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The causality of de novo
copy number variants is
overestimated
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The application of array CGH or chromosomal microarrays is
causing a revolutionary change in clinical genetics and especially
cytogenetics, as it enables the genome wide identification of
submicroscopic copy number variations (CNVs).1 Given the signifi-
cant increase in diagnostic yield compared with conventional
karyotyping in patients with intellectual disability (ID) and the
technical ease of use, the technique is now recommended as a
first tier diagnostic test for patients with ID and/or multiple congenital
anomalies (MCA).2,3 Arrays not only enable detection of disease-
causing CNVs in patients with ID/MCA, but also in patients with
isolated heart defects, neurological diseases and psychiatric disorders.

Therefore, besides pediatricians and clinical geneticists, more and
more other medical specialists request array analysis arrays.4–7 In
addition, there is a rapid implementation of array CGH in prenatal
diagnosis.8–11

For a small subset of CNVs, the association with an ID/MCA
phenotype is beyond doubt. However, many CNVs detected using
high-resolution arrays remain private, or the functional relationship
with the phenotype is, at best, vague. To enable genotype–phenotype
correlations, databases collecting phenotypes and genotypes have been
established.3,12,13 Although those databases have been successful in
establishing a functional relationship for recurrent CNVs, a genotype–
phenotype relationship has yet to be established for a majority of rare
CNVs. Variable expressivity and reduced penetrance often confound
significant associations to be made and is especially challenging
for rare variants.1 Due to the difficulty of associating CNVs with
a phenotype, several reports provide guidelines on how clinical
laboratories can interpret array results. If a clear association between
the phenotype under investigation and the CNV is lacking, a series
of steps are guiding the interpretation of the clinical significance.
In all guidelines, a rule of thumb is that de novo CNVs, not occurring
in normal individuals, are considered causal for the abnormal
phenotype.1,3,14–16

During our screen of patients with mental retardation and devel-
opmental disorders, we identified several private de novo CNVs.
Previously, we reported a 250 kb de novo deletion in C20orf133,
nowadays known as MACROD2, in a patient with Kabuki syndrome.17

A highly conserved region of C20orf133, likely to have a role in
chromatin or chromosome biology, was deleted, and the gene was
shown to be expressed in mice in the tissues affected in Kabuki
syndrome. Although screening of 62 Kabuki syndrome patients failed
to identify mutations in C20orf133, the disorder was hypothesized to
be genetically heterogeneous.17,18 Recently, mutations were identified
in MLL2 in 33 out of 50 Kabuki syndrome patients.19 Sequencing of
this gene in the patient with the C20orf133 deletion, shows the
presence of a de novo mutation in MLL2.20

Most recently, we had a similar experience with another de novo
CNV. During a screen of patients with ID and eye disorders, we
identified a de novo 86.5 kb deletion in a patient referred because of an
eye malformation associated with mental retardation. The deletion
harbored only a single gene, AMBRA1. As the gene is expressed in the
neural retina and brain, and mice knock-outs result in exencephaly,21

the deletion was considered a likely cause for the observed phenotype.
To further establish the clinical relationship between the gene and the
phenotype, morpholino knockdowns were performed in zebrafish,
which resulted in eye coloboma as well as equilibrium defects. On the
basis of these observations and during the preparation of a manu-
script, a more detailed phenotypic description of the patient was
requested. The patient was characterized by bilateral coloboma,
anosmia, disturbance of the equilibrium and ID, a CHARGE like
phenotype. Once the diagnosis of CHARGE was uttered, a mutation
analysis of CHD7 was instigated.22 A de novo mutation was identified
causing a splice site mutation, thus disrupting the CHD7 gene.

Although smaller modifier effects of the deletions on the phenotype
cannot be excluded, the overall phenotype can in both cases be
explained by de novo point mutations rather than to de novo CNVs.
Note that CNV detection in both cases was performed on DNA
extracted from blood and not on cell cultures. The latter are known to
accumulate chromosomal rearrangements and hence, its use for CNV
detection should be avoided for clinical diagnosis. We believe that
these two case reports are representative of a larger number of
misinterpretations that are currently made in diagnostic laboratories
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offering array CGH testing. Two important messages for the human
(cyto) genetics community can now be drawn.

First, despite the flurry of schemes suggesting that de novo CNVs
can be interpreted and counseled to patients as causal for the
investigated phenotype,1,3,14–16 this is precocious. These guidelines
are based on the (unwritten) assumption that the co-occurrence of
both are a rare phenotype with a rare mutational event is statistically
unlikely. For large, microscopically visible CNVs harboring multiple
genes, this assumption is true. This is the type of rearrangement that
(cyto) geneticists have come acquainted with over the last 50 years.
However, for smaller CNVs, the chance may be significantly higher.
Direct estimates of the genome-wide CNV mutation rates from family
studies have estimated the CNV mutation rate to be in the range of
1.2�10�2 CNVs per haploid genome per transmission at a median
resolution of 150 kb, amounting to about 2.5 CNVs/100 live births.23–25

One study also demonstrated that larger imbalances (4500 kb) are
significantly more enriched than smaller imbalances in the autism
spectrum population as compared with a control cohort of normal
individuals, which is not surprising, as larger imbalances harbor more
genes.26 On the basis of the fourfold increased incidence of de novo
CNVs in this autism population, as compared with the unaffected
siblings, the number of CNVs in the size range of 60–500 kb wrongly
classified as causative can be estimated at about one in five. At present,
a direct estimate of the mutation rate for imbalances o60 kb is
lacking, but it can be conceived that the frequency of de novo mutation
events not leading to developmental anomalies exceeds the number of
events that do hit genes causing such disorders. The indirect estimate
of de novo CNV o500 bp rate is estimated at a minimum of 6�10�2/
diploid genome per generation.24,26 In an extrapolation of the
frequency, CNVs cause Duchenne muscular dystrophy, leading to an
estimate of one deletion every eight generations and a duplication of
1/50 generations.27 As a consequence, smaller de novo imbalances
cannot automatically be classified as likely causal for the investigated
phenotype in the absence of strong evidence from other data sources.
Recently, novel bioinformatic approaches have been developed to aid
the clinical interpretation. These include the incorporation of struc-
tural and functional genomic features to distinguish pathogenic from
benign CNVs.28,29 Although those approaches will greatly improve the
interpretation, they remain indirect. The extensive collection of CNVs
and associated phenotypes in common databases will be a prerequisite
for proper clinical interpretation of CNVs.

A second observation is that a molecular diagnosis can only be as
good as the clinical diagnosis. In the second patient, before having a
thorough clinical work-up, arrays were requested and an apparently
causal CNV was detected. However, completeness of the clinical
information directed the genetic testing, which subsequently enabled
a proper molecular diagnosis to be made. It can be anticipated that in
the near future, full exome or genome sequencing will be offered as a
clinical diagnostic test.30,31 A genomic sequence will offer the apparent
security that a full genome is analyzed. However, a genomic analysis of
all variants will only enable the causative variants to be identified in
relation to a well-defined clinical question.
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