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Responses of Gut Microbiota and Glucose and Lipid
Metabolism to Prebiotics in Genetic Obese and
Diet-Induced Leptin-Resistant Mice
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OBJECTIVE—To investigate deep and comprehensive analysis
of gut microbial communities and biological parameters after
prebiotic administration in obese and diabetic mice.

RESEARCH DESIGN AND METHODS—Genetic (0ob/0ob) or diet-
induced obese and diabetic mice were chronically fed with
prebiotic-enriched diet or with a control diet. Extensive gut
microbiota analyses, including quantitative PCR, pyrosequencing
of the 16S rRNA, and phylogenetic microarrays, were performed
in 0b/0b mice. The impact of gut microbiota modulation on leptin
sensitivity was investigated in diet-induced leptin-resistant mice.
Metabolic parameters, gene expression, glucose homeostasis,
and enteroendocrine-related L-cell function were documented
in both models.

RESULTS—In ob/ob mice, prebiotic feeding decreased Firmicutes
and increased Bacteroidetes phyla, but also changed 102 distinct
taxa, 16 of which displayed a >10-fold change in abundance. In
addition, prebiotics improved glucose tolerance, increased L-cell
number and associated parameters (intestinal proglucagon mRNA
expression and plasma glucagon-like peptide-1 levels), and re-
duced fat-mass development, oxidative stress, and low-grade in-
flammation. In high fat-fed mice, prebiotic treatment improved
leptin sensitivity as well as metabolic parameters.

CONCLUSIONS—We conclude that specific gut microbiota mod-
ulation improves glucose homeostasis, leptin sensitivity, and
target enteroendocrine cell activity in obese and diabetic mice.
By profiling the gut microbiota, we identified a catalog of putative
bacterial targets that may affect host metabolism in obesity and
diabetes. Diabetes 60:2775-2786, 2011
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besity and related metabolic disorders are closely

associated with a low-grade inflammatory

state (1). Growing evidence also demonstrates

that the gut microbiota plays a critical role in
the development of obesity, type 2 diabetes, and insulin
resistance (2-9). Given that the total number of bacteria in
the gut is estimated at ~10' it has been proposed that the
genome size of this exteriorized organ largely exceeds the
human genome size (10,11). However, the composition of
the gut microbiota and the exact role of microorganisms
present in the gut remain poorly defined. Nonetheless,
advances in metagenomic methods for characterizing mi-
crobial diversity have helped to evaluate the functional
contribution of this large collection of microbes to host
metabolism (12). For instance, recent evidence suggests
that changes in gut microbiota composition may play
a critical role in the development of obesity-associated
inflammation (7,8,13,14). Accordingly, obesity-associated,
low-grade inflammation may be related to the gut micro-
biota by mechanisms involving bacterially derived lipo-
polysaccharide (LPS) (6-8,14-16).

In light of these recent findings, understanding the role
of microbial communities and identifying molecular tar-
gets related to metabolism regulation are of the utmost
importance. Addressing these issues is challenging because
of the lack of well-characterized models. Nevertheless, germ-
free animals have led to striking and unequivocal findings
regarding the role of gut microbiota in host energy me-
tabolism (3,17,18). In addition to these highly specific
models, approaches that are more generously applicable,
including prebiotic-induced modulation of the gut micro-
biota, have been developed and widely used. Prebiotics
are nondigestible carbohydrates that beneficially affect
host health by selectively stimulating the growth and/or
activity of a limited number of bacteria (e.g., bifidobacteria
and lactobacilli) (19). We have previously shown that pre-
biotics improve gut barrier function and alleviate inflam-
mation and insulin resistance associated with obesity by
increasing the release of gut hormones, such as glucagon-
like peptide 1 and 2 (GLP-1 and GLP-2), and by modulating
the endocannabinoid system (8,15,20). Although the benefi-
cial effects of prebiotics have been linked to a concomitant
effect on Bifidobacteriaceae, no clear causal relationship has
been established between this family and their beneficial
metabolic effects (15,21). Thus, to obtain a more determin-
istic analysis of the gut microbiota, we combined multiple
molecular methods, including quantitative PCR (qPCR),
barcoded pyrosequencing, and phylogenetic microarrays of
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FIG. 1. Analysis of the gut bacterial community by 16S rRNA pyrosequencing from obese mice on standard chow and prebiotic diets. A: Percentage
of each community contributed by the indicated phyla. B: Clustering of mice cecal microbial communities in the two tested groups based on the
unweighted UniFrac analysis and 97% ID phylotypes or (C) 100% ID phylotypes. Red corresponds to the standard chow diet (Ob-CT), and blue
corresponds to the prebiotic diet (Ob-Pre). Branch length represents distance between environments in UniFrac units, indicated by the scale bar.
D: Relative abundance of different phyla expressed as the percentage of total sequence reads. Mean = SEM. n = 10 mice/group. *P < 0.05; #p < 0.1,
determined by a two-tailed Student ¢ test. PCoA based on the unweighted (presence/absence) UniFrac analysis and (E) 97% ID phylotypes or (G)
100% ID phylotypes. Each circle representing a single sample is colored according to the dietary conditions; red corresponds to Ob-CT and blue
corresponds to Ob-Pre. F: Number of 97% ID phylotypes shared among a given number of mice (middle panel) and their corresponding abundance
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A. EVERARD AND ASSOCIATES

16S rRNA, to generate comprehensive microbial commu-
nity profiles of obese mice with or without prebiotics in
their diet. Furthermore, we identified novel mechanisms
by which prebiotics change obesity-associated metabolic
disorders in both genetic and diet-induced leptin-resistant
mice.

RESEARCH DESIGN AND METHODS

Mice

Ob/ob experiments. Six-week-old ob/ob (n = 10/group) mice (C57BL/6 back-
ground; Jackson Laboratory, Bar Harbor, ME) were housed in a controlled
environment (12-h daylight cycle; lights off at 6:00 p.m.) in groups of two mice
per cage, with free access to food and water. The mice were fed a control diet
(Ob-CT) (A04, Villemoisson-sur-Orge, France) or a control diet supplemented
with prebiotics, such as oligofructose (Ob-Pre) (Orafti, Tienen, Belgium) for
5 weeks as previously described (8,15). A second set of mice was provided with
the same dietary treatments to investigate tight-junction proteins and body
composition.

High-fat diet experiments. A set of 10-week-old C57BL/6J mice (40 mice;
n = 10/group) (Charles River, Brussels, Belgium) were housed in groups of five
mice per cage, with free access to food and water. All of the mice were fed
a high-fat (HF) diet (60% fat and 20% carbohydrates [kcal/100 g], D12492;
Research Diets, Inc., New Brunswick, NJ) or an HF diet supplemented with
oligofructose (0.3 g/mouse/day) added in tap water (HF-Pre). Treatment con-
tinued for 8 weeks. Food and water intake were recorded twice a week. Body
composition was assessed by using a 7.5-MHz time-domain nuclear magnetic
resonance (LF50 minispec; Bruker, Rheinstetten, Germany).

All mouse experiments were approved by and performed in accordance with
the guidelines of the local ethics committee. Housing conditions were specified
by the Belgian Law of 6 April 2010, regarding the protection of laboratory
animals (Agreement LA1230314).

Leptin sensitivity measurement. After 5 weeks of HF or HF-Pre treatment
(n = 10/group), mice were individually housed 5 days prior to drug treatment.
Mice were divided into two groups that received intraperitoneal injections for
4 days. The first 2 days, all of the mice received twice-daily intraperitoneal saline
and the last 2 days intraperitoneal recombinant leptin (750 pg/kg/day) (Bachem,
Bubendorf, Switzerland). Body weights and food intake were measured daily.
After 1 week of recovery, mice were fasted for 6 h, treated with either saline
(n = 4/group) or leptin (n = 6/group) (1 mg/kg), and killed 6 h later.

Tissue sampling. Mice were anesthetized by intraperitoneal injection of
100 mg/kg ketamine and 10 mg/kg xylazine or by isoflurane gas (Forene; Abbott
Laboratories, Queenborough, U.K.) after a 6-h fasting period. Blood samples
and tissues were harvested for further analysis. Mice were killed by cervical
dislocation. Epididymal, subcutaneous, and visceral adipose deposits and
muscles (Vastus lateralis) were precisely dissected and weighed. The intestinal
segments (jejunum and colon) and adipose tissues were immediately immersed
in liquid nitrogen and stored at —80°C for further analysis.
Immunofluorescent analysis of occludin, zonula occludens-1, and L cells.
Jejunum and colon segments were immediately removed, washed with PBS,
mounted in embedding medium (Tissue-Tek; Sakura, Zoeterwoude, the
Netherlands), and stored (—80°C) until use. The expression of occludin and
zonula occludens-1 (ZO-1) tight-junction proteins was assessed as previously
described (8). The L-cell number was determined with rabbit anti-GLP-1 (1:200;
Abcam, Cambridge, U.K.). Four to eight fields were used to quantify the L-cell
number for each intestinal segment. Using the same material, the mucosal area
was manually delineated by the investigator and measured by an image analyzer
(Motic Image Plus 2.0ML; Xiamen, China). The results are expressed as the
L-cell number per mucosal area (number/millimeter squared). Both L-cell and
tight-junction determinations were analyzed in double-blind fashion by two dif-
ferent investigators.

Oral glucose tolerance test. Oral glucose tolerance tests were performed
after 4 weeks (0b/ob study) or 6 weeks (HF study). Food was removed 2 h after
the onset of the daylight cycle, and mice were treated after a 6-h fasting period
as previously described (6,7).

Biochemical analyses. Muscle lipid content and the adipose tissue oxidative
stress level were evaluated as previously described (6,8). Portal plasma LPS
concentration was measured using Endosafe-MCS (Charles River Laboratories,
Lyon, France) as previously described (22). Portal GLP-1 and glucose-
dependent insulinotropic peptide (GIP) were determined in duplicate using a

Bio-Plex Pro Assays kit (Bio-Rad, Nazareth, Belgium) and measured using Luminex
(Bio-Rad Bioplex; Bio-Rad) according to the manufacturer’s instructions.

In vivo intestinal permeability. Intestinal permeability was measured as
described previously (8).

DNA isolation from mouse cecal samples. The cecal content of mice col-
lected post mortem was stored at —80°C. Metagenomic DNA was extracted
from the cecal content using a QIAamp-DNA stool minikit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.

qPCR: primers and conditions. qPCR for total bacteria, Firmicutes, Bacter-
oidetes, Bifidobacterium spp., Lactobacillus spp., Roseburia spp., Eubacterium
rectale/Clostridium coccoides group, and Bacteroides-Prevotella spp. was also
performed as previously described (21).

Sequencing: PCR primers and conditions. For each sample, we amplified
the V1-3 region of the 16S rRNA gene corresponding to the Escherichia coli 16S
rRNA gene positions 28-514, excluding primer sequences. The PCRs included
1 pL of 50X diluted, purified DNA as previously described (23). The composite
PCR primers included: 1) the 454 Life Science 19-base adaptors A or B; 2) an
eight-base, sample-specific barcode sequence (NNNNNNNN; designated 672—
691 in Hamady et al. [24]; Supplementary Table 1); 3) the sequence of the
broad-range 16S forward or reverse primer; and 4) a dinucleotide sequence
introduced between the 16S primer and the barcode sequence designed to
prevent pairing of different barcodes with rDNA targets. The products were
generated and sequenced on a Genome Sequencer FLX system (Roche, Basel,
Switzerland), as previously described (23). A total of 83,5622 reads, which had
a quality score <20, corresponded to cecal samples of 20 0b/ob mice presented
in this study. Sequences containing uncalled bases, incorrect primer sequences,
or runs of =10 identical nucleotides were removed. Reads with the 16S rDNA
forward oligonucleotide sequence CCGCGRCTGCTGGCGC, containing G in-
stead of A at the penultimate position of the 3’ end, were relatively frequent
(60.7%). They are likely due to a primer synthesis or sequencing artifact (25) and
were not removed from the dataset provided that other quality criteria were met.
After trimming primer sequences, reads <200 nucleotides or >290 nucleotides
and those that incompletely covered the Escherichia coli 16S TRNA gene posi-
tions 288-514 (determined using the Ribosomal Database Project [RDP] pyro-
sequencing tool Aligner [26]) were discarded, leaving 68,163 sequences.
Informatic analyses were described as detailed previously (23).

Each distinct sequence was assigned to representative phylotypes at 100 or
97% identity (100-97% ID phylotype) using CD-HIT (27). Distances between
phylotypes were calculated using MUSCLE (28) (with parameters maxiters 2 and
diags). Hierarchical clustering and Principal Coordinates Analyses (PCoA) were
carried out using UniFrac (29). The taxonomic composition was assigned using
the RDP Classifier (30) with a 50% confidence cutoff. The sequences (68,163
reads) are publicly available at the MG-RAST repository (31) under ID 4449917.3.
Mouse Intestinal Tract Chip: PCR primers and conditions. The Mouse
Intestinal Tract Chip (MITChip) procedure was performed as previously de-
scribed (23,32).

RNA preparation and real-time qPCR analysis. Total RNA was prepared
from tissues using TriPure reagent (Roche), and primer sequences for the
targeted mouse genes were previously described (7,8,21). RPL19 was chosen
as the housekeeping gene.

Statistical analyses. Data are expressed as the mean = SEM. Differences
between two groups were assessed using two-tailed Student ¢ test. Data were
analyzed using GraphPad Prism 5.00 (GraphPad Software, San Diego, CA) and
JMP 8.0.1 (SAS Institute, Inc., Cary, NC). The results were considered statis-
tically significant at P < 0.05.

RESULTS

16S rRNA analysis of gut bacterial populations in
prebiotic-treated obese mice: qPCR analyses. We
found that the prebiotic treatment significantly increased
the abundance of Bifidobacterium spp. and the E. rectale/
C. coccoides group (Supplementary Fig. 1A and B). In ad-
dition, the abundance of Firmicutes and Roseburia spp.
decreased after the treatment (Supplementary Fig. 1C
and D), whereas the abundance of Bacteroidetes, Lac-
tobactllus spp., and the Bacteroides-Prevotella group
and the total bacteria number were not affected by the
treatment (Supplementary Fig. 1F-H).

expressed as the percentage of total reads (top panel) indicated by blue bars. Cumulative data are indicated in gray. The bottom panel shows the
relative abundance of 97% ID phylotypes, in which the x-axis indicates individual phylotypes ranked according to their relative abundance from
high to low, and the y-axis indicates the cumulative abundance (the percentage of total reads). Gray triangles correspond to a pooled data set from

20 mice.
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16S rRNA analysis of gut bacterial populations in
prebiotic-treated obese mice: pyrosequencing analysis.
We observed a significant phylum-wide shift between
Bacteroidetes and Firmicutes, of which the abundance in-
creased and decreased, respectively, after the prebiotic
treatment, compared with the control (Fig. 1A and D). The
abundance of Actinobacteria and Proteobacteria tended
to increase in the prebiotic group (P = 0.07 and P = 0.051,
respectively) (Fig. 1D).

Here we identified 11 genera whose abundance was
significantly affected by prebiotics (Table 1). Interestingly,
the Bifidobacterium and Syntrophococcus genera were
identified exclusively in the prebiotic group and the con-
trol group, respectively. A phylogenetic tree including
phylotypes significantly affected by prebiotic intake
shows (Supplementary Fig. 2) that many lineages are
composed of members following the same trend in the
change of their relative abundance (decrease or increase).
Certain closely related 97% ID phylotypes belonging to the
family Porphyromonadaceae appear to be confined to one
of the two mice groups (Supplementary Fig. 2).

We also found that a small percentage of species-level
phylotypes (53 of 990, 5.4%) shared by all 20 investigated
mice contributed to more than half (56.7%) of all reads in
the pooled dataset (Fig. 1F' and Supplementary Table 2).
Likewise, 35 of 6,885 distinct sequences (0.5%) contributed
to 36.7% of the total number of all sequence reads (Sup-
plementary Table 3).

TABLE 1

Supplementary Tables 4 and 5, respectively, show the
significant differences in 69 phylotypes defined at 97%
identity (97% ID phylotypes) or 102 distinct sequences
(100% ID phylotypes) significantly enriched or depleted in
the prebiotic-treated mice. Among these sequences, eight
displayed a >10-fold increase, and another eight demon-
strated a >10-fold decrease in average frequency in the
Ob-Pre group. Importantly, both 97% ID and 100% ID
phylotypes belonging to the genus Butyricimonas were
observed in all mice in the Ob-Pre group but were absent
in all control mice. Similarly, Barnesiella were 63-and 55-
fold higher in the Ob-Pre group compared with the Ob-CT
group, respectively. Furthermore, hierarchical clustering
based on UniFrac analysis (29) clearly showed that the
cecal communities of the prebiotic-treated mice were more
similar to each other than to the communities of the 10
control mice (Fig. 1B and C). Moreover, PCoA of UniFrac-
based pairwise comparisons of community structures
revealed two clusters corresponding to the two dietary
conditions (Fig. 1F and G). Finally, the average fraction of
shared species-level phylotypes for paired samples was
higher within the same group, compared with that be-
tween the two groups (62.3 + 0.3 vs. 58.9 + 0.3; P < 10'%).
16S rRNA analysis of gut bacterial populations in
prebiotic-treated obese mice: phylogenetic microarray
analysis. We also performed gut microbiota analysis
using a high-throughput phylogenetic microarray, called
MITChip (23,32), and previously compared with 454

Phylogenetic analysis of the taxa enriched or depleted in prebiotic-fed mice using pyrosequencing

Abundance (percent of total

sequences)
Change

Rank RDP classification Ob-CT Ob-Pre %)*
Subclass  Actinobacteria; Actinobacteria; Actinobacteridae 0.006 = 0.004 0.12 = 0.05 1,971
Order Actinobacteria; Actinobacteria; Actinobacteridae; Bifidobacteriales 0x0 0.12 = 0.05 Ob-Pre
Family Actinobacteria; Actinobacteria; Actinobacteridae; Bifidobacteriales;

Bifidobacteriaceae 00 0.12 = 0.05 Ob-Pre
Genus Actinobacteria; Actinobacteria; Actinobacteridae; Bifidobacteriales;

Bifidobacteriaceae; Bifidobacterium 0x0 0.12 = 0.05 Ob-Pre
Phylum  Bacteroidetes 52 + 3 64 £ 2 24
Class Bacteroidetes; Bacteroidia 52 + 3 64 = 2 23
Order Bacteroidetes; Bacteroidia; Bacteroidales 52 = 3 64 = 2 23
Family Bacteroidetes; Bacteroidia;, Bacteroidales; Prevotellaceae 2.6 = 05 4.1 = 05 55
Genus Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella 1.4 +0.2 24 =02 73
Genus Bacteroidetes; Bacteroidia; Bacteroidales; Porphyromonadaceae; Tannerella 14 + 0.2 1.9 = 0.1 33
Genus Bacteroidetes; Bacteroidia; Bacteroidales; Porphyromonadaceae; Barnesiella 85 *+ 0.8 10.7 = 0.6 26
Phylum Firmicutes 44 + 4 29 + 2 -33
Class Firmicutes; Clostridia; Clostridia 42 + 4 28 + 2 —-34
Order Firmicutes; Clostridia; Clostridiales 42 + 4 27 + 2 -35
Genus Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Anaerofilum 0.04 = 0.01 0.003 = 0.003 -93
Genus Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Anaerotruncus 1.0 £ 0.1 0.26 = 0.04 —-74
Genus Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Subdoligranulum 0.015 = 0.007  0.07 = 0.02 376
Family Lachnospiraceae 33 +3 18 + 2 —44
Genus Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Syntrophococcus 0.012 = 0.005 0x0 Ob-CT
Genus Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Marvinbryantia 2.1+ 0.6 0.8 = 0.2 —63
Genus Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Anaerostipes 0.023 = 0.008 0.003 = 0.003 —88
Class Proteobacteria; Betaproteobacteria 0.18 = 0.08 0.6 = 0.1 259
Order Proteobacteria; Betaproteobacteria; Burkholderiales 0.17 £ 0.08 0.6 = 0.1 271
Family Proteobacteria; Betaproteobacteria; Burkholderiales; Alcaligenaceae 0.17 £ 0.08 0.6 = 0.1 269
Genus Proteobacteria; Betaproteobacteria; Burkholderiales; Alcaligenaceae;

Parasutterella 0.17 = 0.08 0.6 = 0.1 269

Data are mean = SEM. *P < (.05, as determined by a two-tailed Student ¢ test with equal variance. Ob-CT, found only in the control group;
Ob-Pre, found only in prebiotic-fed mice.
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pyrosequencing (23,33). The profiles of the cecal micro-
biota were obtained based on the intensity of 3,580 dis-
tinct oligonucleotide probes. The profiles visualized the
presence or absence of all targeted operational taxonomic
units. Hierarchical clustering analyses of the MITChip
phylogenetic fingerprints showed separate clusters be-
tween the two treatment groups (Fig. 2A4). A Monte
Carlo permutation procedure indicated that the overall
microbiota detected by MITChip of the control mice
was significantly different from that of the prebiotic-
treated mice (P = 0.002). Similar to the results obtained
by pyrosequencing analysis, we observed a lower rela-
tive and absolute abundance of Firmicutes and a higher
abundance of Bacteroidetes in the Ob-Pre group com-
pared with the Ob-CT group (Fig. 2B and C). In contrast,
the abundance of Actinobacteria was not significantly

affected. In addition, a significant decrease in the abun-
dance of Proteobacteria and the class Deltaproteobacteria
was observed after the prebiotic treatment (Fig. 2C). In-
terestingly, the abundance of Verrucomicrobia dramatically
increased in the Ob-Pre mice (Fig. 2C). Although the ab-
solute abundance was still low, this increase was, on aver-
age, >80-fold higher than in the control mice (Table 2).
Importantly, the specific species responsible for the in-
creased abundance of Verrucomicrobia was identified as
Akkermansia muciniphila (Table 2). In accordance with
the pyrosequencing analysis, the different hierarchical
clustering analyses and PCoA showed separate clusters
corresponding to the dietary treatment (data not shown). In
addition to specific changes observed in the pyrosequencing
analyses, we found several previously unidentified mod-
ifications at level 2 (Table 2).
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FIG. 2. Phylogenetic microarray analysis of gut bacterial community from the Ob-CT and the Ob-Pre mice. A: Clustering of the MITChip phylo-
genetic fingerprints of the gut microbiota from the cecal content of the Ob-CT and the Ob-Pre mice (n = 10/group). The highest phylogenetic level
of specificity of probes (level 1) is depicted on the right. B: Percentage of each community contributed by the indicated taxa. C: Relative abun-
dance of different taxa expressed as the percentage of total sequence reads. Mean = SEM. n = 10 mice/group. *P < 0.05, determined by a two-tailed

Student ¢ test.
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TABLE 2

Phylogenetic analysis of the gut microbiota upon prebiotic administration using MITChip

Abundance (percent of total sequences)

Phylum Bacterial group Ob-CT Ob-Pre Change (%)*
Mollicutes Acholeplasma 0.073 = 0.008 0.049 = 0.009 —33.6
Verrucomicrobia A. muciniphila 0.001 = 0.0 0.089 = 0.031 8,003.7
Firmicutes Allobaculum 0.221 = 0.045 0.103 = 0.009 —53.3
Firmicutes Anaerotruncus 1.666 = 0.199 0.984 = 0.038 —-40.9
Firmicutes Anaerovorax 0.048 = 0.007 0.027 = 0.002 —44.8
Proteobacteria Bilophila 0.019 = 0.002 0.011 = 0.002 —42.2
Firmicutes Catenibacterium 0.440 = 0.056 0.316 = 0.018 —28.2
Firmicutes C. lactatifermentans 0.175 = 0.011 0.117 = 0.009 -32.9
Firmicutes Clostridium perfringens 0.393 = 0.021 0.507 = 0.024 28.9
Actinobacteria Collinsella 0.009 = 0.001 0.007 = 0.0003 —18.9
Proteobacteria Desulfovibrio 0.066 = 0.009 0.033 = 0.009 —49.8
Firmicutes Eubacterium plexicaudatum 3.030 = 0.307 2.308 = 0.149 —-23.8
Firmicutes Lachnospira pectinoschiza 0.788 = 0.057 0.589 = 0.067 —2b.2
Firmicutes Lactococcus 0.002 = 0.0005 0.001 = 0.0001 —46.4
Firmicutes Peptococcus niger 0.227 = 0.022 0.453 = 0.059 99.8
Bacteroidetes Rikenella 0.735 = 0.062 0.978 = 0.037 33
Firmicutes S. intermedius 0.005 = 0.001 0.003 = 0.0003 —-39.1
Firmicutes Turicibacter 0.001 = 0.0002 0.001 = 0.0001 -31.1
Bacteroidetes Uncultured Bacteroidetes 0.003 = 0.003 0.005 = 0.0003 63.6
Firmicutes Unclassified Clostridium cluster I 0.308 = 0.112 1.030 = 0.278 234.6
Firmicutes Unclassified Clostridium cluster II 0.951 = 0.076 0.679 = 0.037 —28.5
Firmicutes Unclassified Clostridium cluster XIVa 14.331 * 1.161 11.354 + 0.581 —-20.8
Firmicutes Uncultured Clostridiales 0.458 = 0.053 0.304 = 0.021 —33.6

Bacterial groups that were changed significantly are listed. Data are mean = SEM. *P < 0.05, as determined by a two-tailed Student ¢ test.

Prebiotics improve glucose and lipid metabolism in
obese mice. The changes in the gut microbiota composi-
tion were associated with significantly lower fasting gly-
cemia and markedly improved glucose tolerance (Fig. 3A).
However, it should be noted that body weight was not
significantly affected by the treatment (body weight [g]:
Ob-CT 46.79 £ 1.28, Ob-Pre 43.06 = 1.58; P = 0.1), whereas
fat mass (Fig. 3B) and cumulative food intake (g) (Ob-CT
466.8 = 13.8, Ob-Pre 319.6 = 20.6; P = 0.00034) were sig-
nificantly lower than Ob-CT. In contrast, muscle mass
significantly increased (Fig. 3C). Overall, these data in-
dicate a decreased fat to muscle mass ratio in the Ob-Pre
group. Interestingly, plasma triglycerides (Fig. 3D) and
muscle lipid (total, triglycerides, and phospholipids) con-
tent were dramatically reduced in the prebiotic-treated
mice (Fig. 3E and F) (nanogram of phospholipids per mi-
crogram of tissue: Ob-CT 29.05 = 2.565, Ob-Pre 20.05 * 2.49;
P = 0.02). In addition, we found that prebiotic treatment
significantly increased muscle lipoprotein lipase mRNA ex-
pression (about 70%) (Fig. 3G). This increase may be one of
the mechanisms leading to the reduced plasma and muscle
lipid content observed in Ob-Pre mice. Further supporting
the link between oxidative stress and metabolic distur-
bances, we found that the prebiotic treatment reduced the
adipose tissue lipid peroxide content by ~50% (Fig. 3H).
Moreover, multivariate analyses suggested that metabolic
footprints (e.g., the content of plasma triglycerides and fat
deposit lipid peroxides) can be used as potential biomarkers
of glucose tolerance (Supplementary Fig. 3).

Prebiotics reduce plasma LPS and improve gut barrier
function. We have previously found that prebiotic feed-
ing improves gut barrier function (8). Here, we found that
Ob-Pre mice exhibited twofold lower plasma LPS levels
(Fig. 3I) and fluorescein isothiocyanate (FITC)-dextran
levels (Supplementary Fig. 4A) than Ob-CT mice. In
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accordance with these and our previous findings, we found
that prebiotic treatment improved jejunum ZO-1 and occlu-
din distribution (Supplementary Fig. 4B and C). In addition
to these findings, we found that the prebiotic treatment
significantly reduced the expression of oxidative stress
(NADPHoxidase) and inflammatory (IL-1) mRNA markers
in the colon (Table 3).

Importantly, multiple correlation analyses revealed that

plasma FITC-dextran levels, glucose intolerance, plasma
triglycerides, and muscle lipid content were positively or
negatively correlated with the abundance of several genera
(Supplementary Table 6).
Prebiotic-induced changes in gut microbiota are
associated with increased enteroendocrine L-cell
number in obese mice. Several lines of evidence suggest
that prebiotic treatment promotes the production of GLP-1
and GLP-2 by enteroendocrine L cells (8,16,20,34,35). How-
ever, the exact contribution of the gut microbiota modula-
tion associated with prebiotic treatment to L-cell number
in obese mice is unclear. Strikingly, the prebiotic-treated
mice exhibited a twofold increase in the L-cell number in
the colon (Fig. 4C) and a similar increase in the proglu-
cagon mRNA level (Fig. 4B). L-cell number and progluca-
gon mRNA level similarly increased in the jejunum after
the prebiotic-induced gut microbiota modulation (Supple-
mentary Fig. 5A—C). In accordance with these findings, we
found that prebiotic feeding increases portal plasma GLP-1
levels (Fig. 4A), whereas GIP tends to decrease in Ob-pre
mice (Ob-CT 280.4 = 42.9, Ob-Pre 204.7 = 15.8; P = 0.1).
Given that the prebiotic treatment significantly increased
colon weight and length (Table 3), it is likely that this ef-
fect is attributed to a greater pool of L cells within the
intestine.

Next, we performed pairwise correlation analyses to ob-
tain a broader view of the intestinal responses regarding the

diabetes.diabetesjournals.org
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FIG. 3. Changes in the gut microbiota improve glucose tolerance and reduce plasma triglyceride content, tissue weight, oxidative stress, and
muscle lipid accumulation. A: Plasma glucose profile following 1 g/kg glucose oral challenge in freely moving mice. Inset shows the mean area under
the curve (AUC) measured between 0 and 120 min after glucose load in the Ob-CT (ll) and the Ob-Pre (O) mice. Mean = SEM. n = 10 mice/group.
*P < 0.05, determined by a two-tailed Student t test. B: White adipose tissue weight expressed as the percentage of total body weight of the Ob-CT
and Ob-Pre mice. Mean + SEM. n = 8 mice/group. *P < 0.05, determined by a two-tailed Student ¢ test. C: Muscle weight (Vastus lateralis) expressed as
the percentage of total body weight. D: Plasma triglyceride content. E: Muscle lipid content. F: Muscle triglycerides. G: Muscle lipoprotein lipase (LPL)
mRNA expression. H: Adipose tissue lipid peroxidation markers (TBARS). I: Plasma LPS levels in the same set of mice. Mean = SEM. n = 10
mice/group. *P < 0.05, determined by a two-tailed Student t test.
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TABLE 3
Changes in the gut microbiota upon prebiotic administration
impacts on cecal, colon weight, and inflammatory markers

Ob-CT Ob-Pre
Full cecum (g/100 g body wt) 1.1 = 0.13 1.52 + 0.09*
Empty cecum (g/100 g body wt) 0.27 = 0.03 0.34 = 0.02*
Colon weight (g/100 g body wt) 0.46 = 0.02 0.57 = 0.02*
Colon length (cm) 8.14 = 0.24 9.63 * 0.16*
Colon NADPHox mRNA levels 1.0 = 0.09 0.75 = 0.05*
Colon IL-1 mRNA levels 1.0 = 0.14 0.62 * 0.09*

Data are mean = SEM. *P < (.05, as determined by a two-tailed
Student ¢ test. NADPHox, NADPHoxidase.

L-cell number due to microbiome-wide variation observed
by means of pyrosequencing and phyloarray. By combining
the two approaches, we found that the abundance of 25
taxa was correlated with the L-cell number (Supplemen-
tary Fig. 6A and B).

Prebiotic-induced changes in gut microbiota are
associated with improved leptin sensitivity and glucose
homeostasis in diet-induced obese and diabetic mice.
We further investigated a dietary obesity model to identify
the impact of prebiotic feeding when leptin signaling be-
comes compromised. Here we found that prebiotic feeding
markedly improved glucose tolerance, reduced body weight
and fat mass, and increased muscle mass (Fig. 5A-D). Mean

food intake (kcal/mice/day) (HF 20.9 = 0.6, HF-Pre 19.6 =
0.3) was not significantly affected.

Similar to the ob/ob mice study, we found that prebiotic
feeding significantly increased portal plasma GLP-1 levels
(threefold), whereas colon proglucagon mRNA was in-
creased by ~50% (Fig. bE and F). In contrast, portal
plasma GIP levels were not affected by the treatment (HF
79.6 = 10.9, HF-Pre 63.1 * 6.8 pg/mL; P = 0.19).

Given that the vast majority of obesity is associated
with leptin resistance, and that leptin, primarily involved
in food intake and energy homeostasis, is also linked to
the regulation of glucose homeostasis and numerous
gastrointestinal functions (36), we may not exclude that
the impact of prebiotics in this model interferes with
leptin sensitivity.

To this aim, we compared the impact of leptin adminis-
tration versus saline in mice fed with HF or HF and pre-
biotics. We found that leptin treatment induced a stronger
decrease in body weight in HF-Pre than HF mice versus
saline treatment (Fig. 5G). This last effect was associ-
ated with a significant decrease in food intake after
leptin treatment in HF-Pre mice (Fig. 5H). In addition, in
prebiotic-treated mice, leptin administration reduced adi-
pose tissue acetyl-CoA carboxylase mRNA expression ver-
sus saline-treated mice. In contrast, HF-fed mice showed no
expression changes (Fig. 5I). Thus, this analysis revealed
that prebiotic treatment improved the anorexigenic, weight-,
and lipogenesis-reducing effect of leptin compared with
control obese mice.
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FIG. 4. Prebiotic-induced changes in gut microbiota are associated with increased enteroendocrine L-cell number in obese mice. A: Portal plasma
GLP-1 levels. B: Proglucagon mRNA expression measured in the colon. Mean = SEM. n = 10 mice/group. *P < 0.05, determined by a two-tailed
Student t test. C: L-cell number expressed per mm? of colon. D: Representative immunofluorescence staining of L cells using a GLP-1 antibody.
Mean * SEM. n = 4-6 mice/group. *P < 0.05, determined by a two-tailed Student ¢ test. (A high-quality digital representation of this figure is

available in the online issue.)
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FIG. 5. Prebiotic-induced changes in gut microbiota are associated with improved leptin sensitivity and glucose homeostasis in diet-induced obese
and diabetic mice. A: Plasma glucose profile after 2 g/kg glucose oral challenge in freely moving mice in the HF (ll) and the HF-Pre ([]) mice.
B: Body weight gain. C: Lean body mass measured by nuclear magnetic resonance. D: Adiposity index, corresponding to the sum of the sub-
cutaneous, the visceral, and the epididymal adipose depot weights. E: Colon proglucagon mRNA expression. F: Portal plasma GLP-1 level content.
Mean = SEM. n = 8 (HF) and 9 (HF-Pre). *P < 0.05; *p= 0.08, determined by a two-tailed Student ¢ test. G: Body weight changes 2 days after twice-
daily intraperitoneal leptin (0.375 mg/kg) in the HF (HF-L) and the HF-Pre mice (HF-Pre-L). Data from each group were normalized to their own
paired saline control. Mean = SEM. n = 10 mice/group. *P < 0.05, determined by a two-tailed Student ¢ test. H: Food intake 24 h after two doses of
intraperitoneal leptin (Lep) (0.375 mg/kg). Data from each group are compared with their own paired saline control (Sal) vs. leptin. Mean + SEM.
n = 10 mice/group. *P < 0.05, determined by a paired Student ¢ test. I: Adipose tissue acetyl-CoA carboxylase (ACC) mRNA expression 6 h after
intraperitoneal leptin (1 mg/kg) or saline in the HF (HF-L) and the HF-Pre mice (HF-Pre-L). Data from each group were normalized to their own
saline control. Mean = SEM. Saline, n = 4 mice/group; leptin, n = 6 mice/group. *P < 0.05, determined by a two-tailed Student ¢ test.

DISCUSSION

Our findings provide new evidence for an important
modification of the gut microbiota upon prebiotic treat-
ment and indicate its contribution to host metabolism. The
first methodological approach (qPCR) confirmed our pre-

using 16S rDNA pyrosequencing, we observed an increase
of five genera belonging to three phyla and a decrease in the
abundance of six genera belonging to the Clostridiales
order of the phylum Firmicutes. Similarly, a phylogenetic
array approach revealed a lower abundance of 10 genera or

vious findings that prebiotic treatment significantly increases
the number of Bifidobacterium spp. (8). Furthermore,
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species of Firmicutes. Estimates of relative taxa abundance
by pyrosequencing and phylogenetic microarrays depend,
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among other factors, on taxonomic assignment methods,
sequencing depth, taxonomic coverage of the microarray
probes, and choice of 16S PCR primers (32,33,37). For in-
stance, the difference observed in the abundance of the
phylum Verrucomicrobia can be attributed to the choice
of primers that can poorly detect this phylum. Neverthe-
less, it is worth mentioning that other recent studies also
strongly support the interest of studies comparing culture-
dependent microbiological techniques and next-generation
sequencing technologies as performed in the current study
(38). Although our data relied on different technologies and
rDNA identification methods, clustering of bacterial com-
munities showed similar patterns, reinforcing the idea that
prebiotics induce profound changes in the gut bacteria
composition.

These findings challenge the concept that prebiotics af-
fect only a minor part of the gut microbial community.
Initial observations in obese leptin-deficient mice (ob/ob)
have shown decreased Bacteroidetes, whereas the pro-
portion of Firmicutes was increased compared with lean
mice (2). Similar shifts in the two dominant phyla were
observed in the gut microbiota of obese humans (4,39).
Importantly, several other studies have already char-
acterized the gut microbiota composition of ob/ob and
diet-induced obese mice by using similar metagenomic
approaches (2,12,18,36,40,41). Interestingly, all of these
studies are relatively concordant regarding the modula-
tion of the gut microbiota in both 0b/0b and HF-fed mice.
There was an increase in Firmicutes and a decrease in
Bacteriodetes in these obese mice models. Similar results
linking gut microbiota to fat mass and body weight have
been described in diet-induced obese mice. For instance,
ingestion of an HF diet resulted in a bloom in Firmicutes
and a decrease in Bacteroidetes. In addition, Hildebrandt
et al. (40) showed that when switching lean mice to an HF
diet, there was the expected decrease in Bacteriodetes and
an increase in Firmicutes and Proteobacteria. Murphy
et al. (41) found an increase in the proportions of Firmi-
cutes in both HF-fed and 0b/0b mice and a reduction in
Bacteroidetes. More recently, Ravussin et al. (36) found
that mice eating an HF diet have greater abundances of
Firmicutes excluding Allobaculum operational taxonomic
units. The current study demonstrates that prebiotic intake
in mice impacts the relative abundance of the two domi-
nating gut phyla, Bacteroidetes and Firmicutes, in a man-
ner resembling the shift observed when comparing obese
to lean humans or mice.

Given that prebiotic treatment can reduce obesity and
associated metabolic disorders, the discovery of bacteria
or bacterial group(s) that is able to shape host metabolism
provides an attractive mechanistic explanation. Inter-
estingly, both 16S rRNA analyses identified significant
correlations between the genus Anaerotruncus and several
metabolic parameters, such as glucose intolerance, gut
permeability, plasma triglyceride content, and muscle lipid
content. Similarly, Clostridium lactifermentans was posi-
tively correlated with all of these parameters, except plasma
triglyceride content. Desulfovibrionaceae (i.e., Bilophila
and Desulfovibrio, both gram-negative bacteria) were less
prevalent in the prebiotic-treated mice. Interestingly,
two recent studies demonstrate that diet-induced obesity
and diabetes are associated with a bloom of this family
(40,42). Some members of Desulfovibrionaceae, shown to
be involved in gut barrier disruption (43), are able to reduce
sulfate to HyS. In agreement with these reports, we found
a very strong correlation between gut permeability and the
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abundance of Streptococcus intermedius. It is important to
note that this species produces a specific cytolysin (inter-
medilysin) (44) that leads to altered tightjunction archi-
tecture (45,46). Therefore, it is tempting to speculate that
the lower abundance of cytolysin-producing bacteria may
participate in the control of gut barrier function through
these mechanisms.

Among the factors recently identified to play a key role
in the control of gut barrier function and glucose homeo-
stasis, we demonstrated that the abundance of two pep-
tides produced by enteroendocrine L cells (GLP-1 and
GLP-2) specifically increases upon prebiotic treatment (47).
Although the mechanisms seem to be related to enhanced
proglucagon expression, in the current study, we found
both increased L-cell number and portal plasma GLP-1
levels. There were wide variations of gut microbial com-
munities between the control mice and the prebiotic-treated
mice. The extent to which these changes correlated with
metabolic parameters and the L-cell number suggests the
presence of specific targets. For instance, the bloom in
A. muciniphila was strongly and positively correlated with
the L-cell number (r» = 0.72; P = 0.01). The presence of
this bacterium is not only associated with healthy mucosa,
compared with that of patients with Crohn disease or ul-
cerative colitis (48), but also inversely correlated to body
weight (49), increasing after the surgical weight loss pro-
cedure Roux-en-Y gastric bypass (50).

We previously found lower fasting glycemic levels and
improved glucose tolerance observed upon prebiotic-
induced gut microbiota modulation (20). However, in the
current study, these changes were also associated with re-
duced plasma triglyceride levels, muscle lipid infiltration,
adipose tissue mass, and oxidative stress and higher leptin
sensitivity. This finding suggests that the improved meta-
bolic phenotype observed in the prebiotic-treated mice is
dependent on multiple mechanisms.

Here, we unraveled novel mechanisms linking gut
microbiota changes and metabolism in genetic obese mice
and found that prebiotics improved leptin sensitivity in
diet-induced leptin-resistant mice. Further work is required
to understand the functional links between the metabolic/
catabolic activities of gut bacteria and their impact on host
metabolism. For instance, it would be of interest to estab-
lish a causal relationship, instead of correlations as shown
here, by using transfer of bacterial communities. An alter-
native experiment would be to analyze intestinal (fecal)
microbiota in a time-series study in view of identifying the
specific impact of prebiotics and the gut microbes on the
onset of obesity and type 2 diabetes.

Taken together, the microbiota analyses revealed an
unexpectedly wide shift in the gut microbiota profiles,
which represent an important proportion of the total
number of the sequence reads. First, this finding indicates
that, in addition to the previously largely considered family
Bifidobacteriaceae (8,16,19), prebiotic treatment profoundly
modifies several other gut bacterial taxa from the phylum
level down to the 100% ID phylotype level. Second, based
on our findings, we proposed additional mechanisms and
relationships between specific gut bacteria and metabolic
alterations characterizing the obesity phenotype (e.g.,
leptin sensitivity). Third, a combination of two comple-
mentary 16S rRNA-based approaches with the use of pre-
biotics represents a promising approach to identify novel
bacterial targets that may affect host metabolism in
a given pathological context, such as obesity or type 2
diabetes.
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