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T
he artificial pancreas (AP), known as closed-loop
control of blood glucose in diabetes, is a system
combining a glucose sensor, a control algorithm,
and an insulin infusion device. AP developments

can be traced back 50 years to when the possibility for
external blood glucose regulation was established by stud-
ies in individuals with type 1 diabetes using intravenous
glucose measurement and infusion of insulin and glucose.
After the pioneering work by Kadish (1) in 1964, expect-
ations for effectively closing the loop were inspired by the
nearly simultaneous work of five teams reporting closed-
loop control results between 1974 and 1978: Albisser et al.
(2), Pfeiffer et al. (3), Mirouze et al. (4), Kraegen et al. (5),
and Shichiri et al. (6). In 1977, one of these realizations (3)
resulted in the first commercial device—the Biostator
(7; Fig. 1), followed by another inpatient system, the Nikkiso
STG-22 Blood Glucose Controller, now in use in Japan (8).

Although the intravenous route of glucose sensing and
insulin infusion is unsuitable for outpatient use, these
devices proved the feasibility of external glucose control
and stimulated further technology development. Figure 2
presents key milestones in the timeline of AP progress.

In 1979, landmark studies by Pickup et al. (9) and
Tamborlane et al. (10) showed that the subcutaneous
route was feasible for continuous insulin delivery. Three
years later, Shichiri et al. (11) tested a prototype of a
wearable AP, which was further developed in subsequent
studies (12,13). In the late 1980s, an implantable system
was introduced using intravenous glucose sensing and
intraperitoneal insulin infusion (14). This technology was
further developed, leading to clinical trials and long-term
use (15,16); however, its clinical application remained lim-
ited because of the extensive surgical procedures needed
for sensor and pump implantation.

In all early intravenous and intraperitoneal AP systems,
the closed-loop control algorithms belonged to a class
known as proportional-derivative controllers, which used
blood glucose values and blood glucose rate of change in a
relatively straightforward calculation of insulin dose.
However, as it is explained later in this article, proportional-
derivative control and its enhanced version, proportional-
integral-derivative control, have inherent limitations that
hinder their use in subcutaneous systems because of un-
avoidable time lags in subcutaneous glucose sensing and
insulin action. Newer controllers, known as model-predictive

control (MPC), avoid these limitations by using a mathe-
matical model of the metabolic system of the person being
controlled in their calculations. Many of these MPC algo-
rithms are based on another 1979 milestone, the Minimal
Model of Glucose Kinetics (17). Thus, since the early years
of AP development, glucose sensing and insulin delivery
technologies were accompanied by computer modeling
and simulation (18–22). Review of methods for glucose
control prior to 2000 can be found in two concurrent
papers (23,24).

The new wave—subcutaneous AP—developed after
minimally invasive subcutaneous glucose sensing was
commercially introduced in 1999 by the MiniMed contin-
uous glucose monitoring (CGM) system. This set off an
accelerating academic and industrial effort focused on
the development of a subcutaneous-subcutaneous system
(Fig. 2). The MiniMed (later, Medtronic) closed-loop pro-
ject was the first to provide evidence for the feasibility of
the subcutaneous-subcutaneous route for fully automated
blood glucose control in type 1 diabetic patients (25). The
3-year ADICOL project funded by the European Commission
showed the feasibility of using advanced MPC strategies to
close the loop (26). In September 2006, the Juvenile Di-
abetes Research Foundation International (JDRF) initiated
the Artificial Pancreas Project and funded a consortium of
centers to carry out closed-loop control research. So far,
encouraging results have been reported by several centers
(27–31). Two notable achievements were the acceptance
by the Food and Drug Administration of the University of
Virginia–University of Padova type 1 diabetes simulator as
a substitute to animal trials in the preclinical testing of
closed-loop control strategies (32), and the design by a
team from the University of California Santa Barbara and
the Sansum Diabetes Research Institute of a communication
platform allowing the automated transfer of data between
CGM, control algorithm, and insulin pump (33). Following
these developments, JDRF initiated a now-ongoing multi-
center, multinational trial in adults and adolescents with
type 1 diabetes. Additional momentum was brought by the
U.S. National Institutes of Health (NIH) funding several AP
projects in 2009 and by the European Commission launching
the AP@Home project in 2010, which involves seven uni-
versities and five companies throughout Europe. In the wake
of these rapid developments, this article aims to identify
critical problems in AP development and to outline possible
solutions and a pathway toward the clinical acceptance of
ambulatory closed-loop control.

LIMITATIONS OF CURRENT GLUCOSE SENSORS

CGM technology was introduced 10 years ago, initially as a
method for retrospective review of glucose profiles (34–36).
Shortly after, real-time devices came about, providing
online glucose readings (37). These first devices had lim-
ited performance, particularly in the hypoglycemic range
(36,38,39). Since then, significant progress has been made
toward versatile and reliable CGM; a number of studies
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have documented its benefits (40–42) and charted guide-
lines for its clinical use (43,44). Because CGM data are the
input to the AP control algorithm, understanding of the
physical, biochemical, and mathematical principles and
limitations of this technology is critical (45,46).

First, most of the commercial subcutaneous CGM devi-
ces measure glucose concentration in a different than
blood compartment—the interstitium. However, during
rapidly changing conditions, e.g., after a meal or during
a hypoglycemic episode, interstitial glucose and blood
glucose can be markedly different (47–49). Thus, CGM
devices require calibration using one or more daily blood
glucose samples. The influence on CGM accuracy of the
number and timing of calibration points was assessed by
several studies (50,51). In particular, the DirecNet Study
Group (52) analyzed changes in accuracy by modifying the
calibration retrospectively and showed that calibrating
during periods of relative glucose stability significantly
improves CGM accuracy. Modern calibration procedures
were suggested, based on mathematical models of interstitial
glucose kinetics (53,54).

Second, time lag exists because of blood-to-interstitial
glucose transport and the sensor processing time (in-
strument delay). Because such a time lag could greatly
influence the accuracy of CGM (55,56), a number of
studies were dedicated to its investigation (57–61). In most
studies CGM readings lagged blood glucose (most of the

time) by 4–10 min, regardless of the direction of blood
glucose change, but the formulation of the push-pull phe-
nomenon brought arguments for a more complex re-
lationship than a constant time lag (60). For the purpose
of closed-loop control, mitigation of the time lag was sug-
gested based on near-term glucose forecast methods
(51,61).

Third, errors from transient loss of sensitivity, and ran-
dom noise confound CGM data (62–64). Thus, filtering,
denoising, and artifact rejection in CGM data are important
for closed-loop control. Algorithms performing these tasks
are available in commercial CGM devices (65–67). The
precise tuning of filter parameters in an automatic manner
is, however, a difficult problem. Advanced methods that
can be used to resolve this challenge have been recently
reported (50,53,68–70).

Despite of their inherent limitations, CGM devices pro-
duce rich frequently-sampled data sets (e.g., every 5–10
min) allowing them to serve as AP-enabling technology
(43,45). First steps from simple monitoring to control have
already been taken; modern CGM devices display trends
and blood glucose rate of change and are capable of
alerting the patient about upcoming hypo- or hyperglyce-
mia (71–73). Studies of the utility of such alerts have been
initiated (73–75), and the next logical step—prevention of
hypoglycemia via shutoff of the insulin pump—has been
taken (76).

FIG. 1. The Biostator (courtesy of William Clarke, University of Virginia).
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LIMITATIONS OF INSULIN DELIVERY

Because of its pharmacokinetic and pharmacodynamic
advantages, the intravenous route of insulin delivery has
been tested for ambulatory use with implantable devices
from the 1970s to the early 1990s (77,78). However, despite
their effectiveness, the limitations caused by recurrent
catheter complications due to blood clotting stopped the
development of this route of insulin delivery (79). An al-
ternative approach to staying close to physiology is to use
intraperitoneal insulin delivery, e.g., insulin infusion via
the portal venous system (80–83). In view of closed-loop
glucose control, the intraperitoneal infusion route has
several intriguing characteristics: reproducibility of insulin
absorption combined with quick time to peak and return to
baseline, close-to-physiological peripheral plasma insulin
levels, and restoration of glucagon response to hypogly-
cemia and exercise (84–86). Although the experience of
implantable programmable insulin pumps from the 1990s
has highlighted their benefits including sustained im-
provement in mean blood glucose and reductions in glu-
cose variability and severe hypoglycemia (87–90), the
clinical use of these devices has been limited because of
insulin aggregation issues (91), increased production of
anti-insulin antibodies, which impair insulin action in
some patients (92,93), and the cost associated with this
technology. Still, the development of less invasive and
cheaper implantable ports for intraperitoneal insulin
delivery (e.g., DiaPort; Roche Diagnostics, Mannheim,
Germany) may extend this option of insulin infusion in
view of an AP (94).

Since the late 1990s, continuous subcutaneous insulin
infusion (CSII) has become an accepted mode of insulin
pump therapy (95). Improvements in safety, miniaturization,

refined tuning of insulin pumps allowing for fine adjust-
ments of basal rate, the recently introduced “patch pumps”
(96), and new insulin analogs (97,98), all lead to improved
patient comfort and better glucose control. The key issue of
subcutaneous insulin delivery remains the delay in action
caused by the time needed for subcutaneous absorption,
resulting in late insulin peaks up to 120 min after the in-
jection of a subcutaneous bolus of regular insulin (95).
Moreover, with subcutaneous insulin delivery the lost
physiological role of the liver in modulating peripheral in-
sulin levels results in higher peripheral insulinemia (82).
Whether such a reduced hepatic insulinization impairs the
control of hepatic glucose output significantly is still un-
clear. In terms of safety, altered absorption at the sub-
cutaneous delivery site has been pointed out as a risk for
insulin underdelivery—a major issue observed with CSII,
which may result in ketoacidosis if undetected and not
corrected in time (77,99). This phenomenon has been
shown to occur even more rapidly with the use of fast-
acting analogs (100).

In an AP setting, CSII combined with subcutaneous
glucose sensing has been shown to be effective for “out-of-
meal” periods, keeping blood glucose in the normal range
in the postabsorptive state (26,45). However, fully auto-
mated closed-loop control has not been so successful in
addressing insulin needs at meals (25,26). Indeed, the
rapid rise of postmeal glucose is difficult to avert because
of the inherent delays in subcutaneous insulin absorption
and action (101). As a result, all AP trials reported to date
show a significant postprandial glucose peak above the
normal range. Moreover, delayed insulin action while
postprandial blood glucose decreases may result in sec-
ondary glucose lows a few hours after the meal (26).

FIG. 2. Key milestones in the timeline of AP progress. EU, Europe; IP, intraperitoneal; NIH, National Institutes of Health; SC, subcutaneous.
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NEED FOR “SMART” CONTROL ALGORITHMS

Despite important developments in sensor and pump tech-
nology, the AP must cope with the delays and inaccuracies
in both glucose sensing and insulin delivery described in the
previous sections. This is particularly difficult when a sys-
tem disturbance, e.g., a meal, occurs and triggers a rapid
glucose rise that is substantially faster than the time needed
for insulin absorption and action (Fig. 3).

The problem is that with inherent delays, any attempt to
speed up the responsiveness of the closed loop may result
in unstable system behavior and system oscillation. Thus,
a sound controller design must consider a relatively slow
response, giving time for the delays to wear off before the
next control action. However, a slow response cannot
provide good attenuation of postprandial glucose peaks.
Hence the principal AP control dilemma: find a trade-off
between slow-pace regulation well suited to mild control
actions applicable to quasi-steady state (e.g., overnight),
and postprandial regulation calling for prompt and ener-
getic corrections (102,103).

Historically, this problem was clearly demonstrated by
the first closed-loop experiments that used PID algorithms.
Because PID is purely reactive, responding to changes in
glucose concentration after they have occurred, it suffers
most from the problems described above. In particular,
to avoid hypoglycemia after a meal, one has to design a
moderately aggressive controller; however, such a “cau-
tious” design would not react promptly and effectively to
meals. To improve PID performance, one possibility is to
add a feed-forward action (a regular premeal bolus), which

helps with meal compensation as demonstrated in clinical
studies (27). To mitigate hypoglycemic events, an insulin
negative feedback on insulin delivery rate has also been
introduced (104).

The new wave of control designs, MPC, is based on
prediction of glucose dynamics using a model of the pa-
tient metabolic system and, as a result, appears better
suited for mitigation of time delays due to subcutaneous
glucose sensing and insulin infusion. In addition, MPC is
a better platform for incorporation of predictions of the
effects of meals and for introduction of constraints on in-
sulin delivery rate and glucose values that safeguard
against insulin overdose or extreme blood glucose fluctu-
ations. In some sense, an MPC algorithm works as a chess
strategy (Fig. 4). On the basis of past game (glucose) his-
tory, a several-moves-ahead strategy (insulin infusion rate)
is planned, but only the first move (e.g., the next 15-min
insulin infusion) is implemented; after the response of the
opponent, the strategy is reassessed, but only the second
move (the 30-min insulin infusion rate) is implemented,
and so on. In reality glucose prediction may be different
from the actual glucose measurement or an unexpected
event may happen; with this strategy these events are
taken into account in the next plan.

Several successful clinical trials using MPC were re-
cently published. Kovatchev et al. (31) reported a study in
which the aggressiveness of the controller was indi-
vidualized using patient parameters such as body weight,
carbohydrate ratio, and insulin basal rate. Hovorka et al.
(28) used a multimodel MPC approach, deciding in real

FIG. 3. Block diagram of closed-loop glucose control. Three major delays are indicated: insulin absorption (regular and ultrafast insulin), insulin
action on peripheral tissues and on the liver, and sensing in the interstitium.
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time which patient model is best fitting the data in hand,
while dual-hormone strategies adding glucagon adminis-
tration to insulin delivery to avoid hypoglycemia were
used by El-Khatib et al. (30) and Castle et al. (105).

Additional difficulties that the control algorithm must
face arise from coping with inter- and intrapatient vari-
ability. Fortunately, MPC allows for relatively straight-
forward individualization using patient-specific model
parameters (106). Given the difficulty of identifying
accurate individual models, a customizable controller
has been proposed, individually tuned through a “con-
trol aggressiveness” parameter calculated from a few
routine biometric and clinical data of each individual

(107). In addition, MPC can have “learning” capabilities; it
has been shown that a class of algorithms (known as run-to-
run control) can “learn” specifics of patients’ daily routine
(e.g., timing of meals) and then optimize the response to a
subsequent meal using this information (108,109), or ac-
count for circadian fluctuation in insulin resistance, such
as the dawn phenomenon observed in some people (110).

Finally, an MPC system can also have certain feed-
forward capabilities, i.e., the ability to use a combination
of feed-forward (e.g., patient-initiated) and feedback
(controller-initiated) insulin delivery that can partially
solve the dilemma posed by the need for trade-off between
slow-pace regulation in quasi-steady state and prompt

FIG. 4. A: The concept of MPC. At each step, future glucose levels are predicted and insulin delivery strategy is mapped several steps ahead. Then,
the first insulin delivery step is implemented, and the situation is reassessed with new glucose data. The process is very similar to a chess game in
which several moves are planned ahead, and after the implementation of the first move the position is reassessed given the response of the op-
ponent. B: The critical stage of the famous chess game between Leonid Stein (white) and Lajos Portisch (black), Stockholm, 1962 (courtesy of
Leon Fahri, University of Virginia).
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correction of meals. Associated with such a feed-forward
action is a nominal glucose profile, which represents the
expected consequence of the conventional patient-initiated
therapy. The algorithm bases its actions on the difference
between the sensor signal and this nominal profile. If the
difference is zero, no closed-loop correction is applied and
the patient is subject to the conventional therapy alone. In
practice the difference will always be nonzero, thus a feed-
forward action would also prompt small-size feedback
corrections adapting to unpredicted events, disturbances
and changes in patient’s dynamics. Clinical results obtained
by this type of control strategy are reported by Kovatchev
et al. (31).

A STEP FORWARD: IN SILICO EXPERIMENTS REPLACING

ANIMAL TRIALS

The future development of AP will be greatly accelerated
by using mathematical modeling and computer simulation.
A number of simulation models have been proposed in the
last 4 decades and used to assess the performance of
control algorithms and insulin infusion routes (111–117).
However, all these models are “average,” meaning that
they are only able to simulate average population dynam-
ics but not the interindividual variability. The average-
model approach is not sufficient for realistic in silico
experimentation with control scenarios. For this purpose,
it is necessary to have a simulator equipped with a cohort
of in silico subjects that spans sufficiently well the ob-
served interperson variability of key metabolic parameters
in the type 1 diabetic population. The knowledge on inter-
subject variability is indeed crucial to the design of robust
controllers, providing valuable information about their
safety and limitations.

Building on the large scale meal model developed in
the healthy state (116,117), we have developed a type 1
diabetes simulator that, thanks to its ability to realistically

describe intersubject variability, has been accepted by the
Food and Drug Administration as a substitute of pre-
clinical animal trials for certain insulin treatments (32). In
this simulator, a virtual human is described as a combination
of several glucose and insulin subsystems. To permit
in silico experiments using CGM, the model includes
subcutaneous glucose transport and sensor errors. In
summary, the model consists of 13 differential equations
and 35 parameters for each subject (116,117). The simu-
lator is equipped with 100 virtual adults, 100 adolescents,
and 100 children, spanning the variability of type 1 diabetic
population observed in vivo. Key “biometric” characteristics
of these virtual subjects are presented by Kovatchev et al.
(32). Figure 5 illustrates the overall design of the simulation
model.

With this technology, any meal and insulin delivery
scenario can be pilot-tested very efficiently in silico, prior
to its clinical application. Because in silico experiments
produce results at a fraction of time and cost of animal
trials, this simulator in now adopted by the JDRF Artifi-
cial Pancreas Consortium and by others as a primary test
bed for new closed-loop control algorithms. The capabilities
of the simulator are now being expanded by incorporating
intraday variability of key fluxes (e.g., glucose production)
and signals (e.g., insulin sensitivity [118]), and by including
hypoglycemia counterregulation (119).

MODULAR ARCHITECTURE FOR SEQUENTIAL AP

DEVELOPMENT

Today’s technological advancements open the possibility
for ambulatory AP. To account for the multitude of avail-
able possibilities, academic, and industrial developments,
we have introduced the concept of modular approach to
AP design, which allows technologies developed by dif-
ferent entities to be seamlessly integrated in a functional
hierarchical system that can be sequentially deployed in

FIG. 5. Principal component of the type 1 diabetes simulator: a model of the glucose-insulin system, a model of the sensor, a model of the insulin
pump and subcutaneous insulin kinetics, and the controller to be tested.
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clinical and ambulatory studies. Figure 6 presents an out-
line of this modular-architecture concept.

The key advantage of modular AP architecture is the
possibility for sequential development, clinical testing, and
ambulatory acceptance of elements (modules) of the
closed-loop system. In engineering terms, we suggest that
the AP should have separate interacting components re-
sponsible for prevention of hypoglycemia, postprandial
insulin correction boluses, basal rate control, and admin-
istration of premeal boluses (120). In this scheme, control
modules receive information from system state estimation
modules that are responsible for tracking glucose fluctu-
ations and the amount of active insulin at any point in time.
This structure is dictated by the natural separation of the
computational elements of a closed-loop control system
into algorithms estimating the state of the person and
algorithms actuating control. The control layers work on
different time scales. At the bottom, the fastest layer is
in charge of safety requirements. Possible algorithms in-
clude pump shutoff (76), insulin on board, and smooth

attenuation of the insulin pump (121). Immediately above,
there is the real-time control layer deciding insulin delivery
based on latest CGM data, previous insulin delivery, and
meal information. Typical algorithms are either PID, MPC,
or the recently introduced Zone MPC controller (122). The
top layer (offline control tuning) is in charge of tuning the
real-time control layer using clinical parameters and his-
torical data. Each layer processes available information
(CGM and patient inputs) in order to take decisions that
are passed to a lower layer. If necessary, commands from
an upper layer can be overridden; a typical example is the
safety layer canceling insulin delivery suggested by the
real-time control module.

With modular architecture in place, various increasingly
complex configurations of an AP system become possible.
For example, a relatively simple control system respon-
sible only for nighttime basal rate regulation has been
successfully tested as a first step to AP (31), followed by
control of risk for hypoglycemia associated with exercise
(123). More recently, a new modular control-to-range

FIG. 6. Modular architecture for sequential AP development.
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algorithm has been introduced as an adjunct to, not a
replacement of, standard basal-bolus pump therapy, in-
tervening only if corrections of hypo- or hyperglycemia are
needed (120). This control strategy resulted in reduced
average glucose without increasing patients’ risk for hy-
poglycemia (124).

Further, the progression of AP would entail moving the
system to outpatient setting. This critical step would re-
quire specific elements, such as server and communica-
tion tools for remote monitoring but also for remote
intervention. Remote monitoring would be particularly
important for the first ambulatory clinical trials that
would require continuous “intelligent” observation of AP
first deployed outside of the hospital. From there, step-by-
step move to home use would follow module-by-module
approach under remote monitoring. Finally, fully auto-
mated closed-loop is expected to deliver safe and effica-
cious glucose control at home for a prolonged period
of time. To cope with the changing environmental con-
ditions and with the physiological/behavioral changes of
the patient, the ambulatory AP will have to adapt to the
changes in an individual’s biobehavioral parameters over
time. Possible methods to cope with changing reality in-
clude individual controller calibration strategies and run-
to-run control algorithms (107–110), as well as behavioral
analysis and profiling of patient lifestyle (125). Many of

these advanced methods are now on the drawing board.
Table 1 summarizes the principal components of a closed-
loop system, including the CGM, the insulin infusion de-
vice, the control algorithm and the associated human
factors, and lists the areas that need further development
before the ambulatory AP becomes a reality.
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