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Abstract
Melatonin is a hormone with endocrine, paracrine and 
autocrine actions. It is involved in the regulation of 
multiple functions, including the control of the gastroin-
testinal (GI) system under physiological and pathophys-
iological conditions. Since the gut contains at least 400 
times more melatonin than the pineal gland, a review 
of the functional importance of melatonin in the gut 
seems useful, especially in the context of recent clinical 
trials. Melatonin exerts its physiological effects through 
specific membrane receptors, named melatonin-1 re-
ceptor (MT1), MT2 and MT3. These receptors can be 
found in the gut and their involvement in the regulation 
of GI motility, inflammation and pain has been reported 
in numerous basic and clinical studies. Stable levels of 
melatonin in the lower gut that are unchanged follow-
ing a pinealectomy suggest local synthesis and, fur-

thermore, implicate physiological importance of endog-
enous melatonin in the GI tract. Presently, only a small 
number of human studies report possible beneficial 
and also possible harmful effects of melatonin in case 
reports and clinical trials. These human studies include 
patients with lower GI diseases, especially patients with 
irritable bowel syndrome, inflammatory bowel disease 
and colorectal cancer. In this review, we summarize the 
presently available information on melatonin effects in 
the lower gut and discuss available in vitro  and in vivo  
data. We furthermore aim to evaluate whether melato-
nin may be useful in future treatment of symptoms or 
diseases involving the lower gut.
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INTRODUCTION
Melatonin (N-acetyl-5-methoxytryptamine), discovered in 
1917, is found in humans, animals, plants and microbes. 
It is a lipophilic compound diffusing rapidly through 
biological membranes and is involved in many regulatory 
processes, such as biological rhythms, intestinal reflexes, 
protection against inflammation, metabolism and repro-
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duction. Additionally, melatonin may act as a mediator of  
inter-organ communication, e.g., between gut and liver[1].

In animals, melatonin was first reported in the bo-
vine pineal gland in the year 1958, and in the gut it was 
first identified in the human appendix in 1974[2]. Mela-
tonin is synthesized in the pineal gland and secreted in a 
circadian pattern, with highest amounts released during 
nighttime[3]. The light/dark information regulating the 
secretion of  melatonin by the pineal gland is received 
in the supra-chiasmatic nuclei via retinal photosensitive 
ganglionic cells. Melatonin released into the bloodstream 
acts as an endocrine hormone and controls biological 
functions with circadian rhythms, e.g., the sleep-wake cy-
cle. Melatonin is also involved in the regulation of  food 
intake and digestion[4].  

Following the detection of  the melatonin-synthesiz-
ing enzymes N-acetytransferase and hydroxyindole-O-
methyltransferase in the gut[5], the possibility of  addi-
tional extra-pineal melatonin synthesis was considered[6]. 
Melatonin produced in the gut is believed to act as a 
paracrine hormone which can be secreted in both a con-
tinuous or a cyclic fashion. Melatonin is also synthesized 
by a variety of  other extra-pineal cells, such as bone mar-
row cells, lymphocytes, mast cells and epithelial cells, and 
it is unclear to what extent melatonin from these sources 
contributes to gut melatonin levels. Release of  melatonin 
from all these extra-pineal sources seems to be indepen-
dent of  the photoperiod[7-9]. 

Melatonin has been studied in different areas of  med-
icine in numerous clinical trials. In the lower gut, the roles 
of  melatonin are complex and largely uncharacterized. 
This review will focus on the gastrointestinal (GI) local-
ization of  melatonin, the role of  melatonin in the lower 
gut and the mechanisms involved. Animal and bench-
side research, as well as translational human research, will 
be discussed with a special emphasis on summarizing all 
available human data related to the lower gut.

MELATONIN PRESENCE IN THE LOWER GUT
Bubenik et al[10] were the first to report the presence of  
melatonin in the mucosa of  the gut. This observation was 
later confirmed by studies using immunohistochemistry 
and radioimmunoassay techniques[11]. In the mammalian 
gut, melatonin exhibits striking differences in regional 
distribution, with the highest levels in the rectum and the 
colon and the lowest levels in the jejunum and the ileum. 
These regional differences in tissue distribution were 
confirmed in other species including rabbit, mouse and 
human[12]. Moreover, specific antibodies against melato-
nin in rat identified melatonin-like immunoreactivity in all 
parts of  the gut, and after administering exogenous mela-
tonin the most pronounced accumulation of  melatonin 
was seen in the colon and the rectum[13]. Furthermore, 
melatonin was detected in luminal fluids of  the gut. This 
melatonin may originate from food, mucosal sources, or 
organisms populating the gut. Finally, luminal melatonin 
may also be of  biliary origin, but at the present time its 

sources have not been elucidated. 
Melatonin is synthesized in the enterochromaffin (EC) 

cells throughout the gut[14,15], and the EC cells have been 
reported to be the major source of  L-tryptophan-induced 
increase of  circulating melatonin. Interestingly, the distribu-
tion of  melatonin is comparable to the density of  EC cells 
in the gut. Oral administration of  L-tryptophan caused a 
rapid and dose-dependent elevation of  circulating melato-
nin in rats or chickens[16]. L-tryptophan-induced melatonin 
synthesis was greater following oral than following intra-
peritoneal administration. This indicates that L-tryptophan 
is a crucial precursor in gut melatonin synthesis. 

Some melatonin detected in the gut is of  pineal origin 
through accumulation from circulating sources, and the 
digestive tract, especially in the lower gut, might act as a 
store for pineal-derived melatonin particularly at night-
time[17]. Melatonin levels in the gut are independent of  
pineal production, since in rats pinealectomy had no in-
fluence on gut melatonin concentrations[18]. Interestingly, 
at any time of  the day or night, the gut contains at least 
400 times more melatonin than the pineal gland, once 
again emphasizing the functional importance of  mela-
tonin in the gut. No photoperiodic cyclical secretion of  
melatonin was observed in the gut, which is in contrast 
to the typical secretion pattern for melatonin from the 
pineal gland. In diabetic rats, lower melatonin levels were 
observed in the pancreas, the kidneys and the duodenum, 
but no change of  melatonin level was detected in the co-
lon, when compared to non-diabetic control rats[19]. The 
relevance of  these observations has yet to be determined.

Melatonin concentrations in the gut vary depending 
on age. In the postnatal rat, GI melatonin levels peaked at 
birth and then declined to stable levels at the age of  21 d[13]. 
This decline in melatonin concentrations was more pro-
nounced in the jejunum, ileum and colon compared to 
the stomach[20]. However, later in life the levels of  melato-
nin increase; it has been shown that melatonin concentra-
tion in the mucosa of  the ileum and distal colon is 126% 
higher in older mice (22-24 mo) compared to younger 
mice (2-5 mo)[21]. Remarkably, the same study provided 
evidence that most of  the daytime levels of  melatonin in 
the blood are of  GI origin. It was also shown in pigs that 
the serum melatonin levels correlate well with the levels 
of  melatonin in the lower gut[22]. Food restriction increas-
es melatonin concentrations in the gut and in the brain in 
mice[23]. These distinct changes in melatonin levels sug-
gest that there may be a physiological role for melatonin 
in the regulation of  digestion and in the control of  food 
intake. On the contrary, the melatonin levels in the lower 
gut may be influenced by luminal contents and may thus 
depend on the movement of  digesta, but this notion re-
mains speculative at the present stage.

MELATONIN RECEPTORS ARE LOCAL-
IZED IN THE ILEUM AND THE COLON
Melatonin exerts some of  its physiological effects through 
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activation of  specific membrane receptors. According to 
their pharmacological properties, these receptors have 
been classified as Mel1A, Mel1B and Mel1C[24,25]. Two of  
these, Mel1A and Mel1B, were recently renamed melato-
nin-1 receptor (MT1) and MT2 receptors. Both MT1 and 
MT2 receptors are members of  the G-protein coupled re-
ceptor family and share a common seven transmembrane 
structure. MT1 and MT2 show high homology at the 
amino acid level, with a 55% overall homology and a 70% 
homology within the transmembrane domains. They also 
share some specific short amino acid sequences, suggest-
ing that they represent a specific subfamily[26,27]. However, 
MT1 and MT2 receptors activate very distinct intracellular 
signaling pathways[28,29]. It has been shown that the MT1 
melatonin receptor is coupled to G proteins that mediate 
adenylate cyclase inhibition and phospholipase C beta ac-
tivation. The MT2 receptor couples to a number of  signal 
transduction pathways, including phosphoinositol produc-
tion, inhibition of  adenylate cyclase and the inhibition of  
soluble guanylate cyclase pathway[30-32]. Luzindole acts as 
an antagonist at both receptors and is used in numerous 
studies[33-35]. 4-P-PDOT is a selective antagonist at MT2[36]. 
For the MT1 receptor no highly selective antagonist has 
been reported yet.

The third melatonin binding site MT3 (formerly Mel1C) 
is an enzyme named quinone reductase 2 (QR2). MT3 
can be blocked by prazosin. Activation of  MT3/QR2 by 
melatonin may explain the protective effect of  melatonin 
against oxidative stress in different animal models, since 
MT3/QR2 has potent antioxidant properties.

The melatonin receptors display regional tissue and 
cell specific variations, reflecting the overall complexity 
of  melatonin signaling[37]. Functional assays, as well as 
receptor binding studies, have demonstrated the pres-
ence of  high affinity binding sites for melatonin on cell 
membranes, for example in the hypothalamus, medulla 
oblongata, hippocampus, cerebellum, parietal cortex and 
striatum of  rats. Interestingly, the density of  these bind-
ing sites varies depending on the time of  the day and 
physiological conditions, including age[38,39].

Furthermore, there exists a group of  nuclear melato-
nin receptors. These nuclear receptors for melatonin be-
long to the retinoid Z receptor (RZR) or retinoid orphan 
receptor (ROR) subfamilies, which include three subtypes 
(α, β, γ), encoded by three different genes[40,41]. An interac-
tion between membrane and nuclear melatonin receptors 
was suggested by the observation that the expression of  
ROR/RZR mRNA is decreased in blood mononuclear 
cells with reduced MT1 receptor expression. Finally, mela-
tonin can directly interact with intracellular proteins such 
as calmodulin, calreticulin or tubulin, extending the list of  
potential sites of  binding and action for melatonin[42-44].

All three MT receptors can be found in the gut and the 
data on localization are summarized in Table 1. The sub-
cellular distribution of  melatonin binding is highest in the 
nuclear fraction, followed by the microsomal and the mito-
chondrial fractions, and is lowest in the cytosolic fraction.

Melatonin MT1 receptor mRNA has been detected 

in rat small and large intestine. The highest MT1 mRNA 
expression was found in the rat duodenum, with lower 
expression in the jejunum and ileum. No circadian 
changes were found in MT1 mRNA expression in gut 
tissues. In the duck gut, there was found to be a signifi-
cant variation in the densities of  2-iodo (125I)-melatonin 
binding sites in different regions of  the gut, with the 
following descending order of  density: ileum, jejunum > 
duodenum, colon > cecum > esophagus[45]. Short-term 
fasting increased the expression of  MT1 in the sub-
epithelial layer of  the rat small and large intestine, but 
no changes in MT1 expression were detected in other 
gut layers. During long-term fasting this increase in MT1 
expression persisted only in distal colon, while in the 
remainder of  the colon and in the small intestine MT1 
expression returned to normal levels[46-48].

A study using tissues from rat pancreas, stomach, 
duodenum and colon found the highest levels of  MT2 in 
the colon by using western blot analysis[49]. In the same 
study, the most intense MT2 immunoreactivity was ob-
served in the muscularis mucosae and in the circular and 
longitudinal muscle layers of  rat gut. Detection of  MT2 
receptors in the gut muscle layers suggests an involve-
ment of  MT2 in the regulation of  intestinal motility. 
Comparable to MT1, the expression of  MT2 receptors 
does not vary with food intake.

Pharmacological studies suggested the presence of  
the melatonin MT3 receptor in guinea pig colon[50] and 
later MT3 was found in monkey (Macaca fascicularicus) 
gut[51]. However, presently it is unclear in which gut layer 
MT3 is expressed.

In addition, in blood vessels of  both rodent and hu-
man colon, a high density of  melatonin-binding sites was 
reported. In vitro preparations of  arterial smooth muscle 
of  the porcine colon relax in response to melatonin 
and melatonin receptor agonists, although these effects 
were seen at rather high concentrations of  melatonin[52]. 
Based on in vitro experiments on rat arteries, it has been 
suggested that a vasoconstrictive effect of  melatonin is 
mediated via MT1 and a vasodilatatory effect is mediated 
via MT2 receptors[53]. The effects of  melatonin in the gut 
may be dose-dependent and reflect actual MT1/MT2 
ratio in muscle layers of  gut segments. 

Whereas data are available for the localization and 
expression of  MT receptors in the gut, the presence of  
nuclear melatonin binding sites remains unresolved. One 
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MT1 MT2 MT3

  Ileum + + +
  Colon + + +
  Mucosa + No data No data
  Muscularis mucosae + (i); + (c)
  Submucosa + (i); + (c)
  Muscularis propria + (c)

Table 1  Localization of melatonin membrane receptors in the 
ileum and the colon of rodents

MT: Melatonin receptor; i: Ileum; c: Colon. 
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study has suggested that melatonin nuclear receptors are 
present in murine colon cancer cells, but the relevance 
of  this observation and localization remains unclear[54].

ACTIONS OF MELATONIN IN THE ILEUM 
AND THE COLON
In contrast to the central nervous system, the function of  
melatonin in the gut is less clear. In the gut it seems that 
melatonin plays significant roles in regulating intestinal mo-
tility, the immune system, GI secretion, and the release of  
peptides involved in energy balance such as peptide YY[55]. 
Melatonin was also shown to protect the colon in different 
pathophysiological conditions; frequently these protective 
effects involve activation of  antioxidative mechanisms or 
the regulation of  blood vessel tone and thus modification 
of  perfusion[56,57]. Another effect of  melatonin is the altera-
tion of  gut flora and potential anti-microbiotic actions; 
melatonin was shown to influence E. coli O157:H7 growth 
in vitro and in vivo in infected wethers[58].

Motility
Melatonin is known to be involved in the regulation of  
GI motility. Melatonin is produced in EC cells of  the GI 
tract and has high lipophilicity, and therefore may dif-
fuse into deeper layers through mucosa and submucosa, 
to finally act in the muscularis mucosae or the myenteric 
plexus. In these actions, muscular and neuronal sites are 
involved. Contractile and relaxant effects of  melatonin in 
the GI tract have been reported in numerous species[59-61]. 
The involved sites of  action and the mechanism of  mela-
tonin action in the GI tract are not poorly characterized. 
Involvement of  melatonin receptors and/or ion channels 
located on GI smooth muscle cells and/or neurons have 
been suggested and details are discussed below.

Melatonin alters GI motility by activating melato-
nin receptors. The most likely sites of  melatonin ac-
tion in the GI smooth muscle cells are the membrane-
bound melatonin receptors and there is strong evidence 
that MT2 receptors are involved. In vivo animal studies 
showed that melatonin exerted both excitatory and in-
hibitory effects on the gut depending on the dose of  
melatonin. Small doses of  melatonin accelerated the in-
testinal transit in rats, while high doses reversed this ef-
fect. These effects were blocked by luzindole, suggesting 
the involvement of  intestinal melatonin receptors[62].

Early in vitro research showed that melatonin reduces 
the force of  spontaneous contractions of  ileum and 
colon segments of  rat intestine, while the frequency of  
intestinal contractions remained unchanged[61]. In the 
GI tract, the cyclic generation of  electrical currents is 
one fundamental mechanism of  coordinated smooth 
muscle contraction. Slow waves and spiking activity are 
organized in myoelectric migrating complexes (MMC). 
Depending on the report, endogenous and exogenous 
melatonin inhibits pre- and postprandial irregular spiking 
activity of  intestinal motility. Furthermore, pinealectomy 
suppressed the regular phase of  MMCs, and adminis-

tration of  exogenous melatonin could restore a regular 
phase MMC activity in rat ileum[63]. These changes may 
depend on the action of  melatonin on the GI neurons. 
In one study focusing on gastric emptying, melatonin 
partly inhibited gastric motility by activating sympathetic 
neurons. In the stomach, melatonin also reduces ni-
trergic myenteric innervation[64]. In electrophysiological 
experiments it was shown that the nitrergic component 
of  the smooth muscle inhibitory junction potential was 
reduced by melatonin and this may be a consequence of  
direct inhibition of  nitric oxide synthase (NOS) activity 
by melatonin at enteric synapses. Other studies sug-
gest that the effect of  melatonin may be related to the 
blockade of  nicotinic channels by melatonin, or due to 
an interaction between melatonin and Ca2+-activated K+ 

channels[65]. Furthermore, it was demonstrated that the 
inhibitory effect of  melatonin is apamin-sensitive and 
thus involves Ca2+-activated K+ channels[66]. One study 
also showed that the melatoninergic attenuation of  ace-
tylcholine-induced contractions of  intestinal strips from 
goldfish is dependent on extracellular calcium[67]. 

Moreover, a beneficial effect of  melatonin in revers-
ing lipopolysaccaride-induced motility disturbances, 
which involves a reduction in lipid peroxidation and an 
increase of  mitogen-activated protein kinase activation, 
nuclear factor kappaB (NF-κB) activation, inducible 
NOS (iNOS; NOS-2) expression and finally nitrite pro-
duction[68], was reported. Additionally, melatonin was 
shown to modulate the cholecystokinin action on ileal 
motility and to reduce the duration of  cholecystokinin 
stimulatory effects on GI smooth muscle in rats[69].

Other possible sites of  melatonin action are 5-HT 
receptors. One study suggested that high doses of  mela-
tonin in the GI tract interact with cholecystokinin-2 and 
5-HT3 receptors on the vagal afferent fibers, and thus 
induce vago-vagal inhibitory reflexes[70]. In some reports, 
the relaxant effect of  melatonin through 5-HT receptor 
antagonism was proven[71], but other pathways may also 
be involved. Recently, it was demonstrated that melatonin 
can inhibit the activity of  the serotonin transporter, which 
controls the reuptake of  5-HT in intestinal epithelial cells 
and inhibits NK2 receptor-triggered 5-HT release from 
guinea pig colonic mucosa by acting at a MT3 melatonin 
receptor located directly on the mucosal layer[72]. These ac-
tions may at the same time affect gut secretion.  

Secretion 
Melatonin is involved in the regulation of  intestinal ion 
transport. Exogenous melatonin reduced diarrhea in rats 
with colitis, but the involved mechanisms have not been 
fully elucidated[73]. In the colon, melatonin is thought to 
play a role in regulating Cl− secretion[74]. Melatonin can 
affect the expression of  COX-2 and iNOS and melatonin 
modulates secretion elicited by prostaglandin E2 and sodi-
um nitroprusside in rat distal colon. Some of  these secre-
tory effects seem to be localized in the colonic epithelium 
and involve cAMP pathways, while others involve the 
enteric neuronal system[75]. According to these studies, 

3891 September 14, 2011|Volume 17|Issue 34|WJG|www.wjgnet.com

Chen CQ et al. Melatonin in the lower gut



melatonin is a physiological modulator of  ion transporta-
tion in the lower gut and many mechanisms are involved.

Immune system
Melatonin has numerous effects on the immune sys-
tem. It increases natural killer cell activity and Th2 cell-
mediated immune responses[76,77]. Melatonin was reported 
to regulate gene expression of  several cytokines includ-
ing IL-2, IL-2R and IFN-γ released by human CD4 T 
cells[78,79]. The effects on other functions of  the immune 
system, such as lymphoproliferation and cytokine pro-
duction by human lymphocytes, have also been studied. 
Melatonin protects human and murine CD4+ T cells 
from apoptosis by inhibiting CD95 ligand mRNA and 
protein up-regulation in response to TCR/CD3 stimula-
tion[80]. Additionally, the melatonin/IL-2 relationship may 
be particularly relevant for immune tolerance. Melatonin 
can affect T-cell tolerance via IL-2[81]. At the same time, 
melatonin acts as an immunomodulator and these effects 
are mediated by melatonin receptors located on immu-
nocompetent cells[82]. Melatonin synthesized in human 
lymphocytes is involved in the physiological regulation of  
IL-2/IL-2R expression through mechanisms comprising 
both membrane and nuclear melatonin receptors[83].

The majority of  melatonin effects described for lym-
phocytes seem to be mediated through MT1 receptors[84]. 
However, some evidence shows that melatonin-induced 
enhancement of  immune function is also mediated via 
MT2 receptors[85]. Antagonists at the MT2 receptor or 
the nuclear RZR/ROR were found to reduce human 
lymphocyte IL-2 production, proving the involvement 
of  these binding sites in IL-2 production[86].

Experimental inflammation
By preserving the mucosal cell integrity and inhibit-
ing the accumulation of  neutrophils, melatonin exerts 
protective effects against inflammation in the gut[87]. 
Melatonin was shown to reduce the severity of  intesti-
nal inflammatory pathologies such as colitis in animal 
models[88]. Pentney et al[89] reported that daily melatonin 
administration reduced the severity of  dextran sodium 
sulphate (DSS)-induced colitis in mice. In these experi-
ments, serum melatonin levels were more than 10 times 
higher in mice that received DSS, as compared to con-
trols. It is presently unclear what causes the significant 
improvement of  inflammation in melatonin-treated 
mice, as no receptor antagonists were employed in this 
study and no downstream mechanisms were investigated. 
Melatonin has been reported to reduce the severity of  
experimental colitis in mice and rats and though in vitro 
and in vivo studies suggest numerous pathways involved, 
the exact mechanism of  action remains unclear[90]. In 
experimental colitis in rats, melatonin reduced colon 
injury by influencing numerous events including the en-
zyme activities of  matrix metalloproteinase-9 (MMP-9), 
MMP-2 and caspase-3, by suppressing the activities of  
cyclooxygenase-2 (COX-2) and iNOS, inhibiting the ex-
pression of  NF-κB and acting as a radical scavenger[91-95]. 

Moreover, the regulation of  macrophage activity[96] and 
the reduction of  bacterial translocation in trinitroben-
zene sulfonic acid (TNBS)-induced colitis have been 
reported[97]. Melatonin treatment also causes a substan-
tial reduction of  FasL gene activation, which is known 
to induce a pro-inflammatory response characterized by 
a release of  IL-1b, macrophage inflammatory protein-
1a (MIP-1a), MIP-1b and MIP-2. Blocking the action of  
these cytokines has been shown to delay the onset of  ex-
perimental colitis, to suppress inflammation and to ame-
liorate colonic damage[98]. But melatonin does not exert 
unanimously protective effects. Marquez et al[99] reported 
that acutely administered melatonin is protective against 
TNBS-induced colitis in rats, whereas chronic melatonin 
treatment exaggerates colitis. Future studies are needed 
to clarify the full extent of  melatonin protection against 
colitis and to characterize the involved mechanisms.

ROLE OF MELATONIN IN DISEASES 
INVOLVING THE ILEUM AND THE COLON 
Irritable bowel syndrome 
Irritable bowel syndrome (IBS) is a functional GI dis-
order characterized by abdominal pain and is diagnosed 
following the Rome Ⅲ criteria. Multiple factors are in-
volved in the pathophysiology of  IBS; amongst others 
IBS has been associated with abnormal GI motor func-
tions, visceral hypersensitivity, as well as psychosocial 
factors[100,101]. 

Some studies suggest a possible role of  melatonin in 
the pathophysiology of  IBS. For example, disturbances 
in melatonin metabolism and secretion may be involved 
in different GI diseases including IBS[102]. In a clinical 
trial involving patients with IBS, the beneficial effects of  
melatonin were obvious in the relief  of  symptoms such 
as abdominal pain, abdominal distension and abnormal 
sensation of  defecation[103]. Melatonin may exert its 
beneficial effects in IBS through effects on the central 
nervous system, via an enhancement of  the cellular and 
humoral immune systems, or by antagonizing corticoid- 
and serotonin-mediated effects[104,105]. However, mela-
tonin does not influence sleep pattern or psychological 
well-being in patients with IBS. Recently, it has been 
shown that the antinociceptive effects of  melatonin are 
not mediated through melatonin receptors, but through 
a supra-spinal process linked to the central opioidergic 
system, as pre-treatment with naltrexone or luzindole 
blocked the antinociceptive effect of  melatonin in TN-
BS-treated rats[106].

According to recent clinical trials, melatonin may be a 
future therapeutic option for IBS management (Table 2). 
In one placebo-controlled, randomized clinical trial in 40 
patients with IBS, daily administration of  melatonin 3 mg 
orally at bedtime for two weeks significantly alleviated ab-
dominal pain[107]. Patients treated with melatonin for two 
weeks significantly increased rectal thresholds towards 
balloon pressure and volume, ameliorating rectal sensitiv-
ity to pain and urgency. In another clinical trial, 17 female 
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IBS patients were randomized to receive either melatonin 
3 mg or placebo at bedtime for 8 wk, followed by a 4-wk 
washout period[108]. Improvements in mean IBS scores 
were significantly greater during treatment with melato-
nin compared to placebo. Additionally, sleep, anxiety and 
depression scores improved. Saha et al[109] randomly as-
signed 18 IBS patients to receive either melatonin 3 mg or 
placebo at bedtime for 8 wk and they found that melato-
nin significantly improved overall IBS scores and quality 
of  life scores. All these trials suggest that melatonin has 
beneficial effects in patients with IBS, but larger clinical 
trials in patients with IBS are needed. Another clinical 
trial was interested in colonic transit time (CTT) in IBS 
patients. These patients were randomized and received ei-
ther melatonin 3 mg or placebo daily for 8 wk[110]. Neither 
in healthy controls, nor in IBS patients, were stool texture 
or CTT changed, but the tests used may not be sensitive 
enough to detect motility or secretory changes and thus 
these data need to be interpreted cautiously. 

In some of  these clinical trials it has been shown that 
the beneficial effects of  melatonin in IBS may be related 
to its action on gut sensory pathways. In this context it 
would be interesting to know whether melatonin alters 
visceral hypersensitivity or whether it acts as a general 
analgesic and would reduce rectal sensations in healthy 
volunteers as well. It is presently not clear whether this 
melatonin effect on rectal sensation is short-lasting or 
holds over longer periods of  time. Although only a few 
clinical studies have shown its efficacy, melatonin ap-
pears to have a significant role in reduction of  abdomi-
nal distension and rectal pain in treatment of  IBS. 

Inflammatory bowel disease 
Despite the numerous animal studies showing protective 
effects of  melatonin in colitis models, there are only lim-
ited clinical data available on the therapeutic role of  mela-
tonin in inflammatory bowel disease (IBD). To our knowl-
edge, there are three published case reports of  the self-
administration of  melatonin in IBD (Table 3). However, 
no clinical trials have been performed in IBD patients.

In one case report, after the self-administered use of  
melatonin as a self  directed treatment for jet lag on in-
ternational flights, the patient observed that his ulcerative 
colitis (UC) symptoms were virtually absent[111,112]. Once 
his flare-ups were more troublesome requiring continu-

ous topical mesalamine therapy, he self-administered 
melatonin 3 mg/d, and according to the report he was 
symptom-free for a period of  3 mo. His symptoms re-
curred within 1 wk of  running out of  melatonin tablets. 
In contrast, other cases showed melatonin exacerbated 
symptoms associated with UC or Crohn’s disease[113,114]. 
One patient decided to take melatonin capsules (3 mg) 
at bedtime. Two months later, the patient started to ex-
perience the symptoms of  active UC, including bloody 
mucous diarrhea. He continued taking melatonin and 
received corticosteroids orally and rectally. Since the 
symptoms did not calm down, the patient was hospital-
ized and stopped consuming melatonin; 48 h later there 
was a complete remission of  the UC symptoms. Another 
patient decided to take melatonin capsules (3 mg) at bed-
time. Four days later, the patient started to experience the 
symptoms of  active Crohn’s disease, such as diarrhea and 
abdominal cramps. She then stopped taking melatonin, 
and 24 h later there was a complete remission of  symp-
toms. Clinical trials should be performed to evaluate a 
possible beneficial or detrimental effect of  melatonin in 
IBD; presently available literature is inconclusive, though 
basic studies strongly suggest beneficial effects. 

Colon cancer
Following the identification of  melatonin binding sites 
in human colon tissue from patients with carcinoma of  
the rectum and the colon, a possible role of  melatonin 
in colorectal cancer was addressed in several studies. 125I-
melatonin binding sites were identified in the mucosa and 
the submucosa of  the human colon and radioimmunoas-
says revealed melatonin concentrations of  467 ± 99 pg/g 
tissue in non-cancer control patients, while daytime 
melatonin concentrations in the colon of  patients with 
colorectal carcinoma were 3147 ± 87.8 pg/g tissue[115]. 
The relevance of  the diurnal variation of  melatonin lev-
els to colon cancer has yet to be determined. Colorectal 
carcinoma patients showed significant decrements in 
the peak amplitude of  melatonin secretion, as well as a 
reduction in overall melatonin output[116]. Some studies 
suggest that melatonin may be involved in cancer risk or 
protection from cancer development[117]. For example, 
following pinealectomy, increased colonic crypt cell 
proliferation was reported in rats, suggesting melatonin 
pathways being involved in carcinogenesis in the co-
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  Authors n Study design Dose Conclusion

  Lu et al[110] 17 Randomized, crossover placebo-controlled 
(8 wk)1 

3 mg/od CTT did not change significantly in IBS patients with mela-
tonin treatment

  Saha et al[109] 18 Randomized, placebo-controlled 
(8 wk)1

3 mg/od Significant symptomatic benefit on bowel symptoms, extra-
colonic symptoms, and quality of life 

  Lu et al[108] 17 Randomized, crossover placebo-controlled 
(8 wk)1 

3 mg/od Significant symptomatic benefit on IBS scores, anxiety, 
well-being, and depression scores

  Song et al[107] 40 Randomized, placebo-controlled 
(2 wk)1 

3 mg/od Significantly attenuated abdominal pain and reduced rectal 
pain

Table 2  Clinical trials using melatonin in patients with irritable 
bowel syndrome

Table 2  Clinical trials using melatonin in patients with irritable bowel syndrome

1Treatment duration; od: Once daily; CTT: Colonic transit time; IBS: Irritable bowel syndrome.
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several studies, including in patients with colorectal car-
cinoma[133,134]. For example, the efficacy of  weekly low-
dose CPT-11 in pretreated metastatic colorectal cancer 
patients may be enhanced by a concomitant daily admi-
nistration of  melatonin (20 mg/d, orally)[135]. Other 
clinical studies showed that melatonin co-treatment with 
IL-2, Aloe vera or fish oil partly enhanced the effect of  
chemotherapy and reduced the toxicity in colorectal car-
cinoma[136-139]. However, melatonin did not have any pro-
tective effect on irradiation-induced lymphocytopenia in 
patients with colorectal carcinoma (Table 4)[140].

Clinical trials using melatonin in the context of  
colorectal cancer are small and unfortunately not of  high 
quality. Presently, these studies have to be carefully inter-
preted and the studies seem, if  anything, to be hypothesis-
generating. Controlled clinical trials are needed to establish 
the potential role of  melatonin in cancer treatment.

CONCLUSION
Melatonin found in the lower gut comes largely from 
intestinal sources, such as the EC cells and, to only a 
minor extent, from extra-intestinal sources such as the 
pineal gland. Melatonin levels in the ileum and the colon 
are dependent on food intake and digestion, but in con-
trast to systemic melatonin levels, the GI melatonin level 
is independent of  light or the circadian rhythm.

Melatonin regulates the motility of  the lower gut by 
acting on membrane melatonin receptors and all known 
MT1-3 were found to be localized in the GI tract, though 
their exact involvement in the regulation is not fully char-
acterized. Additionally, actions of  melatonin on 5-HT re-
ceptors have been reported, adding to the complexity of  
melatonin involvement in the regulation of  GI function.

Melatonin was recently suggested to be a promising 
future drug for IBS treatment. Presently available basic 
and clinical data indicate that it is particularly effective 
in alleviating hypersensitivity and pain in patients with 
IBS, but larger clinical trials, ideally double-blinded and 
placebo-controlled, are needed.

Melatonin is furthermore involved in immunomodu-
latory functions throughout the GI tract. The protec-
tive actions of  melatonin in mouse models of  intestinal 
inflammation or in models of  GI cancer are promising 
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lon[118]. Another study in rats showed that small bowel 
crypt cell hyperplasia occurred several weeks after pine-
alectomy, but again the exact mechanisms were not iden-
tified. Recently, melatonin showed a great potential to 
control the preneoplastic patterns induced by constant 
light in the colon[119].

The suggested colon cancer controlling mechanism 
of  melatonin involves inhibition of  tumour angiogen-
esis, modulation of  the mitotic and apoptotic indices, 
and maintenance of  the intracellular level of  glutathi-
one[120,121]. Although no effects of  melatonin on in vitro 
cell growth were found, a statistically significant and pro-
gressive suppression of  de novo DNA synthesis was found 
following melatonin application[122]. Other melatonin 
effects related to the control of  tumour growth are the 
modulation of  estrogen receptors, direct effects on the 
cell cycle, influence on several growth factors, increas-
ing of  gap junctions and enhancing the level of  anti-
oxidants[123,124]. The anti-oxidative and anti-inflammatory 
actions of  melatonin, changing the oxidative status and 
reducing the production of  nitric oxide by cultured colon 
cancer cells, may also be directly involved in the onco-
static properties of  melatonin[125]. Some studies suggest 
that for colon adenocarcinoma, membrane-bound and 
nuclear melatonin receptors are involved in these onco-
static actions[126,127]. Melatonin binds to receptors on T 
helper cells and monocytes, stimulating the production 
of  IFNγ and interleukins 1, 2, 6 and 12, which in turn 
up-regulates immune responses resulting in a restoration 
of  immunodeficiency states[128]. Melatonin in this context 
also modulates the expression of  NF-κB, TNF-α, IL-
1β and STAT3[129]. The activation of  lymphocytes and 
monocytes/macrophages by melatonin is one of  the 
mechanisms by which melatonin as an immunosurveillant 
prevents tumor development[130,131]. For example, patients 
with advanced GI carcinoma treated with a combination 
of  IL-2 and melatonin exhibited a significantly higher 
number of  lymphocytes, T lymphocytes, NK cells and 
CD4+ cells than those receiving IL-2 alone[132].

In clinical trials, melatonin was shown to have cyto-
protective effects that may be involved in increasing the 
efficacy of  cancer chemotherapy and improving survival. 
Melatonin co-treatment was also shown to reduce the 
adverse toxicities of  chemotherapy and radiotherapy in 

  Authors Age, gender,
disease Treatment Dose Result

  Maldonado
  et al[113]

56, male,
UC

Added melatonin to the otherwise unchanged drug treatment 
(salazosulfapyridine, corticosteroids)

3 mg/od Two months later, the patient started to 
experience the symptoms of active UC, 

including bloody diarrhea
  Jan et al[111]

  Mann[112]
47, male,

UC
Added melatonin to an existing medication of mesalamine 

due to ongoing bloody diarrhea
3 mg/od Symptoms resolved fast (2–3 d) and the 

beneficial effect was long lasting
 Calvo et al[114]  35, female,

CD
After becoming pregnant, the patient interrupted the treat-

ment with melatonin, corticoids and salazosulfapyridine and 
symptoms of CD emerged again

3 mg/od Recurrence of diarrhea and abdominal 
cramps within 4 d

Table 3  Case reports of melatonin self administration in patients with ulcerative colitis and Crohn’s disease 

od: Once daily; UC: Ulcerative colitis; CD: Crohn’s disease. 
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and warrant further research. The translation of  these 
observations to humans is less well characterized. 
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  Authors   n Disease Study design Dose Results and conclusion

 Lissoni et al[140]    18 Rectal
cancer

Randomized to melatonin, melatonin + 5-
methoxytryptamine or melatonin + IL-2, 5 wk 

20 mg/od Melatonin had no effect on radiation-induced 
lymphocytopenia

 Lissoni[133]  152 CRC Randomized to oxaliplatin/5-Fu or CPT-11/
FS/5-Fu with or without melatonin

20 mg/od Melatonin significantly reduced the occurrence of cachexia, 
thrombocytopenia, neurotoxicity and asthenia

 Persson et al[139]      8 CRC Randomized to fish oil or melatonin (4 wk) 
followed by 4 wk fish oil with melatonin

18 mg/od Melatonin had no effect on serological inflammation 
markers

 Cerea et al[135]    30 CRC Randomized to CPT-11 or CPT-11 plus 
melatonin 9 wk

20 mg/od Disease-control higher in CPT-11 + melatonin group

 Lissoni et al[120]     7 CRC Daily melatonin for at least 2 mo 20 mg/od Melatonin may control tumor growth by reducing VEGF se-
cretion

 Lissoni et al[134]    25 CRC Randomized to 5-Fu/FS or 5-Fu/FS + 
melatonin. 5 cycles of 28 d

20 mg/od Melatonin reduces toxicity and increases efficacy of 5-Fu/FS 
chemotherapy

 Lissoni et al[138]     8 CRC Randomized to melatonin or melatonin + 
Aloe vera tincture until progression

20 mg/od Melatonin + Aloe vera stabilized disease and increased 
survival in end-stage patients

 Barni et al[137]   50 CRC Randomized to BSC or BSC combined with 
low-dose IL-2 + melatonin 4 wk

40 mg/od Low-dose IL-2 + melatonin induced tumor regression and 
prolonged survival in second-line treatment

 Lissoni et al[136]   19 CRC Randomized to IL-2 or IL-2 + melatonin 4 wk 40 mg/od Melatonin enhanced the activity of IL-2, induced tumour re-
gression, prolonged progression-free survival and 

overall survival

 Table 4  Clinical trials using melatonin in patients with colorectal cancer

CRC: Colorectal cancer; od: Once daily; BSC: Best supportive care; VEGF: Vascular endothelial growth factor.
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