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Gene regulatory networks allow the control of gene expression
patterns in living cells. The study of network topology has revealed
that certain subgraphs of interactions or “motifs” appear at anom-
alously high frequencies. We ask here whether this phenomenon
may emerge because of the functions carried out by these net-
works. Given a framework for describing regulatory interactions
and dynamics, we consider in the space of all regulatory networks
those that have prescribed functional capabilities. Markov Chain
Monte Carlo sampling is then used to determine how these func-
tional networks lead to specific motif statistics in the interactions.
In the case where the regulatory networks are constrained to
exhibit multistability, we find a high frequency of gene pairs that
are mutually inhibitory and self-activating. In contrast, networks
constrained to have periodic gene expression patterns (mimicking
for instance the cell cycle) have a high frequency of bifan-like
motifs involving four genes with at least one activating and one
inhibitory interaction.

essential interactions ∣ genetic switch ∣ transcription factors

Evolutionary forces have shaped living organisms since the
beginning of life. It is thus not surprising that the framework

for understanding features in today’s organisms is often based on
considering the history of these organisms: a remarkable feature
found today may be the trace of an evolutionary trajectory. But
one can also take a different perspective, one in which design
constraints may play a significant role. The expectation is then
that the architecture of living organisms depends not just on their
origin, but also on their functional capabilities. In the present
context, we are concerned with biological networks. Are the con-
straints associated with network functionality major determinants
of network architecture? We address this question in this paper,
albeit using a somewhat narrow notion of functionality based on
the output patterns produced by networks.

Our focus here is on gene regulatory networks (GRN), the set
of interactions between genes. These interactions along with the
gene expression machinery allow living cells to control their gene
expression patterns. In the last decade, genetic interactions have
been measured, modified, engineered, etc., and so quite a lot is
known about how any given gene can affect another’s expression.
Furthermore, small gene networks have been designed to imple-
ment simple functions in vivo (1, 2), and much larger sets of
interactions have been reconstructed in a number of organisms
(3–5). From these large networks it has been possible to show that
several “motifs”—subgraphs with given interactions—arise far
more often than might be expected (6–9). One of the most stu-
died motif is the so called Feed Forward Loop or FFL, a graph
based on three genes where the first regulates the second, and
both the first and the second regulate the third. Another example
is the bifan motif in which two genes control two others. Biolo-
gical functions have been proposed for these motifs (10, 11)
which give them some meaning, but one may ask whether other
motifs could perform the same functions and what level of enrich-
ment might be expected if function were the sole cause of motif

overrepresentation. Unfortunately, the functional capabilities of
GRN and the constraints they must satisfy (e.g., kinetic response
characteristics or robustness to noise) are still poorly understood,
so such questions cannot be addressed in a truly realistic frame-
work. Instead, we will (i) work within a plausible model of tran-
scriptional regulation, (ii) impose functional constraints on the
patterns of gene expression, and (iii) determine which motifs
emerge when considering the space of all possible functional
GRN. This particular task is related to previous work that used
genetic algorithms or simulated annealing to design genetic net-
works having given functional properties (12–14). Those studies
found that the optimization procedures indeed led to particular
architectures. Our approach differs by not relying on a design
procedure: we want to get away from any dependence on the
optimization algorithm and see how functional capability on its
own constrains the possible architectures. In this framework, two
types of constraints will be applied: we will impose either a set of
steady-state expression patterns, or a time periodic pattern of
expression motivated by previous studies of cell cycling. Interest-
ingly, we find very different motifs for these two types; in Alon’s
(15, 16) terminology, the first type leads to mutually inhibitory
pairs acting as bistable switches, while the second type leads to
bifan, diamond and four point cycle motifs.

Our model of transcriptional regulation is simple enough to be
used for illustration and, hopefully, for identification of generic
features of genetic networks. Of course it is only a model and
it does not include many known aspects of regulation such as
posttranslational modifications or chromatin remodelers; never-
theless it is rooted in biophysical reality to avoid ad-hoc assump-
tions. The inclusion of inhibitory interactions in this framework is
a major qualitative advance with respect to our earlier work (17).
Although technically simple, it gives access to questions arising
when networks have complex expression patterns, and in particu-
lar it allows one to get insights into mechanisms of motifs emer-
gence. Remarkably enough, we find that the structure of a fairly
large genetic network is controlled by the cooperative action of
small units—motifs—although the selection pressure is exerted
only on the network as a whole.

We begin by describing our model and follow by examining its
properties, focusing especially on the kinds of motifs that emerge
when imposing functional capabilities on the networks (in prac-
tice, we impose gene expression patterns). Then the dependence
of the motifs on these imposed patterns is exhibited. We also
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outline in the SI Text a way of taking into account possible coop-
erative behavior among different transcription factors.

Model
Transcription Factor Binding.We start with N genes coding for tran-
scription factors that may influence each other’s expression. To
keep the model as realistic as possible, we include the known bio-
physical determinants of transcriptional control. In particular,
the binding of a transcription factor (TF) to a site is described
thermodynamically (18–20), that is through a free energy that
depends on the mismatch of two character strings of length L,
one for the TF and one for the binding site. Up to an additive
constant, this free energy in units of kBT is taken to be εdij where
dij is the number of mismatches, T is the temperature, and kB is
Boltzmann’s constant. The parameter ε is a penalty per mismatch
which has been measured experimentally to be between one and
three if each base pair of the DNA is represented by one char-
acter (21–23). Also, by comparing to the typical number of base
pairs found for experimentally studied binding sites, one has
10 ≤ L ≤ 15. For all the work presented here, we use ε ¼ 2 and
L ¼ 12, but we have checked that our conclusions are not specific
to these values.

For simplicity of the framework, we prevent different TF types
from accessing a same site. To this end we standardize the reg-
ulatory region of each gene as illustrated in Fig. 1. In Fig. 1, the
gene gi (producing the transcription factor TFi) has a regulatory
region ofN binding sites, one dedicated to each of theN different
TF types. Suppose that there are nj TF molecules of type j. We
assume these and only these TFs can bind to the site j in gene i’s
regulatory region and of course, a site can be occupied by only
one TF molecule at a time. For the corresponding occupation
probability Pij we use the result of ref. 20:

Pij ¼
1

1þ 1∕ðnjW ijÞ
; [1]

where

Wij ¼ e−εdij [2]

is the Boltzmann factor. Pij depends strongly on dij and is appre-
ciable only when the mismatch is small, which is an a priori
unprobable event. Nevertheless, small mismatches will arise in
functional genotypes through the selection pressure.

Transcriptional Control. Again for pedagogical reasons, we shall
consider that all genes have the same maximal transcription rate;
denoting by n the associated maximum number of TF molecules
in the system of a given type, we shall set nj ¼ Sjn where Sj is the
current level of transcription for gene j, normalized to be between
0 and 1. Experimentally, n is known to range from order of unity
to many thousands (24–26). Here we shall use n ¼ 1;000, but
again we have checked that using values ten times smaller or
larger does not change our conclusions.

The expression Si of gene i will vary with the presence of tran-
scription factors bound in its regulatory region, but present
knowledge does not provide us with quantitative information
on this dependence. Much past modeling work (27–31) has dealt
with this obstacle by considering that each occupied binding site
provides an activating or inhibitory signal and that all signals are
then added and compared to a threshold: below (respectively
above) this threshold, transcription is off (respectively on). How-
ever, more recent experimental work and associated modeling
(32, 33) suggests that transcription rates in vivo can exhibit graded
responses involving no cooperative effects. Our work thus follows
(17, 32, 33) by considering continuous transcription rates deter-
mined solely by the independent probabilities that binding sites
in a regulatory region are occupied.

Recall from Eq. 1 that Pij is the probability that the binding site
j of gene i’s regulatory region is bound by a TF. In the absence of
inhibitory effects on this regulatory region, we take the transcrip-
tion rate to be (up to an arbitrary scale) the Probability of
OCCupation or “POCC” (34) of the regulatory region. However,
if one of the interactions j is inhibitory, we consider that the
presence of a TF of type j bound to its binding site will shut down
the transcription; in effect, inhibitors act as vetoes on transcrip-
tion in this picture. Then, denoting by Si the expression level of
gene i, we set

Si ¼ ½1 −
Y

j

ð1 − PijÞ�
Y

j0
ð1 − Pij0 Þ; [3]

where j runs over activating interactions and j0 over inhibitory
interactions. (See SI Text for a detailed derivation.)

The transcriptional dynamics is then defined as follows. Just
like in many other modeling frameworks, we take time to be dis-
crete (27–31); at each time step we first update the Pij in Eq. 1
(using nj ¼ nSj) and then update the Si in Eq. 3. These updates
are deterministic, and in general the transcriptional trajectory
goes towards a fixed point (corresponding to steady-state expres-
sion levels) or towards a cycle (corresponding to periodic behavior
of the expressions in time). (See SI Text for additional details.)

Genotypes and Phenotypes. The TFs and their binding sites are
associated with character strings as illustrated in Fig. 1. We are
interested in the space of all GRN, which means here all possible
character strings. However, it is easy to see that, within our mod-
el, all choices of TF character strings are equivalent, so we can fix
them without any loss of generality. Any given GRN is then com-
pletely specified by the N2 character strings of its binding sites
and by the specification of the activating or inhibitory nature of
each interaction. DNA bases come in four types, A,C,G, and T,
and so do DNA base pairs because of Watson-Crick pairing. We
thus use an alphabet of four characters for our strings, one for
each base pair. This set of strings is referred to as the “genotype”
of the GRN. Clearly the most relevant quantities in a genotype
are the N2 mismatches dij, one for each binding site. A genotype
can then usefully be represented by this N by N matrix of mis-
matches or by the corresponding matrix of interaction strengths
Wij, plus the sign (activating vs. inhibitory) associated with each
of these interactions.

At any time step t, the pattern of mean gene expression can be
represented by the vector SðtÞ ¼ fSjðtÞgj¼1;…;N . We shall consider
two classes of constraints to be imposed on our GRN. The first is
motivated by the multitude of cell types in multicellular organ-
isms: we want the GRN to be able to have fixed-point expression
vectors that are very close to 2, 3, or more target patterns, each
associated with a different tissue. Note that some such patterns
involving up to a dozen or so genes have been inferred in various

Fig. 1. Schematics of the model. Each gene’s regulatory region contains N
binding sites, one for each of the N transcription factors produced by the N
genes. The transcription factor TFj binds to its different binding sites with
interaction strengths Wij that depend on the mismatches dij between
the associated character strings. If transcription is not blocked by a bound
inhibitory TF, the transcription rate of gene i is determined by the probability
of occupation [POCC (34)] of its regulatory region.
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organisms (35, 36). The second kind of function we shall impose
is for the vector to follow tightly and step by step a sequence of
patterns that forms a target cycle. Such cases of cycling GRN
have been studied previously within threshold and boolean mod-
els (30, 37). For each type of functional constraint imposed, we
refer to the “phenotype” of the GRN as (i) the different fixed-
point expression vectors for the first case; (ii) the cyclic pattern
of expression vectors for the second case.

Methodological Issues. Our goal is to understand how the pheno-
typic properties—having for instance the networks produce parti-
cular expression patterns—constrain the genotypes, in particular at
the level of the architecture of the genetic interactions. For that, we
generate in silico representative samples of genotypes having the
desired phenotypes. This computational framework is based on the
Markov Chain Monte Carlo (MCMC) method. MCMC allows one
to sample an essentially arbitrary space according to an arbitrary
distribution. The heart of the technique is to generate a biased
random walk in the space, enforcing at each step the accept/reject
Metropolis rule (38); this rule, in spite of its simplicity, ensures that
at large times the sampling has the desired distribution. The ap-
proach is well known in statistical physics, so details are given
in the SI Text. Note that, in contrast to a number of other ap-
proaches such as genetic algorithms, we do not work with popula-
tions. Rather, by performing a random walk for a single genotype,
the Metropolis rule used in the MCMC allows for a controlled
sampling of the space of all genotypes. Of special importance is
the fact that the MCMC introduces no bias: the a priori specified
distribution is obtained exactly. In our case, this distribution is
obtained by imposing our constraints on the GRN’s expression
patterns only, there is no other input. The situation is completely
different when using optimization or population based approaches
such as genetic algorithms: there the distributions obtained are
unknown and uncontrolled.

Another point worth mentioning is that our equations for tran-
scriptional dynamics involve the average number of transcription
factors at a given time, and work with the probability of occupa-
tion of each binding site. Thus possible effects of fluctuations are
not taken into account, and so one can say that our approach
remains of the mean-field type. Nevertheless, we have checked
that realistic fluctuations would not significantly influence our
conclusions.

Results
Abundance of Functional GRN. The space of all GRN is finite in our
framework because each genotype is specified by N2 character
strings of length L and the signs of the associated interactions.
Is the constraint of having a given phenotype very stringent?
We have generated millions of random genotypes and find that
none of them have even approximately the phenotypes we have
selected for our study. Thus, as in other gene network models
(39), “functional”GRN constitute only an extremely small subset
of all GRN; such extremely rare GRN may very well be atypical
in many of their properties. In spite of this fact, it is also true that
a huge number of different genotypes do lead to the desired
phenotypes: our MCMC is able to produce seemingly as many
different functional GRN as we want. This feature arises also
in other genotype to phenotype mapping models such as RNA
neutral networks (40).

Sparseness of the Essential Interactions. Given a functional GRN,
the interaction from gene j to gene i is considered essential if the
setting of its strength Wij to zero changes the phenotype, i.e.,
takes one away from the desired expression patterns. Define the
essential network for that GRN via the set of oriented edges Eij
such that the interaction from gene j to gene i is essential. Such an
essential network summarizes the key interactions of a GRN. We
find that these essential networks are sparse.

In the case of the multistability phenotype, we impose n ¼ 1, 2,
3,… target fixed points. In previous work (17) on a simpler model
with n ¼ 1 and no allowance for inhibitory interactions, we found
that the great majority of genotypes had just one essential inter-
action Eij for each gene i. In the present model this sparseness
property also holds. As we impose more fixed points, the mean
number of essential interactions grows, but again each gene i will
typically have just a few essential interactions (and almost never
none), with a mean of 1.2, 1.5, 1.9 for n ¼ 2, 3, and 4 fixed points
at N ¼ 16. Furthermore, these means are quite stable if one in-
creases N. One gets analogous results by forcing the expression
vector to cycle through given patterns. For our purposes, genes
are put on a circle and the cycle shifts the “on” genes by a given
number of steps clockwise. Again, we find that only a small fraction
of the interactions are essential. (See Table S1 for a brief sum-
mary). Furthermore, the number of interactions per gene that
are essential hardly changes as one increases the number of genes.

Qualitatively, the observed sparseness can be easily under-
stood: at the level of the GRN, introducing an additional essential
interaction generally means increasing a weight Wij. That in-
crease has a high entropic cost as can be seen from the mis-
matches: there are few strings that have low mismatch values
and many that have high mismatch values. Our result is in sharp
contrast with what would arise in a model without molecular
modeling of the interactions. Sparseness would then have to be
enforced in an ad-hoc way because biological networks are indeed
sparse experimentally (41, 42).

We have also investigated how essential interactions are
divided according to the sign of the interaction. Interestingly,
we find that a clear majority act as activators rather than as re-
pressors. The bias is particularly strong in the case of phenotypes
associated with n ¼ 2, with a ratio of 6 to 1, and gets weaker as
n increases. The ratio is about 2 to 1 for the GRN with cyclic
phenotypes (see Table S1).

Topologies of Essential Networks.Given the large number of essen-
tial networks obtained from the functional GRN sampled by the
MCMC, we have determined which essential network topologies
arise. In Fig. 2 we display the most frequent topology when
imposing n ¼ 2 and four fixed-point expression patterns. As n
increases, the connections become more complex as expected; at
small n much of the topology is tree-like; to a large extent, this
reflects the sparseness and parsimony of these essential networks:
a few master genes can cooperate to switch into one expression
pattern, and then these few genes can drive all the other ones as
slaves. In Fig. 3 we show the most frequent topology arising when
imposing the cyclic phenotype on the GRN. The visual inspection
immediately reveals the role of the clockwise feed-forward inter-
actions driving the shifting expression patterns.

Another interesting feature that emerges is that there are
many different essential networks produced by our MCMC
sampling (see SI Text for a quantitative study of this point). This
finding demonstrates that the same functional capability can be
obtained from a very large number of distinct essential networks.
Note that we saw before that there are many GRN that have the
same phenotype, but extending this to essential networks is non
trivial. Thus for a given phenotype, we have many genotypes,
many essential networks, and even many topologies of essential
networks! This property is in close analogy with the high degen-
eracy of the genotype to phenotype map found in a number of
other models of gene regulation (39). Furthermore, by construc-
tion of our MCMC, our networks are connected by a succession
of point mutations, showing that gradual changes that are nearly
neutral (i.e., keep the phenotype nearly constant) can lead to
large evolutionary changes at long times, be it at the genotype
level, the essential network level, or even at the level of essential
network topologies.
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Functionality Leads to Motif Selection. Working with the full
description of genotypes is cumbersome and difficult, whereas
focusing just on essential networks provides a great deal of intui-
tion, in particular for what features are relevant for functionality.
The price to pay for this simplicity is some loss of information; for
example, two interactions separately may be nonessential but
nevertheless if one removes both of them the network’s function-
ality may be lost.

To obtain insights into network structure, one can search for
network motifs; this has become very popular in recent years,
to a large extent through the effort of Alon and collaborators
(15, 43) (see Alon Laboratory Web page at Weizmann Institute,
http://www.sciencemag.org/content/suppl/2002/10/23/298.5594.824.
DC1/MiloSOMv4.pdf). The fact that a complex network can be
constructed from small standard subelements is by itself not sur-
prising: this property is at the root of electronics and is based

on the mathematical structure of logical functions. However, the
fact that nature also uses this strategy is not obvious, and that some
motifs and not others are employed in different network functions
is even less obvious. This presence of motifs is revealed through
detailed studies of (rather rare, for obvious reasons) biological
networks reconstructed from data, and it has been partly explained
by arguments borrowed from communication systems techniques.
Here we inquire what happens in a model where the transcriptional
rules are known and where thousands of networks can be generated
with given network functional capabilities. Will the same motifs
emerge when the functional capabilities are modified?

To answer this question, we determine the motifs in our differ-
ent ensembles. The web page mentioned above offers a software
for motif search; it is not quite adapted to our needs because it
does not distinguish between activators and repressors and it
does not accept self-interactions. However, it was helpful in this
work, enabling us to single out the relevant motif topologies
(when a topology is irrelevant, it remains so when more detailed
distinctions are introduced). Furthermore, we used it to test our
own codes for motif extraction. The results presented here con-
cern the most prominent motifs; others have frequencies that are
either very small or at least roughly comparable to those of ran-
domized networks. We discard motifs with leaves (degree-one
nodes), which are somewhat trivial. We keep only motifs that are
not a subgraph of a larger motif with the same number of nodes.
However, our motifs can partly overlap. The randomization used
is that proposed by Maslov and Sneppen (44): edges are inter-
changed so that both the in- and out-degrees of network nodes
remain unchanged. Our results are summarized in Table S2 and
the motifs are listed in Fig. 4.

We see right away a very strong dichotomy: the motifs are very
different for our two classes of functional capabilities (imposing
multistability vs. cycling). In the case of multistability, one single
motif stands out as being extremely important: often referred to
as the double negative feedback loop with autoregulation, its two
genes are mutually inhibitory and self-activating. Interestingly,
this simple motif is found in a number of biological gene net-
works, and in particular in the genetic switch between lysogeny
and lysis of the phage λ (45). Clearly such a pair of genes can
act as a bistable switch that will then influence downstream genes
according to the expression pattern that is required for the con-
sidered fixed point. When dealing with more than two target
fixed points, multiple copies of this motif should be necessary
as illustrated in Fig. 2 which displays the most represented essen-
tial network (ignoring permutations of indices) for two and four
imposed fixed points. Not surprisingly, the same trend also
emerges for the less frequent essential networks. Roughly, the
networks display a core of central genes that belong to one or
more motifs of the double negative feedback type (labeled “A”
in Fig. 4) and these genes then influence other genes by a simple
downstream effect along the associated tree-like graph of activat-
ing interactions.

16
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2
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10
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612

14

8
9

11

13

15

Fig. 3. The most common essential network topology when one imposes a
particular cyclic expression pattern. That pattern corresponds to a group of
active genes that shifts clockwise by two genes at each time step. One sees
very clearly the activating interactions acting forward and the inhibitory
interactions acting backward. (Data for N ¼ 16; this topology arises for over
15% of the networks.)

Fig. 4. The most prominent motifs found for our two classes of functionality
constraints. Case of multistability (more than one fixed point): (A) double
negative feedback loop with auto regulation, which has two mutually inhi-
bitory and self-activating genes. Case of target expression patterns that are
cyclic in time: (B and C) incoherent diamond, (D and E) frustrated four-node
loop, (F) incoherent bifan.
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Fig. 2. The most common essential network topologies when n fixed-point
expression patterns are imposed. In each case, we see the presence of the
motif with two mutually inhibitory and self-activating genes. Interactions
shown are essential, and those genes whose target expression is the same
in all the fixed points are omitted because they provide no information. Data
for N ¼ 16; subfigures A and B are for n ¼ 2 and 4. These topologies arise for
over 20% and nearly 1% of the networks, respectively.
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Now consider the motifs present when imposing cyclic expres-
sion targets. The motif “A”—double negative feedback loop with
auto regulation—is absent and instead we have several four gene
motifs that are strongly overrepresented as displayed in Fig. 4.
In the nomenclature of Alon (15, 16), motifs “B” and “C” are
incoherent diamonds, while motif “F” is the incoherent bifan; the
others, motifs “D” and “E,” involve a regulatory loop, and in fact
these loops are “frustrated” in that they have an odd number of
inhibitory interactions. Again, biological gene networks have
been found containing some of these motifs (16), the bifan motif
being perhaps the most prominent.

None of the motifs “B” to “F” were overrepresented in the
networks satisfying multistability. The presence of these motifs
here can be understood by looking at the most frequent essential
network displayed in Fig. 3. The phenotype used for that case
corresponds to having a block of on genes that shifts by two units
at each time step inside a background of off genes. One way to
implement this shifting is to have genes activate the two genes
ahead of them and to inhibit genes sufficiently far behind. As
can be seen in Fig. 3, the actual strategy used in the most frequent
essential network is very close to that: if we consider the two
genes at the front of the on block, the front-most one activates
the two ahead of it while the second has no excitatory action. And
each inhibits one gene at the back of the block that is to be turned
off at the next time step. The combination of these excitatory
and inhibitory actions ensures that the block stays of the correct
size as it shifts. Interestingly, and in contrast to the situation for
the phenotypes consisting of steady states, the operation of the
network is not readily understood from looking at the motifs
in isolation. Indeed, the genes in these motifs do not provide os-
cillatory behavior on their own. In effect, the motifs here are
just like parts in a larger machine, and it is necessary to consider
how they cooperate within the overall network to reveal their
function. Only if one considers much smaller networks do the
corresponding motifs reveal function on their own. In the SI Text,
we illustrate this fact by considering a three gene network which
exhibits periodic oscillations (1, 46).

Discussion
The central question tackled by the present work is whether the
emergence of motifs in gene regulatory networks can be due to
the functional capabilities of these networks. Given the uncer-
tainties in how real genetic networks operate, we have taken a
modeling route and have addressed this question in silico. Our
model incorporates known molecular mechanisms for the de-
scription of genetic interactions, and in fact the main parameters
in our model come from parametrizing the affinities of transcrip-
tion factors to their binding sites. Furthermore, in contrast to
most other gene regulatory network modelings, the associated
interactions are never completely absent; they can be important
or unimportant for the functionality of the network, a notion we
characterized by the essentiality of interactions. Finally, the ex-
pression level of each gene follows dynamical equations allowing
for continuous values; this additional complexity compared to
using digital “on-off” expression levels forces one to consider
functionality as a soft constraint, imposing expression levels to
be “sufficiently” close to target patterns. Network functionality
is then quantified via a kind of fitness measure. Such a framework
provides a close parallel with thermodynamic ensembles; all ques-
tions are then necessarily posed in a probabilistic framework
where each network arises with a probability that is negligible
unless the constraints are rather well satisfied. In practice, we ex-
plore the corresponding ensemble of genetic networks numeri-
cally, using MCMC.

Two types of gene network functional capabilities have been
studied. The first is motivated by the different cell types in multi-
cellular organisms and is implemented by constraining the genes
in the networks to have steady-state expression levels close to

given target levels; in effect, the transcriptional dynamics of
the networks must allow for multistability, that is multiple fixed
points of the expression dynamics. The second type of functional
capability considered is motivated by previous work on the cell
cycle; we implement this cycling type of capability by forcing
the networks to have their expression levels follow a given cyclic
pattern in time. Thus instead of fixed points, in this case we ask
for a periodic behavior of the dynamics. In both cases, we find
characteristic features shared with other models of living systems
(40) as follows. (i) The constraints imposed are extremely strin-
gent as can be seen from the fact that in practice they are never
satisfied by networks generated at random. (ii) Although the
fraction of networks of interest is tiny, the number of networks
satisfying the constraints is astronomical as revealed by our
MCMC sampling.

Of interest is the structure of these networks, presumably aty-
pical. Particular architectures are known to arise when perform-
ing genetic network design via optimization algorithms (12–14).
Is this property a bias of these algorithms or does it reflect an
underlying constraint imposed by network function? It is difficult
to tackle this question head-on except in very small systems; there
one can explore all possible values for the model’s parameters
(47) and see the functional consequences. Because motifs can
involve three or even more genes inside a larger network, a dif-
ferent approach is necessary for moderate and large networks.
The most adapted tool is MCMC and so we have applied this
approach to our systems with up to 16 genes. MCMC then allows
us to sample the subspace of functional networks in spite of the
fact that this subspace represents only a tiny fraction of the space
of all networks.

Given a gene regulatory network produced by theMonte Carlo
algorithm, we first extract the essential interactions to obtain
what we call the genotype’s essential network. This representation
gets rid of irrelevant interactions that are too small to influence
much the functionality. Interestingly, these essential networks are
sparse and make use of inhibitory interactions parsimoniously.
We then consider the motifs appearing in these essential net-
works, where a motif is an oriented subgraph that is overly fre-
quent when comparing with a randomization test preserving each
node’s degree. In the case of networks satisfying the multistability
constraints, we find one very dominant motif of two genes acting
as a switch: each gene represses the other while activating itself.
Furthermore, this motif arises once when imposing two fixed
points for the transcriptional dynamics, twice when imposing
three fixed points, etc. This pattern makes good sense from a “de-
sign” perspective: the choice of going to one fixed point rather
than to another can be implemented most simply by using bistable
switches that operate in this logical fashion.

Moving on to the ensemble of networks that implement
expression patterns that are cyclic in time, we find now that the
dominant motifs involve four genes as shown in Fig. 4. One of
these motifs corresponds to the bifan in Alon’s nomenclature, but
four other motifs are also found and in fact are even more often
present. All of these motifs involve at least one inhibitory inter-
action; this is appropriate for our imposed cycle as the newly
turned on genes must at some point turn off the other genes they
are replacing. Interestingly, the motifs we find in this ensemble of
cyclic phenotypes are not present in the other (with fixed-points
phenotypes). This difference shows that network function is a
major determinant of the content in motifs, at least within our
simplified framework. Some influence of the function could have
been expected a priori, but the size of the effect is striking. We
hope this result will encourage the search for functional biases
between experimental motifs, in particular through comparative
studies of close-by organisms.
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