different from and unrelated to one another. This
concept has sparked interest in the genetics community, and workers in statistical genetics
have devised strategies to examine rare variants in aggregate across a target region (Bansal
et al., 2010). These “burden” tests assess if rare variants within a specific region are
distributed in a non-random way, suggesting that they might be playing a roll in disease
pathogenesis (see Figure 3B). For example a simple burden test might assess whether cases
are enriched for rare variants compared to controls.

More sophisticated tests account for the possibility that the region contains both protective
and risk conferring mutations. The target region might be a specific sub-region of a gene, an
entire gene transcript, or the entire genome.
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This approach is an important alternative to the challenging task of establishing the
association of individual rare variants; using these approaches to test multiple variants
simultaneously might enhance power over testing individual variants. For instance, a burden
test might be able to identify non-random distributions even of private mutations.

In an early application of rare variant burden testing, Cohen et al examined individuals from
the general population with high and low HDL levels, and assessed the burden of rare
variation in three candidate genes known to harbor Mendelian mutations that cause familial
low serum high density lipoprotein (HDL) levels (Cohen et al., 2004). They found that
individuals with the low HDL individuals were significantly more likely to contain rare
nonsynoymous mutations than those with high HDL levels; of the low HDL individuals 16%
had at least one rare mutation compared to 2% of high HDL individuals. This suggested
strongly that for individuals with low HDL levels ~14% of them may have mutations in
these three genes mediating phenotype. The idea of comparing the proportion of case
individuals with a rare alleles to control individuals with rare alleles was formalized into a
statistical test, the “Cohort Allelic Sums Test” (CAST) (Morgenthaler and Thilly, 2007).
Subsequently, more sophisticated tests have been proposed, that allow investigators to
combine association testing of rare and common alleles by either testing for association
together in multivariate tests (Li and Leal, 2008) or by combining rare and common alleles
weighted inversely to their allele frequency (Madsen and Browning, 2009).

One very powerful way of enhancing burden testing is to filter variants that are more likely
to be causal from those that are likely not to be causal. For example, investigators may to
focus their study on nonsynonymous alleles. Alternative approaches might include filtering
variants based on sequence conservation properties or other bioinformatics approaches
(Adzhubei et al., 2010; Ng and Henikoff, 2003).

A successful test, where statistical significance is obtained, can be used to argue that (1) the
tested rare variants play a role in a specific disease and (2) that the target region tested plays
an important role in disease pathology. But, it fails to implicate specific variants, and
ambiguity about the causal variants might remain. For example if rare variants are enriched
in a gene two-fold in cases compared to controls, then roughly half the variants seen in cases
might be pathogenic, but the other half are part of the background distribution of rare
variation in that gene, and may not influence disease risk.

Structural variants
Rare structural variants have gained recent interest; the frequency and size of structural
variants have repeatedly showed enrichment in schizophrenia and other neuropscychiatric
disease (International Schizophrenia Consortium, 2008; Sebat et al., 2007; Walsh et al.,
2008). However, except for a few specific regions such as 22q11 and 16p11, most of rare
events have uncertain pathogenecity. For instance, while the rate of >100 kb deletion events
are significantly increased in cases compared to controls –there is great uncertainty as to
which individual events are pathogenic and which ones are non-pathogenic events that
might occur in the general healthy population. This is analogous to the circumstance that
might occur with a statistically significant burden test for point mutations described above.

Extended haplotypes
As previously discussed, many rare variants are recent and occur on extended haplotypes
that can be identified using common variant markers. Thus GWAS data sets may be used to
identify long-range haplotypes based on common markers, and to then assess if they are
associated with phenotype. If this is the case, the phenotypic association might be driven by
a highly penetrant rare variant. We used this approach to find an extended haplotype in the
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CFH gene that conferred high risk of age-related macular degeneration; subsequent
sequencing identified the causal mutation to be an argenine to cysteine change in the C-
terminus of the protein (Raychaudhuri et al., In Press).

This approach might be most effective in isolated populations where reduced genetic
diversity and founder effects make it possible to identify long-range haplotypes (Kong et al.,
2008). One recently published method to identify long and rare haplotypes, and to then to
test for association to phenotype has been successfully applied to multiple phenotypes in
out-bred populations (Gusev et al., 2011).

FROM VARIANTS TO FUNCTION
Translating rare and common variants to function can be challenging. In many instances the
presence of an association does not clarify which variants are functionally causing disease
susceptibility. For common variants, fine-mapping might be stymied by local LD. For rare
variants, burden testing might be able to identify a genomic region enriched for rare
variants, but may not be able to specifically distinguish the individual causal rare variants
from spurious non-pathogenic variants. Here we describe broad approaches that might be
pursued to clarify pathogenic functions and causality, in the absence of genetic mapping that
has clearly identified a single causal variant.

Evaluating Nonsynonymous Coding variants
About 1% of the genome consists of protein coding sequences. Variants in this portion of
the genome are potentially the most amenable to follow-up by biochemical characterization
of the protein product in vitro, characterization in cell lines, or evaluation in transgenic
model organisms. Only a minority of associated common variants can be explained by a
non-synonymous coding variant (~10%) (Hindorff et al., 2009). Currently, most studies of
rare variation emphasize nonsynomous coding variants; in many cases non-coding variants
are altogether ignored even if they are sequenced. An important challenge in the field is to
prioritize discovered coding variants for potentially time-consuming functional follow-up.

Computational approaches can be effective at assessing the degree to which a specific amino
acid substitution in a protein, induced by a variant, might disrupt function. The functional
impact of a substitution can often be estimated by using information about sequence
conservation at the mutated site from comparative sequence analysis of a gene with
orthologs and paralogs. If an amino acid position in a protein sequence is functionally
critical, then most de novo mutations are deleterious and are subject to purifying selection;
these sites then are expected to show little variation. Thus, non-synonymous sites in highly
conserved regions are likely to be deleterious. Sequence conservation in organisms more
closely related to human is particularly informative since more distantly related organisms
may have divergent biology and protein function. A variety of software tools using this these
principles to assess coding variants have now been devised (Cooper and Shendure, 2011).
One example of such a program is Polymorphism Phenotyping 2 (or PolyPhen 2) (Adzhubei
et al., 2010). The most predictive features in this method are the estimated likelihood that
the mutant allele fits the substitution pattern observed in the multiple-sequence alignment;
the evolutionary distance to the organism with a protein harboring a similar nonsynonymous
substitution; and whether the mutant allele occurs at a site that is hypermutable. The method
uses these features and others, including information from the three-dimensional protein
structure, to define a statistical model that defines the probability of disease based on a
catalog of known pathogenic Mendielian mutations. The functional importance of an amino
acid replacement is predicted from these features based on a naive Bayes classifier.
Polyphen 2 and other related methods demonstrate similar performance in their ability to
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predict pathogenic mutations achiving an area under the curve (AUC) of 75–80% (Hicks et
al., 2011).

Experimental approaches to individually interrogate rare variants with functional assays to
can also be very powerful. But, for an approach to be effective, it is critical that the
functional assay is high throughput, and that it assayed function that is relevant to the
phenotype. Otherwise, mutations that affect the assayed gene function might not in fact be
pathogenic. In one application of this approach, Davis et al used this approach to look at
individual mutations with the TTC21B gene, and to show that they cause human ciliopathies
(Davis et al., 2011). First they demonstrated that a translation-blocking morpholino specific
for TTC21B resulted in gastrulation defects in zebrefish that were consistent with cilliary
dysfunction. Then, when they re-sequenced TTC21B in a large, clinically diverse ciliopathy
cohort and matched controls they observed a similar frequency of rare variants. But, when
they tested those rare alleles that caused gastrulation defects in zebrefish, they observed a
significant enrichment of functional alleles in cases compared to controls.

Evaluating non-coding variants
Non-coding variants pose a particular challenge to the field at the moment. The non-coding
genome represents 99% of the genome and at present is poorly annotated (Alexander et al.,
2010). About 10% of the non-coding genome is under-purifying selection, suggesting that
they harbor critical processes that if disrupted could be pathogenic (Davydov et al., 2010).
Many common variants, if they contribute to disease likely act by impacting the non-coding
genome. As one example, an associated Crohn’s disease SNP in LD with polymorphic
deletion overlapping the IRGM gene promotor and modulates gene expression (McCarroll et
al., 2008). In the last several years, however, several promising approaches have emerged to
evaluate non-coding variants that might point the way to causality, such as analyzing
sequence conservation, gene expression and chromatin state.

Sequence Conservation
A computational approach to prioritizing non-coding variants is to identify those at sites
with a high degree of sequence conservation across mammalian organisms, and are thus
under purifying negative selection (Cooper et al., 2005; Miller et al., 2007). These
approaches differ from those approaches used to prioritize coding substitutions, since they
can only use nucleotide sequence similarity. Indeed, investigators have argued that the
conservation information from nucleotide sequences is as predictive as the information
gained by peptide sequence similarity and protein structural features (Cooper et al., 2010).
The value of assessing common variants with sequence conservation approaches is
uncertain, since common variants are presumably not under purifying negative selection.
But, rare non-coding rare variants that have dramatic effects on disease susceptibility might
be effectively prioritized with this approach.

eQTL data can suggest causal genes and mechanism
Expression quantitative loci (eQTL) are genetic variants that correlate with the transcript
level of a gene (Jansen and Nap, 2001). To date, most reported eQTLs are cis-effects, acting
on nearby genes by encoding variants that modulate promotor activity, enhancer activity, or
mRNA stability. Expression QTLs acting in trans have been largely unexplored thus far.
While, most recently discovered eQTLs have been common variants, there is evidence of
rare eQTLs also (Montgomery et al., 2011). Identifying rare eQTLs might be challenging
given the limited power of currently sized cohorts. In the future, burden tests previously
described might be able to effectively identify small genomic regions where rare variants
dramatically impact transcript levels.
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It has been shown that common trait-associated variants have a significant overlap with
eQTLs, suggesting the possibility that many common disease variants act by altering
transcript levels (Nicolae et al., 2010). Thus, it might be insightful to assess whether a
specific disease associated common variant is itself an eQTL. If it is then the gene whose
transcript is influenced by the risk allele might be the causal gene. Furthermore, if the risk
allele is increasing the transcript level, then the gene may increase disease risk by
magnifying gene function; alternatively if the risk allele reduces transcript level, then the
gene may cause disease by mitigating gene function. A convincing eQTL effect can be fine-
mapped by transfecting constructs with risk haplotype fragments, as was done to to identify
the causal variant in the SORT1 lipid locus (Musunuru et al., 2010). Another compelling
example of a eQTL that influences disease susceptibility is a type II diabetes associated
variant upstream of the KLF14 transcription factor. Investigators showed that this variant not
only acts as a cis-eQTL influencing KLF14 levels in adipose tissue, but also as a trans-
eQTL for many genes regulated by KLF14 that are important in metabolic traits (Small et
al., 2011).

There are a few important caveats about this seemingly straightforward approach. First,
eQTL since eQTLs are spread throughout the genome, spurious overlap between disease
associated variants and eQTLs is possible (Nica et al., 2010). If a risk variant confers risk by
modulating transcript levels, and it is itself causal (or in LD with the causal variant), then it
should also be consistent with the strongest eQTL effect in the region. Checking to ensure
that the disease-associated variant is consistent with the strongest eQTL effect itself
mitigates the risk of spurious overlap. However, it is still possible that the causal allele and
the strongest eQTL effect are strongly correlated by chance, and that eQTL association is
unrelated to disease risk.

Second, while many eQTLs act generically, most are tissue specific (Dimas et al., 2009;
Price et al., 2011). In fact, certain eQTLs may not be detectible unless the cell has responded
to a specific stimulus or stress. In order to understand the transcriptional impact of disease
alleles most effectively, identifying eQTLs in the pathogenic tissues is key. Current eQTL
databases are based on a small number of resting cell-types, for example lymphoblastoid
cell-lines (Stranger et al., 2007). Many important pathogenic tissues are not easily accessible
for eQTL studies. In the near future the catalog of available tissues profiled will expand
dramatically with the NIH sponsored Genotype Tissue Expression (GTEx) project, aiming
to profile >60 separate tissues (https://commonfund.nih.gov/GTEx/).

Finally, while eQTL data can offer potential in identifying the likely causal gene and
provide hints about mechanism for common variants, it may not clarify ambiguity about the
causal variant if there are multiple variants in LD. Certain variants may seem more
promising, for example structural variant or SNP overlapping a regulatory variant. As with
disease associated common variants, eQTL datasets often face challenges in fine-mapping
signals.

Chromatin modifications
Identifying regions of the genome that act as regulatory elements can offer important
complementary information to eQTL data in evaluating non-coding variants. Specific
functional regulatory elements can be identified from genome-wide profiles of key histone
modifications: H3K4me3 marks active promoters; H3K4me1 marks enhancers; H3K4me2
and most histone acetylation marks are enriched at both promoters and enhancers (Barski et
al., 2007; Heintzman et al., 2007; Wang et al., 2008). Similarly, DNase I hypersensitive sites
also flag open chromatin regions harboring promoters and enhancers (Sabo et al., 2006).
With the advancement of high throughput sequencing technologies and development of
techniques such as ChIP-seq (Park, 2009) and DNase-seq (John et al., 2011), there are
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mounting public data on genome-wide chromatin profiles. For instance, histone mark ChIP-
seq and DNase-seq data on over 100 cell lines and tissues has now been generated through
the ENCODE and Roadmap Epigenomics projects (Bernstein et al., 2010; Birney et al.,
2007).

While computational approaches to identify putative binding sites based on sequence data
alone is non-specific, recent reports suggest that the prediction of active regulatory sites
within assayed tissues is possible by including ChIP-seq and DNase-seq data (Ernst and
Kellis, 2010; He et al., 2010; Pique-Regi et al., 2011; Song et al., 2011). One potential
approach then to prioritize non-coding variants for followup is to identify those that are in
regions that have been predicted to be regulatory elements. These variants might, for
example, disrupt or enhance a transcription factor binding at an enhancer or a promoter.
Particularly promising variants might be those that have eQTL activity in the same cell-type.
Histone marks locations and DNase hypersensitive sites have been shown to be enriched
near associated variants (Ernst et al., 2011; McDaniell et al., 2010). A key limitation of this
approach is, that like eQTL data, it requires genome-wide chromatin data from the same or
similar cell types as those that are pathogenic.

Identifying causal processes with integrative analyses
In many instances where the specific gene of a locus cannot be specifically identified,
examination of the genes implicated may still help to suggest the key underlying functional
networks and pathways that might be active in a disease. For instance age-related macular
degeneration associations have implicated the complement pathway without necessarily
identifying causal variants. This task can be challenging in general since for any given
associated allele 20 or more genes might be implicated by LD, and any of them may harbor
the causal mutation

But despite that, statistically significant connectivity between genes in different associated
loci can often be identified. We and others have devised strategies to look for functional
connections or similarity between genes across implicated loci. These networks can predict
novel gene loci and offer insight about disease mechanism. Gene Relationships Across
Implicated Loci (GRAIL) uses >400,000 published scientific PubMed text to assess pairwise
gene similarity between genes across loci (Raychaudhuri et al., 2009a). In addition to
repeatedly showing highly statistically significant connectivity between genes across loci in
multiple diseases, GRAIL has been used to prospectively predict and prioritize associated
variants (Raychaudhuri et al., 2009b) and prioritize disease genes within a locus (Beroukhim
et al., 2010). Investigators used a similar approach, Disease Association Protein-Protein
Link Evaluator (DAPPLE) algorithm to demonstrate that protein-protein interactions are
enriched among genes within disease loci more than by chance alone (Rossin et al., 2011).
They demonstrated enrichment most convincingly in autoimmune diseases, and furthermore
demonstrated that the enrichment of interactions was often between genes within the same
immune cell types. These networks offer insight as to how protein products of genes across
many loci might be interacting together to initiate disease. We note importantly that pathway
analyses can be easily confounded, in particular in neuropsychiatric diseases since there is a
correlation between the size of transcripts and the likelihood that they will have brain
function (Raychaudhuri et al., 2010).

Conclusions
The advances in genotyping and sequencing technologies over the last few years have
revolutionized the genetics of complex diseases. Only 5 years ago, researchers were still
tackling the challenges of gene mapping and discovery. Now we face an embarrassment of
riches in which the ability to map loci has become quick and reproducible. The next
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important challenge is streamlining functional validation, which in most cases, is still a
critical bottleneck. Rare variant discovery has the potential to yield more obviously
functional variants with larger effect sizes because they are less constrained by purifying
selection. The discovery of rare variant associations might shed light on those loci
discovered by common variant mapping. However, strategies to prioritize functional follow
up studies will be key at those loci where common variants cannot be effectively fine
mapped or individual rare variants (beyond the presence of case enrichment) cannot be
identified. Strategies to use regulatory variants, chromatin state data, and sequence
conservation offer a potential path forward to prioritize candidate variants
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Glossary

Associated Allele An allele that, in a genetic study, is observed to have differential
allele frequencies in cases compared to controls. The presence of
an association suggests that it, or some other variant in LD, is
influencing disease susceptibility.

Causal Allele The functional allele that influences disease susceptibility and
explains the observed associated allele.

Common Alleles Alleles with a high population frequency, typically defined as
>1%. Standard marker panels can often be used to identify
common allele associations.

Rare Alleles Alleles with a lower allele frequency of <1%. These alleles can be
polymorphic in the population being seen in multiple distantly
related individuals; alternately they might be alleles that are private
to an individual or seen in a small number of closely related
individuals.

De novo Mutations A mutation that has occurred in an individual and that was not
inherited from a parent. These mutations are private. If a de novo
mutation is passed on and persists through generations, it can
become a polymorphic allele.

Linkage
disequilibrium
(LD)

Two polymorphic loci are in LD when they are collocated on the
genome, and alleles at those loci are distributed nonrandomly with
respect to each other on chromosomes in the population. Linkage
disequilibrium is present when recombination events occur
between two loci occur infrequently. Two metrics for LD are r2

and D’.

Recombination
hotspots

Individual regions within the genome that have frequent
recombination events.

Negative Selection Selection acting to remove new deleterious mutations that reduces
evolutionary fitness of an individual. Also known as purifying
selection.
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Positive Selection Selection acting to propagate new advantageous mutations that
increase evolutionary fitness of an individual.

Balancing Selection Selection acting to increase allelic variability at a locus.

Genotype
Imputation

A statistical technique to infer missing genotypes in a set of
individuals using a reference panel of genotyped individuals.
Invariably, imputation exploits linkage disequilibrium between
genotyped and ungenotyped variants.

Genome-wide
significance

A level of statistical significance typically used to establish
association for a common variant in a genome-wide association
studies (p=5×10−8), which assumes that there are ~1,000,000
million effective number of independent tests genome-wide.

Stratification A genetic confounder if there are differences in the ancestral origin
of cases and controls. The resulting systematic allele frequency
differences can result in false positive associations.

Genomic Inflation
Factor (λ)

The ratio of the median of the observed chi-square statistics for an
association study and the expected median chi-square statistic. If
there is stratification the test statistic is inflated, causing the
genomic inflation factor to be substantially greater than 1, causing
inappropriately significant p-values.

Fine-mapping The use of dense genotyping data around an associated allele to
identify the causal allele(s) to account for the observed statistical
signal in the region.

Second Generation
Sequencing

Recent sequencing technologies not using Sanger chemistry, that
characteristically generates many short read sequences.

Targeted Region The region of the genome selected for a sequencing experiment.

Whole-Genome-
Sequencing

A sequencing experiment where the full ~3 GBp of whole genome
is sequenced. Does not require DNA capture. For most medical
genetic studies the sequencing data is not reassembled, but mapped
and compared to a reference genome sequence.

Whole Exome
Sequencing

A sequencing experiment where the protein coding sequences of
all known genes are targeted, captured, and sequenced (~30Mbp).

Coverage In a sequencing experiment, coverage at a genomic position is the
total number of reads mapped to that position.
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Figure 1. Linkage disequilibrium (LD) metrics
A. Haplotype frequency with changes in LD. Left: For two markers that are random with
respect to each other, each with a 0.5 allele frequency, there is no linkage between them;
each resulting haplotype has a frequency of 0.25. Middle left: Here the two markers are not
entirely random, and alleles at one marker correlate partially with alleles at the other marker.
The A allele on the left is observed more frequently with the C allele on the right, and the T
allele on the left is observed more frequently with the G allele on the right. Middle right:

Raychaudhuri Page 21

Cell. Author manuscript; available in PMC 2012 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Here the two alleles are more tightly linked or have tighter LD than in the previous case. In
this instance, the presence of the T allele on the left predicts with certainty the G allele on
the right. This could be the case if the T allele arose de novo on a haplotype with the G allele
in the right marker. Right: For instances of tight LD, an allele at one marker predicts
perfectly the allele at the other marker; in this case, these two markers form only two
haplotypes. B. Changing LD properties as a de novo mutation propagates. A de novo
event (circle), when it first occurs on a chromosome (bottom), is on one haplotypic
background defined by the chromosomal markers on which it forms (red). As generations
pass (moving upward), the event propagates through the population. Recombination events
(Xs) occur, reducing the common haplotype (red) on which variant is present and
decoupling it from distal markers (blue). C. Simulating LD structure of a de novo event
as it becomes a common variant. Here a computer simulation depicts a chromosome with
10,000 common markers with 1,000 randomly assigned hotspots. Random mating is allowed
with an average of one recombination event per generation. A single rare variant is
introduced in the middle of the chromosome on one individual (bottom) and allowed to
propagate through the population. The left panel depicts the allele frequency as it increases
through the generations (upwards). In the middle panel, all markers in LD with that variant
(with D’=1) are indicated with a red dot. Initially that variant is in LD with every common
marker that it is in phase with on that chromosome, revealed by the red band stretching
across the bottom of the plot. As random recombination events occur and the allele becomes
more frequent, the number of markers in phase decreases, revealed by the shrinking red
band in the middle. On the right panel, a grey dot indicates markers for which the genotypes
correlate with the rare variant (r2>0.5). For the first few generations, there are no other
variants that correlate with the de novo mutation as it becomes a rare allele. As time
progresses and the allele becomes more common, it begins to develop genotypic correlations
with nearby variants that remain on the same haplotype.
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Figure 2.
A. Common variants. This image illustrates the structure of common variants and linkage
disequilibrium blocks. The top lists a reference genome spanning ~10 kb and the reference
genotypes of the variants. The haplotype structure is broken up into two blocks by a
recombination hotspot. Each block contains a set of markers in tight LD, which can be
phased into a small number of haplotypes. Below that, a limited number of genotypes are
depicted for a hypothetical individual because a commercial array would assay only a
limited collection of all of the common variants in a region. The bottom row demonstrates
how data for those genotypes can be phased using reference population data and how
missing genotypes can be imputed if the haplotype can be inferred accurately. In some
instances, imputed genotypes may not be uncertain. B. Fine mapping with conditional
haplotype analysis. This figure illustrates the basic concept of conditional haplotype
mapping. The left-hand side lists genotypes at ten variant sites (numbered) that define 7
common haplotypes. Each row represents a haplotype, and genotypes at variant sites are
listed in each column. Assuming that a common variant association is observed at marker 1,
identical associations will be observed at the markers 2, 3, and 5 because their genotypes are
correlated across haplotypes. In the first step, haplotypes are grouped by marker 1. The
result is that the seven haplotypes form two subgroups (indicated by purple and red bars on
the right). One group demonstrates association with disease (right). Including marker 7
breaks the groups up further into four haplotypes (indicated by purple, green, blue, and red
bars on the far right). By adding marker 7, differential risk association between haplotypes is
apparent. Whereas the T/G haplotype confers risk, the T/T haplotype confers even more
risk.
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Figure 3.
A. Power to find rare variants. Here is a plot of 80% power to discover rare associated
alleles at p<10−7 and p<10−11 for cohorts of both 500 and 5000 cases and controls. The
control allele frequency and odd ratio (OR) are plotted along the x-axis and the y-axis,
respectively. Diagonal lines indicate corresponding case allele frequencies. B. Burden
testing. Here data from sequenced cases (top) and controls (bottom) are depicted around a
gene of interest. Each horizontal line represents an individual. Variants are shown as red Xs.
Certain variants are rare (i.e., seen once), and others are more common (vertical line). In this
example, the case variants within the candidate gene (arrow at bottom, and blue shading) are
seen more frequently than in controls. If common variants are excluded, there are five case
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chromosomes with a rare variant compared to one control chromosome. This pattern of
enrichment is not evident outside the gene. A burden test of association for rare variants
within the gene might be statistically significant.
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