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A state-dependent dynamic network is a collection of elements
that interact through a network, whose geometry evolves as
the state of the elements changes over time. The genome is an
intriguing example of a state-dependent network, where chromo-
somal geometry directly relates to genomic activity, which in turn
strongly correlates with geometry. Here we examine various
aspects of a genomic state-dependent dynamic network. In parti-
cular, we elaborate on one of the important ramifications of
viewing genomic networks as being state-dependent, namely,
their controllability during processes of genomic reorganization
such as in cell differentiation.

cellular differentiation ∣ cellular reprogramming ∣ network controllability ∣
entropy ∣ network order

In recent years, network science has emerged as a powerful con-
ceptual paradigm in the biological sciences. The reason for this

is twofold. First, it has become vital to gain a deeper understand-
ing of the role of interelemental interactions in the collective
functionality of cellular organisms. It has also become increas-
ingly clear that networked systems in biology often intricately
evolve with multiple time scales, a property dictated by how
the element or node dynamics intertwine with global network dy-
namics and functionality. A basic premise in network science is
that the structure of the network (1, 2) influences the dynamical
and functional properties exhibited at the system level. In this
context, the relationship between higher levels of connectivity
in the network and the convergence rate to certain biological
equilibria or limit cycle can be examined.

Here, we highlight the elaborate connections between network
structure and network function in the context of the genome.
In particular, we examine, via empirical findings and abstrac-
tion-based models, the dynamics and control properties of
chromosomal networks during cell differentiation. Structural
reorganization in the nucleus during differentiation can be cap-
tured by considering the genome as a state-dependent dynamic
network where evolving chromosomal geometry determines
network structure. We hypothesize that a moment exists during
terminal cell differentiation, perhaps coincident with cell cycle
withdrawal, where the architecture and transcriptional networks
undergo a unique change in their mutual relationships, to thus
configure a developmentally informed “alignment.” Two models
are used to describe the relationship between architecture and
transcriptional networks. The first proposes that overall core-
gulated gene content (function) emerges according to overall
chromosome associations (form) (Fig. 1A1). In other words
the genome at the chromosomal level self-organizes to facilitate
coordinated gene regulation during differentiation. Thus form
precedes function. The second model proposes that the transcrip-
tional network and coregulated genes precede and shape the
architecture network, or that form follows function (Fig. 1A2).
Under either model, commitment to terminal differentiation is
associated with network alignment, and feedback between the

two networks allows fine-tuning to achieve the optimal cell-
specific network configurations (Fig. 1B).

We hypothesize that reorganization of chromosomal archi-
tecture minimizes the total information content or entropy. Tran-
scription factories are an excellent example of this, as, in princi-
ple, they increase the degree of coordination of the transcription
of gene (3). However, many questions remain, such as whether
transcription factories are stable or whether they spontaneously
and transiently self-organize, and whether developmental state
influences the status and dynamics of transcription factories.
Here, we provide an abstraction-based formalism, based on dy-
namic networks and their controllability properties, to shed light
on the multifaceted aspects of nuclear organization underlying
gene expression. We first expand upon the notion of dynamic
state-dependent networks and their realizations in genomic orga-
nization. Subsequently, we examine the dynamics and control
properties of such networks in the context of cell differentiation.

State-Dependent Networks
Consider the nucleus as a dynamical system composed of many
interacting elements, among them networks having variable inter-
actions with each other, for example, the networks of coregulated
genes and chromosomal adjacencies (4). The emergent property
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Fig. 1. Mechanics of cell specialization. (A1, A2, and B) The relationship
between spatial (form) and transcriptional (function) networks over time
during cell specialization. Alignment of the networks, where the architecture
and transcriptional networks become mutually related. Prior to the aligned
state, we propose two possible models: (A1) overall coregulated gene
content emerges according to overall chromosome associations, or form
precedes function, and (A2) the transcriptional network and coregulated
genes precede and shape the architecture network, or form follows func-
tion. (B) After alignment, feedback between form and function networks
allows fine-tuning to achieve optimal cell-specific network configurations.
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of complex interactions among these elements defines the speci-
fic characteristics of an individual cell (4–6). Thus we describe the
nucleus as self-organized because all interacting elements lead to
a defined state, or signature, of that cell type (7). Networks within
the nucleus could rewire in both space and time, if, for example,
the mutual exchange of information between the coregulated
gene network and the chromosomal interaction network changes
(7). Viewing elements within the nucleus as networks allows
assignment of quantifiable values such as intranuclear positions
of chromsomes, and comparison of these values over time may
then provide a framework for studying the process of differentia-
tion as well as how nuclear organization generally affects the
properties of a cell. Recently, a method called Hi-C was devel-
oped that probes the three-dimensional architecture of whole
genomes by coupling cross-linking of chromosomal sites with
massively parallel sequencing (8). Using Hi-C, spatial proximity
maps of the human genome were constructed at a resolution of
0.1–1.0 megabase pairs in two human hematopoietic cell lines
representing distinct hematopoietic lineages, one derived from
B-lymphocytes and the other an erythroleukemia-derived line.
These maps confirmed the presence of chromosome territories
and the spatial proximity of small, gene-rich chromosomes
(Fig. 2A). The maps also identified an additional level of genome
organization that is characterized by the spatial segregation of
open and closed chromatin to form two genome-wide compart-
ments (Fig. 2B). Although compartment patterns in these two cell
types were similar, many loci were discordant. Moreover, a strong
correlation between the compartment pattern with transcription
and chromatin accessibility was observed (Fig. 2 C1 and C2).
These results demonstrate that open (euchromatin) and closed
(heterochromatin) chromatin domains throughout the genome

occupy different spatial compartments in the nucleus and that
these patterns distinguish specific cell types or states.

To shed light on and formalize how chromosomal organization
in the nucleus can lead to distinct functional and architecturally
distinct networks, the notion of state-dependent networks be-
comes of particular significance. We thus start with a transparent
example that abstracts the underlying phenomena—we use
“cubes” instead of genes and chromosomes for this purpose.
Here we highlight the ramifications of adopting such a point
of view in the context of dynamics and control of genomic orga-
nization. Consider a set of cubes with color-coded faces that can
rotate about their respective geometric centers. Let us assume
that each color represents one type of modality for interaction
with other elements in this system of cubes. Moreover, we assume
that each pair can interact if the correct color sides are facing
each other. As an example, when the elements are color-coded
as in Fig. 2D1, we may require that they can interact only when
the white or the black sides are facing each other. Hence for
the arrangement in Fig. 2D2, we obtain the interaction graph
of Fig. 2D3. Evidently, as the rotational states of these cubical
elements evolve over time, we obtain a sequence of interaction
graphs; in particular, we realize that the corresponding interac-
tion graph is state-dependent and, in general, dynamic. Another
example of a state-dependent graph, of particular relevance to
our biological setting, is the distance-induced interaction model.
In this framework, the interaction or coregulation among various
parts of the genome is a function of their respective relative posi-
tions (see Fig. 2B). Naturally, as the configuration of these ele-
ments evolve in time, the underlying interaction network evolves
in time as well, resulting in a dynamic proximity graph.

More generally, a state-dependent graph is a mapping, gS,
from the system configuration space Q to the set of all labeled
graphs on n vertices GðnÞ; that is,

gS: Q → GðnÞ; [1]

where S specifies the edge–state-dependency set. We will subse-
quently denote gSðqÞ by Gq to highlight the dependency of the
resulting graph on the state q ∈ Q. It is assumed that the order
of these graphs, n, is fixed. Their edge set, EðgSðqÞÞ, however, is a
function of the state q. We now need to specify further how the
state of the system dictates the existence of an edge between a
pair of vertices in the state-dependent graph. This is achieved
by considering the subset Qij ⊆ Qi ×Qj, where Qi and Qj are
the state spaces of nodes i and j, respectively, and requiring that
fi;jg ∈ EðgSðqÞÞ if and only if ðqi;qjÞ ∈ Sij; we call Sij the “edge
states” of vertices i and j. If it is also assumed that the edge sets
are such that ðqi;qjÞ ∈ Sij if and only if ðqj;qiÞ ∈ Sji for all i;j, then
the resulting interaction graph is undirected; in general state
dependency leads to a directed graph. The collections of edge
states for all pairs of nodes in the network constitutes the edge–
state-dependency set S in Eq. 1.

In the context of weighted graphs, an analogous point of view
can be adopted in regard to the state dependency of the edge
weights. For example, we can view the weight on the interaction
link between nodes i and j as being inversely proportional to
their distance, translating to a stronger interaction between the
nodes that are geometrically closer.

Feedback and Control of State-Dependent Networks
Previously we found that during differentiation of a hemato-
poietic progenitor into the erythroid or neutrophil lineages, the
degree of intranuclear order changes, as captured by computing
the total entropy in the system (7; see also Fig. 3). As the
progenitor commits to either lineage, order decreases—entropy
increases—to a minimum, which we define as the metastable
state, then increases and eventually stabilizes at greater order
than that of the original progenitor as terminal differentiation
is achieved (Fig. 3). The metastable state is a necessary phase

Fig. 2. The open and closed chromatin domains throughout the genome
occupy different spatial compartments in the nucleus. (A) Image of an inter-
phase nucleus labeled by spectral karyotyping (SKY). All chromosomes are
labeled with a unique color to visualize their territories. Analysis of SKY data
reveal spatial relationships between each pair of chromosomes. (B) Correla-
tion map of a chromosome generated from Hi-C. A correlation matrix illus-
trates the correlation [range from 1 (blue) to þ1 (red)] between the
intrachromosomal interaction profiles of every pair of 1-Mb segments along
each chromosome. (C1) The transcription profile along the chromosome. (C2)
The open and closed chromatin profile along the chromosome (based on
DNase I hypersensitivity). The two dominant proximity patterns, red and
blue, correlate strongly with open and closed chromatin. (D1–D3) A state-
dependent network representation of proximity patterns. The faces of each
element are color-coded (D1); the elements can exchange information
when the same color-coded sides are facing each other (D2); the interaction
graph associated with D1 (D3).
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transition for advancement to a more highly ordered state that
characterizes more advanced (committed) stages of cellular
differentiation. This may be a general property of differentiation
in other lineages as well, where cell-specific organization of the
nucleus emerges from mutual interactions between gene
coregulation and chromosomal architecture (Fig. 1B). As the
nucleus “reorganizes,” loci containing up-regulated genes move
from a repressive to an active nuclear compartment, whereas loci
containing down-regulated genes move in the converse manner.
Global reorganization of chromosome proximities also occurs
during differentiation (3). However, it is unclear whether local
changes in positioning, for example, looping of loci from chro-
mosome territories, drive global reorganization on the whole
chromosome level, or vice versa. The two models we discussed
previously are compatible with this scheme. Specific acquired
mutations could interfere with this process and direct cells down
an alternative pathway, particularly if an additional perturbation
were to occur in the metastable state. Bypassing network align-
ment may lead to an alternative quasistable, or less random, or-
dered state that might in some cases give rise to further mutations
and emergence of almost any conceivable abnormal phenotype.
We hypothesize that the intranuclear systems that are transition-
ing from a less-ordered state to a highly ordered state are losing
controllability, or the ability to respond to specific external cues.
A highly ordered system is generally less controllable than a
disordered one (9). The notion that the metastable state is the
most controllable one suggests the possibility that it is likely to
be more responsive to therapeutic interventions.

In the context of state-dependent networks, consider the rela-
tive translational configuration of chromosome i with respect to
chromosome j at time instance k, denoted by eiðkÞ. The config-
uration of the chromosomes induced a geometric network (either
a weighted network or with the help of a threshold, a graph); this
network will be referred to as the cell proximity networkGqðkÞ, sub-
sequently denoted by QðkÞ. It is convenient to view this network
as the structural organization of the cell. In view of our earlier
discussion, we note that the cell proximity network is a state-
dependent graph that is induced by the relative configurations
of various chromosomes in the cell. LetEðkÞ denote, on the other
hand, the gene regulatory network in the cell, which can be
viewed as the functional organization of the cell. Moreover, these
two cell networks QðkÞ and EðkÞ are not only related, but are also
highly correlated via feedback (Fig. 4).

Introducing Control: MyoD and GATA1
Adopting the point of view of state-dependent networks, in con-
junction with the premise that form and function of the cell are
directly correlated, allows us to consider control mechanisms of
the chromosomal network that derive the network geometry
from an initial configuration toward a specific cell type. This is
particularly exemplified by transcription factors that have broad
influence on cell fate, such as MyoD. In addition to its role in

myoblasts as a transcription factor regulating expression of
skeletal muscle genes, MyoD can convert fibroblasts to skeletal
muscle cells by activating the skeletal muscle differentiation
program. Recent studies indicate that MyoD binds and induces
histone modifications at tens of thousands of sites in the myoblast
prior to transcription of most skeletal muscle genes, suggesting a
potentially more global role in cell specification (10). Another
“master regulator” is GATA-1, a zinc finger transcription factor
essential to maintenance of the erythroid and megakaryocyte
lineages (11). GATA-1 may have a global impact on nuclear
organization by catalyzing interactions within and among the
coregulated gene and chromosome topology networks. Cheng
et al. have used ChiP-Seq methods to identify the spatial distribu-
tion of cis-regulatory elements targeted by GATA-1, and they
determine criteria for distinguishing between target sites that
promote activation versus repression of genes during erythroid
development (12). The broad influence of these transcription
factors provides a platform for understanding control over devel-
opment of specific cell types. The proposed framework may also
help identify previously uncharacterized master regulators that
globally influence cell fate.

Embedding Dynamics and Control in State-Dependent Networks.
Viewing the network architecture dependent on the node dy-
namics allows for a more explicit reasoning about the dynamical
properties of the network geometry itself, and via the feedback
in Fig. 4, its function. In the special case where the interaction
between a pair of nodes i and j is dictated by their geometric
states qi and qj, the dynamics at the level of the state induces
a corresponding dynamics at the network level, which in turn
can further influence the evolution of the geometric states of the
nodes. Representing the combined dynamics in continuous time
assumes the form

_qðtÞ ¼ f ðqðtÞ;QðtÞÞ and _QðtÞ ¼ gðqðtÞ;QðtÞÞ; [2]

where qðtÞ ¼ ½q1ðtÞT;⋯;qnðtÞT �T and QðtÞ represent, respectively,
the geometric state of the genome and the cell proximity-induced
interaction network, at time instance t. The exact form of func-
tions f and g in Eq. 2 lead to distinct dynamical features for the
evolution of the geometric state and interaction network, parti-
cularly in relation to time scales, decomposability, and state and
network equilibria. Such state-dependent network models lead
to a unique set of challenges to the field of genomics as well as
systems and control research. In order to illustrate some of these
challenges via a simple example, and highlight the utility of a
control theoretic perspective on genomic organization, consider
a state-dependent proximity network. Assume that the nodes in
the network have adopted a diffusion-like interaction scheme for
synchronization of their translational dynamics, which possibly
after a coordinate transformation, has resulted in the perturbed
diffusion dynamics on the interaction network,
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Fig. 3. Dynamics of order during cell specialization.When a progenitor com-
mits to either the erythroid (black) or the neutrophil lineage (blue), there is a
concomitant increase in order, eventually stabilizing at a level greater than
that of the original multipotent progenitor (7).

Fig. 4. Feedback between cell function and cell proximity network; the
initial conditions Qð0Þ and Eð0Þ are determined following an intricate
alignment between form and function.
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_qiðtÞ ¼ ∑
j¼i

wijðqjðtÞ − qiðtÞ − q̄ijðtÞÞ;

where qiðtÞ represents the translational coordinate of node i in
the cell (with respect to some coordinate frame), which in
turn evolves according to a local weighted gradient induced
by the other nodes, including an offset induced by an ambient
potential.*. This local interaction model leads to the collective
dynamics of the form

_qðtÞ ¼ −ðLwðGÞ ⊗ IÞðqðtÞ − q̄ðtÞÞ; [3]

where q̄ðtÞ ¼ ½q̄1ðtÞT;⋯;q̄Tn ðtÞ�T , q̄ijðtÞ ¼ q̄iðtÞ − q̄jðtÞ, LwðGÞ is the
weighted Laplacian of the network, I denotes the 3 × 3 identity
matrix, and “⊗” is the matrix Kronecker product. This model has
been extensively studied in recent years due to its ramification for
distributed estimation and control (9). In order to examine the
state-dependent extension of the above diffusion model, letG de-
note the set of graphs of order n with vertex set V ¼ f1;2;…;ng
and edge set E ¼ fijji ¼ 1;2;…;n − 1;j ¼ 2;…;n;i < jg, with the
weighting function w: R3 ×R3 → Rþ, assigning to each edge ij
a function of the distance between the two nodes i and j. Thus
we have wij ¼ wðqi;qjÞ ¼ f ðdijÞ, where dij ¼ ∥qi − qj∥ and f ðdijÞ ¼
dαij for some α < 0. In this case, the interaction between a pair of
nodes weakens as they drift apart. This dependency of the edge
weights on the relative distances between the nodes is in direct
correspondence with our earlier discussion on the role of geno-
mic organization. In the setup of the dynamics (Eq. 3),

½LwðGÞ�ij ¼
8<
:

−wij if i ≠ j;

∑
s≠i

wis if i ¼ j:

Depending on the exact form of the edge-weight dependency, the
dynamic network evolution has a distinct character. For example,
the stability of the state as well and the network equilibria depend
on the weighting functions, assigning how the edge weights
depend on the state of the nodes. Moreover, the initial conditions
for the geometric states are reflected in the resulting state
equilibrium and by association in the network geometric and
functional equilibria.

Control of State-Dependent Networks. Consider now the “influ-
enced version” of the diffusion dynamics over the network
(Eq. 3), namely,

_qðtÞ ¼ −ððLwðGÞ ⊗ IÞ þ DiagðBwÞÞqðtÞ þ BwuðtÞ; [4]

where u denotes an external influence on the network, the
DiagðBwÞ is a diagonal matrix with the vector Bw on its diagonal,
and Bw indicates that the input matrix that might also be state-
dependent. Within the context of this example, a few observations
are pertinent: (i) whereas the state-independent diffusion dy-
namics over a connected network has a one-dimensional set of
equilibria (namely, the translation of the span of the vector
of all ones), the state-dependent dynamics might have multiple
distinct equilibria as a function of the input u, (ii) the presence
of an external influence can potentially drive the dynamics from
one equilibria to the next, leading to a new network formation.
In order to assess the network configuration that is more amen-
able to external influence, the notion of controllability Gramian
becomes particularly useful and provides a direct connection
with the role of network entropy in the metastable state of the
cell discussed earlier (Fig. 3). Controllability Gramian for a net-
work measures how controllable certain modes of the network

are and which modal directions take less and more energy
to be steered (Fig. 5). In the case where interaction between
the nodes is inversely proportional to their distance, the closer
the nodes come together, they have higher interaction with
each other, and it is conceivable that the network becomes less
controllable by an external signal such as MyoD (Fig. 6). Using
linearization of the state-dependent network, the uncontrollabil-
ity of the network can also be directly related to its network
structure, in particular, to its symmetry. In general, symmetry in
the network with respect to the external input leads to uncontrol-
lable networks and singular controllability Gramians (Fig. 7 A
and B). In the meantime, the controllability Gramian directly

Fig. 5. Controllability Gramian characterizes the minimum energy input to
the linear system _x ¼ Ax þ Bu that steers the initial zero state at infinite past
to a point on the unit ball at t ¼ 0 (Top). Moreover, this Gramian defines how
inputs on the unit sphere (Bottom Left), such as noise or external signals, map
to system states: Directions that are more controllable are characterized by
elongated ellipsoidal axes, whereas the shortened axes are less controllable
directions (Bottom Right).
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Fig. 6. A control signal is introduced for a diffusion-like protocol on state-
dependent weighted networks; the Euclidean distance matrices obtained
from the experimental data are processed via a Euclidean embedding algo-
rithm to obtain a realization for the network, which is then subjected to
injected signal for the duration of 1 s. The controllability of the graph with
respect to this input is then measured with respect to the two dominant
directions over an interval. The network assumes a configuration that has
a higher level of controllability with respect to the initial configuration, in
direct correspondence with the metastable configuration during cell differ-
entiation. Depending on the initial state of the nodes and their relative states
with respect to the injected signal, the network’s controllability can assume
distinct profiles: initial higher levels of controllability during the signal injec-
tion (Upper Left) as measured by the volume of the controllability ellipsoid in
the two dominant directions, or initial lower levels of controllability followed
by a higher level controllability (shown on the subsequent panels). The non-
smooth segment in each figure corresponds to the removal of injected signal.

*The potentially time-varying offset also ensures that the network equilibrium assumes a
definite geometry.
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relates to how noise injected in the network maps to the state of
the network and thus can be directly related to the network cov-
ariance and entropy. The general observation is that a higher
degree of controllability relates to the determinant of the network
covariance matrix—which in turn, translates to interpretation of
network controllability in terms of the network entropy.

Control from a Subset of Nodes. Next, consider the controllability
of the network in the neighborhood of the linearization point
and the corresponding controllability Gramian structure. In this
context one can examine local controllability of the state of the
network from a small subset of nodes in the graph. It turns out
that the structure of the network, as viewed from that node, has
a direct implication for the system properties of the network,
including its controllability. In our recent work, we have further
refined the notion of symmetry to that of nodal domains, which
refers to the partition of the network in terms of the signs of the
entries of the eigenvectors of the combinatorial Laplacian (9).
Nodal domains have historically been studied in the context
of the Dirichlet problem and have been more recently tailored
toward domains that are specified in terms of graphs (13).

Consider again the diffusion dynamics (Eq. 4) with augmented
inputs, e.g., MyoD. Using this abstraction-based model, we can
now characterize “most influential” external interactions with
the network. That is, we are interested in identifying strategically
optimal locations for the external input to exert influence, which
in turn is highly dependent on the number of external signals
and the structure of the network. For example, in the case of
one external agent, it might be advantageous to locate this agent
close to some “central” location in the network, where the dis-
tance (the number of edges) needed to be traversed in order
to reach the farthest node, is minimum. However, in the case
of two external signals, it is conceivable that their optimal place-
ment would be at two peripheral locations in the network. This
externally influenced diffusion dynamics (Eq. 4) that accepts
inputs from external signals provides an ideal abstraction-based
setting for a system-theoretic characterization of the influential
location(s) in a genomic network. An instrumental construct
for this purpose is the controllability Gramian. Consider a line-
ar-time invariant model, with system and input matrices A and B,
respectively, and a state denoted by x. Define the controllability
operator Ψc: L2ð−∞;0� → Rn by

u ↦
Z

0

−∞
e−AτBuðτÞdτ;

which can be viewed as the response of the linear system with
initial condition xð−∞Þ ¼ 0 to an input u ∈ L2ð−∞;0�;L2ð−∞;0�
denotes the space of square integrable functions with ð−∞;0�
as their domain. Given the initial condition xð0Þ with unit norm,
it is now desired to find the smallest norm control input
u ∈ L2ð−∞;0� that solves the functional equation Ψcu ¼ xð0Þ;†
that is, it is desired to find the minimum norm control that steers,

respectively, and a state denoted by t ¼ −∞ to the state xð0Þ on
the unit circle at t ¼ 0 (14, 15); see Fig. 5.

Standard arguments in linear systems theory then leads to
two observations: assuming that the linear system is controllable,
(i) the minimum norm control is parameterized by u ¼ Ψ�

cX−1
c x0

(Ψ�
c is the adjoint of Ψc), with norm xT0X

−1
c x0, where Xc, the

controllability Gramian, is the positive definite solution of the
matrix equation

AXc þ XcAT þ BBT ¼ 0;

and (ii) the states reachable with control inputs with norms
bounded by one are characterized by the ellipsoid
fyjy ¼ X1∕2

c xc;‖xc‖ ≤ 1g, whose axes are the eigenvectors of the
controllability Gramian Xc. In fact, if Xc has eigenvalues λi
and λj such that λi ≫ λj, then there is more “stretching” in the
direction of the normalized eigenvector corresponding to λi as
compared with the normalized eigenvector corresponding to λj.
That is, the ith direction is deemed “more controllable” than
direction j.

The upshot of the aforementioned discussion is the following:
The selection of the location for injecting steering signals in the
network partitions the underlying network in Eq. 4, resulting in
system and input matrices that, in turn, determine the controll-
ability Gramian Xc. The controllability Gramian, on the other
hand, characterizes which directions are more controllable than
others. An influential location in the network is thus the node in
the graph that leads to a controllability Gramian with a spectrum
that stays away from the origin in the desirable directions. More
precisely, suppose that in Eq. 4, we denote by ~AðvÞ and ~BðvÞ the
system and input matrices that are obtained when v is selected as
the influenced node, and XcðvÞ is the resulting controllability
Gramian. Then the optimization problem

maximizevα subject to λiðXcðvÞÞ ≥ α; [5]

quantifies the most influential node in the network when mea-
sured with respect to providing most controllability in the ith
direction. We note that the optimization problem (Eq. 5) can be
extended to the case where more than one external signal (e.g.,
transcription factors) are presented to the network. Adopting this
point of view for controlling cell organization provides a unifying
perspective on cellular processes such as differentiation as well
as a framework for more systematic reasoning on the role and
efficiency of input signals in steering cell organization to particu-
lar network equilibria (Fig. 8). Furthermore, our methods may
provide a means of evaluating and refining cell reprogramming
strategies that rely on ectopic expression of transcription factors,
such as derivation of iPS cells from a wide variety of differen-
tiated cell types (16).

Summary
The dynamics and control of state-dependent graphs provide
the basis for our broad hypothesis that nuclear reorganization
occurs at the time of cellular specification and both precedes and
facilitates the orchestrated activation of transcriptional networks
associated with subsequent cell differentiation. The processes of
differentiation and reprogramming are intimately related, and
therefore they may have similar, or at least mutually resonating,
reception to control. Recent breakthroughs in reprogramming
somatic cells back to an ES cell-like state using just four genes
(16), as well as more direct reprogramming routes, for example,
the overexpression of the master regulator MyoD (17) to gener-
ate myogenic cells or a combination of transcription factors to
elicit neuronal differentiations (18), have all shown how cellular
differentiation systems can be controllable at some early deter-
minative step. Both of the foregoing strategies of reprogramming
rely on expression of transcription factors to induce global

A 

B 

Fig. 7. A network view of cellular reprogramming. Network diagrams A
and B represent uncontrollable and controllable networks for the diffusion-
like dynamics on graphs with one injected signal (black filled node).

†Note that Ψc is an operator on a function space and u is a function of time.
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changes, and it is likely that these changes are reflected in nuclear
organization. From a control point of view, cellular reprogram-
ming changes nuclear organization, thereby creating an environ-
ment that propels a system into a desired state. We have shown
that control over systems can be acquired by altering nuclear
organization. Our methods provide a means to identify critical
subsets of nodes within state-dependent networks that lead to a
specific specialized state through cellular differentiation. These
nodes are highly relevant to mechanisms of reprogramming, or
acquisition of control. Our modeling asserts that their defining
characteristic will be that recreating their specific configuration
in an alternative cell type will inevitably lead it to the specialized
state of the original cell through the same or a highly similar

differentiation pathway. Adopting such a state-dependent net-
work point of view to genome organization would also provide
a more systematic means of reasoning about therapeutic inter-
ventions for cell processes that have become “out of control” such
as cancer.

Controllability of dynamic state-dependent networks provides
an intriguing previously undescribed vista into steering complex
and multifaceted interactions in the genome toward biologically
desirable configurations. Network controllability can be forma-
lized in various distinct forms. For example, in structural controll-
ability (see, for example, ref. 19), the network is assumed to be
controllable if arbitrary weights on certain permissible interaction
links lead to a controllable configuration. As the dynamic and
state-dependent nature of the chromosomal network requires
reasoning on the “degree” of controllability in a setting where
edges can appear or strengthen in a state-dependent dynamic
manner, we have adopted the use of system-theoretic Gramians
to examine and formalize network response and controllability
properties. In the future, it will be important to examine the con-
tribution of various notions of controllability for understanding
distinct aspects of cell organization and differentiation, as well
as the complementary means of viewing cell reorganization via
local energy optimization principles and game theoretic network
formation.

Our methodology also has applications for designing influence
mechanisms, e.g., marketing strategies, on social networks. More-
over, in the case where a disease spreads over a network of inter-
acting individuals and populations, our methodology can be used
to design vaccination strategies to influence the progression of an
infectious disease. In the context of engineering, the correspon-
dence between the notions of network controllability and entropy
has direct implications for designing robust robotic networks, for
example, those that are less controllable (i.e., more secure) with
respect to external perturbations.
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Fig. 8. Control from a subset of nodes. With specific transcription factors
(TF) as input signals, primary human fibroblasts (S1) transition to the meta-
stable state (S2), where bifurcation takes place and two possible paths
emerge. One leads to the normally specialized state (S3), and the other
to an abnormally specialized state (S5). Under our hypothesis, interventions
applied at S2 can influence the path taken. TF targeting a particular subset
of nodes can also drive a transition from state S3 to another normally
specialized state S4. The red and green circles denote the targeted nodes
in each state.
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