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Abstract

Bcl-XL, an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway.
Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak,
Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent
evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous
NMR studies showed that Bcl-XL: BH3 peptide and Bcl-XL: SN15 peptide (a peptide derived from residues S15-N29 of p53)
complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we
have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-XL and other Bcl-2 family proteins
have 4 hydrophobic pockets (p1–p4), which are occupied by four systematically spaced hydrophobic residues (h1–h4) of
the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26) of
p53 (SN15) peptide anchor into three hydrophobic pockets (p2–p4) of Bcl-XL in a similar manner as BH3 peptide. Our results
provide insights into the novel molecular recognition by Bcl-XL with p53.
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Introduction

Apoptosis or programmed cell death is a key regulatory process

involved in major biological pathways in which its dysregulation is

linked to cancer, autoimmunity, and neurodegenerative disorders

[1]. The Bcl-2 family proteins regulate and mediate the

mitochondrial outer membrane permeabilization, a crucial event

in the mitochondrial pathway of apoptosis in vertebrates [2–5].

The regulation of apoptosis is governed largely by interactions

between the pro-survival and pro-death members of the Bcl-2

protein family [6]. Some members of this family (e.g., Bax, Bak,

and Bid) promote apoptosis, while others such as Bcl-XL, Bcl-2

and Bcl-w work against programmed cell death [7,8]. The Bcl-2

family proteins are characterized by regions of specific sequence

homology named as Bcl-2 homology (BH) motifs that number

from 1 to 4 and are critical for function [9]. Especially a-helical

BH3 motif of proapoptotic proteins occupy and form strong

interactions with hydrophobic groove of antiapoptotic Bcl-2 family

proteins which leads to the activation of the essential death

mediators Bax and Bak, thereby committing cells to apoptosis

[10–15].

p53, a key tumor suppressor protein also termed as ‘‘the

guardian of the genome’’, plays a key role in cellular stress

response pathway [16,17]. It is found to be mutated or lost in more

than 50% of all human cancers indicating its crucial functions in

controlling tumor formation [18]. Under normal conditions, p53 is

quiescent and present at basal levels. Upon cellular stress, DNA

damage and hypoxia, it is upregulated and induces pathways that

cause cell cycle arrest, DNA repair, cellular senescence, differen-

tiation and apoptosis [19,20]. The proapoptotic activity of the

tumor suppressor protein p53 is controlled by a number of

protein–protein interactions that constitute a network of negative

and positive regulators [21]. The central part of this network is the

interaction with the oncogenic protein MDM2 via the N-terminal

transactivation domain (TAD) and the central DNA-binding

domain (DBD) [22,23]. Binding of the E3 ubiquitin ligase, MDM2

to the tumor suppressor protein, targets p53 for proteosomal

degradation [24].

While the transcription-dependent mechanism of p53 has been

extensively studied [25], evidence supporting the transcription-

independent apoptotic activity of p53 has emerged in recent years

[26,27]. This suggests that p53 could be localized in the outer

membrane of mitochondria and execute the transcription-

independent apoptotic cell death in response to death signals

[28,29]. Recent studies on the transcription-independent mito-

chondrial p53 apoptotic pathway provided valuable information

[30–34]. It was demonstrated that PUMA, a proapoptotic BH3

only protein releases p53 from Bcl-XL/p53 complex and allows

Bax or Bak to induce mitochondrial permeability [33] while p53

upregulated Bad, another proapoptotic protein by forming a

complex in the mitochondria thereby inducing apoptosis [34].

These studies revealed that Bcl-2 family proteins are the binding

targets for p53 and results in a transcription-independent

apoptotic activity.

The structures of Bcl-XL in complex with Bad or Bak

proapoptotic BH3 peptides offer detailed structural information
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on the binding interface between the protein and complementary

peptide residues [35,36], revealing possible hydrophobic pockets

and important interactions which provide a molecular basis to

develop sub-nanomolar range inhibitors [37]. Similarly, studies on

MDM2/p53 complex studies also contributed to the designing of

antagonists to disturb p53-MDM2 interactions [38–40]. Based on

this structural information, several p53 peptidomimetics were

developed [41–43]. Computational studies provided insightful

information into the molecular recognition between p53 and

MDM2 [44–48]. In previous NMR studies we have attempted to

understand the binding properties of p53 with its non-conven-

tional partner Bcl-XL, and based on those observations we

developed a complex model [49,50]. In the present study we have

performed several molecular dynamics simulations on Bcl-XL/

BH3 peptides (Bad, Bak), MDM2/p53 and Bcl-XL/p53 (SN15)

peptide complexes and examined the common interaction pattern

of these peptides with their binding partners using multiple

conformations. Binding free energy calculations and residual

decomposition analyses were opted to understand recognition

process of these peptides by Bcl-XL.

Methods

Starting structures
The initial coordinates of MDM2/p53 and Bcl-XL/BH3

peptide complexes were obtained from the Protein Data Bank.

The wild type human p53 (residues 17–29) and MDM2 (residues

25–109) complex crystal structure with PDB ID: 1YCR was

utilized [38]. Two proapoptotic proteins Bad and Bak BH3

peptides in complex with human Bcl-XL (PDB ID 1G5J and

1BXL respectively) were considered as starting structures for Bcl-

XL/BH3 peptide complex simulations [35,36]. The Bcl-XL/SN15

peptide complex coordinates were taken from our previous model

developed by using HADDOCK based on chemical shift

perturbations observed for Bcl-XL upon complex formation with

SN15 peptide [50].The Bcl-XL/Bak BH3 peptide complex

structure (PDB ID: 1BXL) was utilized to develop the Bcl-XL/

SN15 peptide complex model. The N- and C-terminus residues of

the proteins were capped with ACE and NME, accordingly to

keep them neutral at the time of simulation. The N-terminal end

alone was capped for peptide in the MDM2/p53 complex, based

on previous computational studies [45–48].

Molecular dynamics simulations
All the MD simulations were performed using GROMACS

software (version 4.0.5) [51,52] with the Amber99 force field. The

MD simulation protocol that we used is as follows. Hydrogens were

added and the protonation state of ionizable groups was chosen

appropriate to pH 7.0. Each system was inserted in a water box of

TIP3P water, which extended at least 12 Å away from any given

protein atom. All systems were neutralized by adding counter ions

and replacing the overlapping solvent molecules. The size of each

system utilized for the simulations are represented in Table 1. All

simulations were run under periodic boundary conditions with NPT

ensemble by using Berendsen’s coupling algorithm for maintaining

the temperature (300 K) and the pressure constant (1 bar). The

SHAKE algorithm with a tolerance of 1025 Å was applied to fix all

bonds containing hydrogen atoms. The electrostatic interactions

were calculated by using the Particle-mesh Ewald (PME) algorithm,

with interpolation order of 4 and a grid spacing of 0.1 nm and the

van der Waals forces were treated by using a cutoff of 10 Å. A 2-fs

time step was used to integrate the equations of motion. The systems

were subjected to steepest descent energy minimization for 2,000

steps. Then the protein backbone was frozen and the solvent

molecules with counter ions were allowed to move during a 200 ps

position restrained MD run. The final production run continued for

10 or 15 ns (Table 1) and the coordinates were stored every 1 ps.

The purpose of the simulations was to generate multiple structures

around the initial experimental/model structure to improve the

statistical sampling for binding free energy (DGbind) calculations

using MM/PBSA method.

Binding free Calculations
The binding energy of protein-peptide complexes was calculated

by using MM/GBSA (for MDM2/p53) and MM/PBSA (for

remaining simulations) incorporated in Amber9 package [53–55].

MDM2/p53 simulation was utilized to benchmark our MD

simulation protocol as this system is well studied by computational

simulations. The trajectory files generated by production run of

different systems are converted into individual PDB files by trajconv

method incorporated in GROMACS analysis suite. For MDM2/p53

and Bcl-XL/SN15W23A mutant simulation (10 ns each) 2500

snapshots were considered at the time intervals of 2 ps from the

last 5 ns production runs. For remaining three 15 ns simulations (Bcl-

XL with Bad, Bak and SN15 peptides) 5000 snapshots were chosen

from the last 10 ns. These selected snapshots were utilized to calculate

the enthalpy contributions of protein-peptide complexes and every

100th snapshot of selected frames (25 or 50 frames for 2500 or 5000

snapshots, respectively) was used to calculate entropy terms using

normal mode analysis (Nmode module of Amber) and averaged [56].

The dielectric constants for solute and solvent set as 1.0 and 80.0,

respectively. The solvent accessible surface area (SASA) was

computed with molsurf module in Amber9, using a probe radius of

1.4 Å [57]. The surface tension proportionality constant and the free

energy of nonpolar solvation of a point solute were set to

0.00542 kcal/Å2 and 0.92 kcal/mol, respectively. A single trajectory

method was used in MM-GBSA/PBSA binding free energy

calculations. Residual decomposition analysis which is incorporated

in the Amber9 software package was utilized to understand the

important interactions between protein-peptide complexes and also

to select the crucial hot spot interactions which are essential for the

complex formation and stability. Every 50th snapshot of selected

frames (50 or 100 frames for 2500 or 5000 snapshots, respectively)

was used to calculate the energy decomposition for all the protein and

peptide residues. All the preliminary analyses to ensure the quality of

the simulations such as root mean square deviation (RMSD), root

means square fluctuation (RMSF), secondary structural analyses by

DSSP are carried out by GROMACS analysis programs.

Results

Sequence comparison of BH3 and SN15 peptides
Antiapoptotic proteins such as Bcl-XL, Bcl-2, Bcl-w and Mcl-1

possess four conserved hydrophobic pockets (p1–p4) which

Table 1. Summary of MD simulations performed in present
study.

System Initial coordinates No. of atoms Simulation length

MDM2/p53 1YCR 18,671 10 ns

Bcl-XL/Bad 1G5J 35,627 15 ns

Bcl-XL/Bak 1BXL 35,520 15 ns

Bcl-XL/SN15 Model 34,103 15 ns

Bcl-XL/SN15W23A Model 34,100 10 ns

doi:10.1371/journal.pone.0026014.t001

MD Simulations of Bcl-XL/p53 Complex
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provide space for four hydrophobic residues (h1–h4) present on

the BH3 peptides of Bad and Bak. Sequence alignment was

carried out by clustalW method [58] to obtain initial insights of

similarities between the BH3 (Bad25 and Bak16) and SN15

peptides. We have failed to achieve a meaningful sequence

alignment by normal procedure of taking SN15 sequence in

conventional way (15SQETFSDLWKLLPEN29). Our previous

NMR chemical shift perturbation experiments and HADDOCK

model revealed that the binding orientation of SN15 peptide to

Bcl-XL is in opposite direction (29NEPLLKWLDSFTEQS15)

when compared to BH3 peptides such as Bad and Bak binding

orientations (Figure 1A–1D) [49,50]. Based on these previous

observations, the binding orientations of the peptides with Bcl-XL

were considered for sequence alignment i.e. Bad (N1RK25), Bak

(G1RR16) and SN15 (N29RS15). By this attempt, the sequences

aligned well and all the important hydrophobic residues that are

crucial for Bcl-XL binding are aligned properly (Figure 1E). These

results also revealed that SN15 has three hydrophobic residues

(L26, W23 and F19) which occupy three hydrophobic pockets (p2,

p3 and p4).

Preliminary analysis of MD simulations
Total five simulations were carried out for MDM2/p53

complex, Bcl-XL/Bad, Bcl-XL/Bak, Bcl-XL/SN15 and Bcl-

XL/SN15W23A, a SN15 point mutant peptide. The MD

simulations were judged to be stable as evidenced by the time

dependent evaluation of backbone root mean square deviation

(RMSD). The RMSD was calculated during production phase

using the respective initial minimized structure as the reference

structure. The average RMSD value for MDM2/P53 complex

simulation was 0.12 nm which is consistent with previous

computational simulation studies [45]. For the Bcl-XL/peptide

(SN15, Bad and Bak) simulations the average RMSD values was

between 0.28 nm to 0.32 nm. The Bcl-XL/SN15 mutant (W23A)

peptide simulation showed bit higher RMSD average values

(0.4 nm), which can be expected due to changes in the peptide

secondary structure and overall fluctuations of protein structure.

Comparatively high fluctuations were observed at the long flexible

loop of Bcl-XL located between a1 and a2 and also other loops

which connect the a-helices. These observations suggest that there

is no significant structural drift in each system during the MD

simulations (Figure 2). Secondary structural analysis was carried

out to measure the stability of the simulations. These analysis

shows that the a-helices present in the MDM2 as well as Bcl-XL

persist throughout the simulation time (Figure 3 and Figure S1A–

S1D). The short b-strands present in the MDM2 structures also

maintained their size (Figure S1A). The structural differences were

observed at the loop positions that connect the a-helices due to

high flexible nature. Previous experimental and computational

studies demonstrated that helical content of the peptides (p53 or

BH3 peptides) is directly proportional to its binding ability with

partners [47,59]. DSSP analysis revealed that all the peptides

indeed preserve their helical content and in several simulations

there is an increase by 2–3 residues (Figure 3 and Figure S1A–

S1D). The stability and increment in the helical content is also

evident from the intra-molecular hydrogen bonds between main

chain atoms of the peptides (Figure S2A–S2D).

Free energy decomposition of protein-peptide
complexes and comparison

We have adopted binding free energy calculations and

decomposition of residue wise contribution to understand the

similarities between BH3 domains of proapoptotic proteins (Bad

and Bak) and N-terminal transactivation domain of p53 (SN15).

These results also facilitate us to identify the key residues of p53

which are crucial for binding with MDM2 and novel binding

partner Bcl-XL. For the purpose of this work and to identify hot

spot amino acids in protein and peptide complexes, we defined key

residue as the one that makes a 21 kcal/mol contribution to the

binding free energy.

Energy calculations for MDM2 with p53 peptide
Binding free energy calculations were carried out for MDM2/

p53 complex to better understand the interaction pattern of p53

with MDM2 as well as to unveil the hot spot residues of p53 which

are common in complex formation with MDM2 and Bcl-XL. This

simulation results also allowed us to compare with previous

computational studies and benchmark our MD simulation

protocol. For this purpose we have opted MM/GBSA method

to calculate the binding free energy of MDM2/p53 complex. The

DGbind of this complex was computed as 211.3 kcal/mol (Table 2

and Table 3) which is close to experimental binding free energy

(26.4 to 29.0 kcal/mol) [60,61] and other computational studies

estimates 26.9 to 216 kcal/mol [44–48]. The residue level

contribution was carried out to extract the key residues

information from both protein (MDM2) and peptide. The results

suggest that the residues, F19, W23 and L26 of p53 contribute

Figure 1. Binding orientation and sequence comparison of
SN15 with BH3 peptides. The interaction pattern of Bcl-XL and Bad
(A), Bak (B), SN15 (C) was shown. All the three peptides represented as
cartoon and Bcl-XL as surface. Hydrophobic residues of the peptides
which occupy the four hydrophobic pockets (p1–p4) are highlighted by
sticks and labeled accordingly. All the three peptides (Bad, Bak and
SN15) superimposed and the important interacting regions of Bcl-XL

such as BH1, BH2 and BH3 are highlighted with magenta, red and gray,
respectively (D). Shown is sequence comparison between SN15 and Bad
and Bak. Four important binding points (h1–h4) are highlighted by
green boxes, identical residues and conserved residues are highlighted
by red and yellow colors, respectively (E).
doi:10.1371/journal.pone.0026014.g001

MD Simulations of Bcl-XL/p53 Complex
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more in binding and moreover F19 is better contributor for

binding than W23 (Table 4), which is consistent with previous

computational observations [48]. Several hydrophobic and one or

two hydrophilic MDM2 residues which are important in complex

formation were also identified (Figure 4A).

Binding free energy calculations and their decomposition
for Bcl-XL/peptide complexes

The Bcl-XL/BH3 peptide complexes were well studied as the

three dimensional structures were solved by either NMR or X-ray

crystallographic methods and also by computational studies

[35,36]. But the interaction pattern between Bcl-XL and p53

(SN15) and the key residues which are involved in the complex

formation is not fully known. The calculated DGbind was 217.7

and 212.3 kcal/mol for Bcl-XL/Bad and Bcl-XL/Bak complexes

respectively (Table 2, Table S1 and S2). The experimental

methods estimated 212.7 and 28.94 to 29.32 kcal/mol for Bcl-

XL/Bad and Bcl-XL/Bak complexes respectively [35,36]. Our

previous experimental binding studies between Bcl-XL/SN15

peptide estimated DGbind as 24.95 kcal/mol [50] and present

computational binding free energy method estimated 27.3 kcal/

mol (Table 5). These results demonstrate that computational free

energies are estimated close to the experimental binding values

with acceptable differences. The residual decomposition results

identified that several residues of Bcl-XL which are important for

heterodimer formation with BH3 peptides like Bad/Bak are

indeed important for complex formation with SN15 with fewer

differences. The three hydrophobic residues (F19, W23 and L26)

of p53 which are important in complex formation with MDM2 are

also crucial for complex formation with Bcl-XL(Table 6).

Discussion

Key anchoring residues of p53 for MDM2 binding
The three hydrophobic residues (F19, W23 and L26) that

occupy the hydrophobic surface of the MDM2 are crucial for the

binding [62]. Previous experimental studies revealed that these

residues are susceptible for mutations which show severe decrease

in binding or even inactive in some cases [43]. Residue F19 of p53

which is predicted as major contributor (26.58 kcal/mol) for

MDM2 binding forms strong van der Waals contacts with I61 as

well as with G58, Y67 and V93. The tryptophan residue of p53

protrudes into hydrophobic pocket formed by several conserved

aliphatic hydrophobic residues like L54 and L57. The residual

level energetics revealed that L54 contributes strongly from

MDM2 part, this is due to both van der Waals contact with

tryptophan and also stable hydrogen bond. This hydrogen bond is

observed between NEe of tryptophan and main chain carbonyl of

L54. Another conserved hydrophobic residue L26 of p53 interacts

with I99 side chain. Our results are also consistent with previous

experimental and computational findings and corroborate that

these three hydrophobic residues of p53 are determinants for

MDM2 binding. Apart from these three crucial interactions

several other residues also helps for the firm binding such as L22,

P27 and T18. The residue L22 of p53 interacts with V93 and H73

of binding partner. Proline residue (P27) present on the p53

peptide forms van der Waals interactions with Y100 of MDM2.

Major contributors of BH3 peptides for hetero-
dimerization with Bcl-XL

Four conserved hydrophobic pockets (p1–p4) are available in all

the Bcl-2 family members like Bcl-XL, Bcl-2, Mcl-1 and Bcl-w

proteins. Most of the residues which form these hydrophobic

pockets are also conserved across the family members. All four

pockets are formed by residues present on BH1 (a4 and a5 helices)

majorly, BH2 (a7) and BH3 (a2) helices of Bcl-XL. These

hydrophobic pockets provide space for the well-spaced (i, i+4, i+7

and i+11) hydrophobic residues (h1–h4) on BH3 peptides such as

Bad/Bak (Figure 1A and 1B). The hydrophobic residues of BH3

peptides lock with binding partner by forming strong van der

Waals interactions. Several experimental and computational

studies demonstrated that these four hydrophobic residues are

crucial for heterodimer formation [35,36,44,63]. Residual decom-

position results illustrate that these four hydrophobic residues of

the Bad/Bak peptide contribute sufficiently well for binding with

the Bcl-XL (Table 6).

Residue Y8 of Bad peptide and V3 of Bak peptide occupies p1

hydrophobic pocket of Bcl-XL. This pocket is formed by F105,

L112, V126 and F146 which constitutes BH1 and BH3 helices and

a short a3 helix. A stable hydrogen bond interaction observed

between side chain hydroxyl of Bad Y8 and main chain carbonyl

Figure 2. RMSD plots for five MD simulations. The Root mean
square deviation (RMSD) of backbone atoms were shown with respect
to initial minimized structure for all the five simulations such as MDM2/
p53 (A), Bcl-XL/SN15 (B), Bcl-XL/Bad (C), Bcl-XL/Bak (D), and Bcl-XL/
SN15W23A (E).
doi:10.1371/journal.pone.0026014.g002

MD Simulations of Bcl-XL/p53 Complex
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of Bcl-XL A104. The p2 pocket of Bcl-XL is formed by F97, F105,

V126, L130 as well as F146 and locks with conserved leucine

residue of BH3 peptides (L12, L7 of Bad and Bak, respectively).

The residue M15 of Bad peptide and I10 of Bak form van der

Waals interactions with p3 hydrophobic pocket formed by F97

and A142 residues. Finally the p4 pocket formed by F97 and V141

residues is occupied by F19 (Bad) and I14 (Bak). Besides these

crucial hydrophobic interactions, several other hydrophobic

interactions are observed to be important for binding. A5 residue

of Bad peptide contributed ,22.8 kcal/mol for complex

formation. This residue forms close contacts with L112, S122,

Q125 and V126 and make favorable contribution for binding

energy. Another hydrophobic residue F23 of Bad peptide forms

firm van der Waals contacts with L194 and Y195 of its binding

partner Bcl-XL. Previous point mutation studies of these two Bad

peptide residues (A5G and F23A) demonstrated ,4 fold less

binding affinity compared with wild type peptide also suggests the

important role of these residues for binding [36]. Previous

computational study also recognized these two residues as

probable hot spots of BH3 peptides for Bcl-2 family proteins

binding [44]. These strong interactions of A5 and F23 could be the

possible reasons for the extended alpha helical nature of the Bad

peptide appeared in the Bcl-XL/Bad peptide simulation (Figure

S1B).

Unlike MDM2 binding pocket which is mostly constructed by

hydrophobic residues, Bcl-XL surface is composed of both

hydrophobic and charged residues. The interior pocket is

hydrophobic and the wall of the binding pocket is composed of

charged residues. The Bad and less extent Bak peptides are having

several charged residues to complement the charge environment of

its binding partner. R10 of Bad peptide and R5 of Bak peptide

forms stable hydrogen bonds with E129 residue of Bcl-XL. Salt

bridge analysis incorporated in vmd program suite [64] was utilized to

determine salt bridge forming pairs between protein and peptide

complexes. This analysis revealed that salt bridges can be formed

between R10 (Bad)/R5 (Bak) and E129 of Bcl-XL. Another

arginine residue (R13) of Bad peptide form hydrophilic interac-

tions with D133 and also forms salt bridge. The equivalent residue

in Bak peptide is an alanine (A8) also contributes favorably

(22 kcal/mol) by forming close van der Waals contacts with L130

and R139 residues of Bcl-XL.

Several structural studies by experimental, computational

methodologies and peptide mimitics as well as inhibitors of

MDM2/p53 binding demonstrated that p53 contains three

important hydrophobic residues (F19, W23 and L26). Our residual

decomposition of MDM2/p53 results also depicted the same

(Table 4). The residual contribution analysis of Bcl-XL/SN15

simulation postulated that indeed these three residues of the SN15

peptide are major contributors for binding with protein (Table 7).

These three hydrophobic residues of SN15 occupy three

hydrophobic pockets (p2–p4) in a similar manner as BH3 peptides

(Figure 1). The residue L26 of SN15 superimposes well on

equivalent residue leucine which is well conserved in all the BH3

peptides. It occupies the p2 binding pocket and forms van der

Waals interactions in a similar way as BH3 peptides and

contributes in same level for binding with Bcl-XL (,25 kcal/

mol). The central hydrophobic residue tryptophan (W23) of SN15

resides at the p3 hydrophobic binding pocket and interacts

Figure 3. Stability of secondary structural features of Bcl-XL/SN15 complex. Secondary structural characteristics were calculated using DSSP
for total simulation to understand the stability and changes for the Bcl-XL/SN15 complex. The initial (7 residues) and final (9 residues) helix length of
the SN15 are represented with starting and ending residues of helix and highlighted by arrows. Initial and final frames of the protein represented as
cartoon model and labeled.
doi:10.1371/journal.pone.0026014.g003

MD Simulations of Bcl-XL/p53 Complex
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strongly with surrounding hydrophobic residues like F97 and

A142. A stable hydrogen bond is observed between epsilon

nitrogen atom of tryptophan and main chain carbonyl of E96.

This could be the possible reason for larger contribution of binding

energy of this residue for complex formation. The point mutation

(W23A) simulation results produced around 10 kcal/mol less

enthalpy (DH) compare to the wild type peptide simulation which

is in good agreement with experimental data (Table 2 and Table

S3). Our results postulated that tryptophan is the optimized option

for binding at p3 hydrophobic pocket than methionine (Bad) or

isoleucine (Bak). The Bcl-XL p4 hydrophobic pocket formed by

F97 and V141 residues provides space for another hydrophobic

residue (F19) of SN15. Though the phenyalanine is present in both

SN15 and Bad peptides the relative contribution of binding from

SN15 is less (,2 kcal/mol). In the case of SN15 the side chain of

F19 slightly dislocates from the p4 pocket due to the relative

binding orientation of the peptide. This could be the probable

reason for the lower contribution of SN15 at particular interaction.

In addition to these three crucial hot spot residues, several other

hydrophobic residues present on the SN15 peptide forms van der

Waals interactions with Bcl-XL binding pocket. Residue L22

which precedes important hydrophobic residue W23 shows

favorable contribution to binding by forming close contacts with

R139. Another hydrophobic residue L25 forms van der Waals

contacts with L130 and R139 residues of Bcl-XL. L25 is present in

an equivalent position as A8 of Bak peptide which exhibited

similar type of interactions with the protein. P27 of SN15 peptide

interacts considerably strong with the Bcl-XL binding pocket by

forming both hydrophobic and hydrogen bond interactions. The

proline ring resides on the top of the p1 pocket and form

hydrophobic interactions with side chains of L112, V126 and

F146. The main chain P27 carbonyl forms a stable hydrogen bond

interaction with Y101 side chain hydroxyl which is present on

BH3 binding region of Bcl-XL.

Besides hydrophobic interaction ability of SN15 with Bcl-XL,

several hydrophilic interactions were observed (Figure S3). The

residue S20 contributed 22.5 kcal/mol for binding, constituting

hydrogen bond with R100 of the protein. This hydrogen bond is

observed between side chains of the both residues. Another residue

Q16 forms several hydrogen bond interactions with E96, R100 of

a2 helix. Though the SN15 peptide forms several hydrophilic

residues, it lacks the charged residues at appropriate positions like

Bad/Bak. SN15 peptide has a negatively charged residue (D21)

that is conserved even in Bad and Bak peptides. Although, it is in a

conserved position, due to the binding orientation of SN15 peptide

the distance between the complimentary residue (R139) of Bcl-XL

and D21 of SN15 is high and is unable to reach and establish

either hydrogen bond or salt bridge. Salt bridge as well as

hydrogen bonding interactions was observed with aspartate

residue (D12) which is present at equivalent position of Bak

peptide. The calculated minimum distance between the side

chains of aspartate residue of SN15, Bak (D21, D12 respectively)

and arginine (R139) residue of Bcl-XL is around 0.7 nm which is

not optimal for any type of interaction. In the case of Bak, though

the side chains are far at initial stages of the simulation but around

2 ns time the distance of the side chains reduced to around 0.2 nm

and is sustained throughout the simulation (Figure S4). This

Table 2. Bind free energy (kcal/mol) and components for
different protein-peptide complexes.

System DH TDS DGbind DGbind (expt)a

MDM2/p53 250.4 239.1 211.3 26.4 to 29.0

Bcl-XL/Bad 271.0 253.3 217.7 212.7

Bcl-XL/Bak 262.1 249.8 212.3 28.9 to 29.3

Bcl-XL/SN15 249.3 242.0 27.3 24.9

Bcl-XL/SN15W23A 234.8 237.0 2.2 NBb

aExperimental values obtained from the previous studies [35,36,50,59–61].
bNB; no binding [50].
doi:10.1371/journal.pone.0026014.t002

Table 3. Components of binding free energy (in kcal/mol) of MDM2 with p53 peptide.

MDM2/p53 MDM2 p53 Delta

Average Std Average Std Average Std

ELE 22839.2 48.6 22282.1 43.5 2181.5 20.0 2375.6

VDW 2357.4 18.1 2274.5 16.0 211.0 5.7 271.9

GAS 21322.8 51.9 2934.8 49.0 59.5 21.4 2447.5

GBSUR 35.3 0.7 33.6 0.5 10.7 0.2 29.0

GB 21393.3 45.8 21329.9 39.5 2469.4 17.4 406.0

GBSOL 21358.0 45.4 21296.3 39.2 2458.7 17.3 397.0

GBELE 24232.5 18.4 23612.0 18.1 2651.0 6.4 30.5

GBTOT 22680.8 35.3 22231.1 33.7 2399.3 12.5 250.4

TSTRA 16.2 0 16.0 0 14.4 0 214.3

TSROT 16.0 0 15.9 0 13.3 0 213.1

TSVIB 1179.9 3.0 1023.8 3.5 167.9 1.4 211.8

TSTOT 1212.1 3.0 1055.7 3.5 195.5 1.4 239.1

DGbind 211.3

Electrostatic energy (ELE); van der Waals contribution (VDW); total gas phase energy (GAS); nonpolar contribution to the solvation free energy (GBSUR); the electrostatic
contribution to the solvation free energy (GB); sum of nonpolar and polar contributions to solvation (GBSOL); sum of the electrostatic solvation free energy and MM
electrostatic energy (GBELE); final estimated binding free energy (GBTOT); translational energy (TSTRA); rotational energy (TSROT); vibrational energy (TSVIB), total
entropic contribution (TSTOT); binding free energy (DGbind).
doi:10.1371/journal.pone.0026014.t003
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reveals that SN15 peptide does not possess any charge comple-

mentary residues which can interact strongly with the charged Bcl-

XL binding pocket. This could be the possible reason for negative

electrostatic values (DELE) obtained for the Bcl-XL/SN15 peptide

simulation.

Hot spot residues of Bcl-XL involved in binding with BH3/
SN15 peptides

Major contributors which contribute $21 kcal/mol for complex

formation were considered as hot spots of Bcl-XL for the heterodimer

formation (Figure S5A–5C). Although several residues are important

for all the complexes, few differences also were noticed. These

differences largely arise due to the length and helical nature as well as

binding orientation of the different peptides (Figure 4B–4D). The Bad

peptide covers maximum surface of the Bcl-XL binding pocket and is

composed of both hydrophobic as well as charged residues. Bak and

SN15 peptides occupy comparatively less space due to their length.

Nevertheless, all three peptides (Bad, Bak and SN15) interact with the

conserved hydrophobic pocket residues. The p1 hydrophobic pocket

residues F105, V126 and F146 are involved in interactions with h1

hydrophobic residues of the BH3 peptides and P27 of the SN15

peptide. All three residues are consistently engaged in favorable

binding energy with all the peptides. Though SN15 lacks hydrophobic

residue at equivalent position of h1 on BH3 peptides, P27 of SN15

shields the p1 site and forms hydrophobic interactions with these three

residues. In the case of F146, it contributes little less than the

benchmark contribution with SN15 peptide (20.8 kcal/mol). Anoth-

er notable difference is Y8 residue of Bad peptide establishes

interaction with L112 while Bak and SN15 interacts with L108

(Table 7). The p2 hydrophobic pocket residues, F97 and L130 are

consistently involved in favorable binding with all three peptide

hydrophobic conserved leucine residue. Other two hydrophobic

residues also contributed considerably with all the peptides.

Both Bad and Bak peptides consists of two negatively charged

successive amino acids (D17, E18 in Bad and D12 and D13 in

Bak). These residues extend their side chains and cover both sides

of the Bcl-XL binding pocket charged walls (Figure 5D and 5E).

They superimpose well in both the peptide binding conformations

and are suspected to form hydrogen bond as well as salt bridge

interactions with R139 and R100, respectively. But only in the

case of Bak peptide both aspartate residues interact with arginine

residues by either hydrogen bond interactions or salt bridges. This

observation was clearly reflected in the residual decomposition

analysis (Table 7). Both arginines R100 and R139 contributed

predominantly (23.5 and 25.1 kcal/mol, respectively), but the

Table 4. Residual decomposition analyses to recognize the important contributors of MDM2 and p53 peptide.

Residue (MDM2) Energy contribution (kcal/mol) Residue (p53) Energy contribution (kcal/mol)

M50 21.17 E17 20.15

K51 21.14 T18 21.59

L54 23.27 F19a 26.58

L57 21.13 S20 0.32

G58 21 D21 20.1

I61 22.03 L22 22.26

M62 21.15 W23a 24.9

Y67 21.17 K24 0.91

Q72 21.64 L25 21.06

H73 21.16 L26a 23.99

V93 21.65 P27 21.95

R97 26.61 E28 0.27

I99 21.16 N29 20.84

Y100 21.81

aThree major contributing hydrophobic residues of p53 peptide (F19, W23 and L26) are highlighted as bold.
doi:10.1371/journal.pone.0026014.t004

Figure 4. Major contributing residues of MDM2 and Bcl-XL for
complex formation with SN15 and BH3 peptides. Pictorial
representation of important residues of MDM2 for complex formation
with p53 (A). The p53 peptide is shown in magenta cartoon and MDM2
protein is highlighted by surface representation. The major contributors
from both protein and peptide are represented by sticks and labeled.
The Bcl-XL protein and peptides Bad (B), Bak (C), SN15 (D) are
represented as cartoon model and major contributing residues are
shown as sticks. Important interacting regions of Bcl-XL such as BH1,
BH2 and BH3 are highlighted as magenta, red and gray, respectively.
doi:10.1371/journal.pone.0026014.g004
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Bad peptide is not able to interact with these residues. The possible

reason could be due to unfavorable interactions with R139

because of close proximity to another positively charged residue

R13 on Bad peptide which causes charge repulsion. E18 is unable

to form any type of interactions with R100; instead it forms a

hydrogen bonding interaction with Y101. Residue Q16 of SN15

forms 2–3 hydrogen bond interactions with Bcl-XL. Main chain

carbonyl group interacts with R100 and its side chain form

hydrogen bonds with E96 side chain of the protein. Because of

these two interactions E96 and R100 contributed favorably for

complex formation (Figure S3).

Common features of p53 (SN15) responsible for dual
target binding

Residual decomposition and hot spot recognition for the

complex formation revealed that several hydrophobic residues of

the BH3 and SN15 peptides are forming similar type of

interactions with Bcl-XL (Figure 5). The three hydrophobic pillars

of p53 (F19, W23 and L26) which are crucial for MDM2/p53

binding recognition are indeed important in complex formation

with Bcl-XL. All these three residues occupy 3 out of 4 conserved

hydrophobic pockets (p2–p4) of the Bcl-2 family proteins.

Previously, attempts were made to develop potent Bcl-XL

inhibitors based a-helical peptidomimetics taking into consider-

ation of three hydrophobic residues such as L7, I10 and I14 (i, i+3,

and i+7) of Bak peptide [65,66]. These mimetics developed from

the BH3 peptide demonstrated binding towards Bcl-XL and also

with MDM2. Our recent finding revealed that even MDM2

potent inhibitor nutlin-3 and PMI (p53 mutant peptide) bind with

Bcl-2 family proteins [67]. These observations suggest that though

globular folding pattern of MDM2 and Bcl-2 proteins is different

they share similar binding with p53.

Another important similarity in binding pattern of p53 with Bcl-

XL and MDM2 (Figure 6) is the stable hydrogen bond interaction

between epsilon nitrogen atom of tryptophan (W23) side chain and

main chain carbonyl of E96 (Bcl-XL), L54 (MDM2). Our

simulations results in the present study postulated that P27 of

SN15 covers the first hydrophobic pocket (p1) and forms van der

Waals interactions with L112, V126 and F146. Recent crystal

structures of MDM2 and MDMX with PMI (p53 based mutant

peptide inhibitors) revealed that both the protein surfaces have an

extra 4th hydrophobic pocket. The proline residue which is

present at C-terminal end of PMI (TSFAEYWNLLSP) occupies

this extra binding pocket (Figure S6) of MDMX formed by V49,

M53, Y99 and L102. In MDM2 the equivalent residues are M50,

L54, Y100 and I103. Surprisingly this pocket is unable to

accommodate the proline residue of PMI due to the Y100

conformation. The point mutation studies clearly indicated that

the proline change affects negatively on binding with MDMX

protein. Despite these differences it’s clear that these two proteins

have 4th hydrophobic pocket similar as Bcl-2 proteins.

In conclusion, our present MD simulations coupled with

binding free energy calculations corroborated with our previous

NMR studies of binding pattern of SN15 with Bcl-XL. Residual

decomposition results demonstrated similarities in the binding

pattern between the BH3 and SN15 with Bcl-XL protein. Key

hydrophobic residues of p53 peptide (F19, W23 and L26), which

are crucial for MDM2 binding occupy the hydrophobic patch of

Bcl-XL in an identical manner as Bad and Bak peptides. Though

the SN15 satisfies the hydrophobic contribution similar to BH3

peptides, lack of charged interactions with the either sides of Bcl-

Table 6. Bcl-XL residues and their energy contribution for
each peptide.

Residue (Bcl-XL) Energy contribution (kcal/mol)

Bad Bak SN15

E96 - - 22.78

F97 23.35 22.5 22.53

R100 - 23.44 24.76

Y101 21.7 - -

A104 21.45 - -

F105 21.04 22.35 21.47

L108 - 21.24 22.26

Q111 - 22.56 -

L112 21.72 - -

Q125 21.03 - -

V126 23.46 21.75 21.25

E129 22.78 - -

L130 23.44 22.27 22.11

D133 24.65 - -

N136 - 22.3 -

G138 - 21.31 -

R139 - 25.11 -

V141 21.08 - -

A142 21.28 21.09 21.14

F146 21.4 21.35 -

L194 21.19 21.37 -

doi:10.1371/journal.pone.0026014.t006

Table 5. Components of binding free energy (in kcal/mol) of
Bcl-XL with SN15 peptide.

Bcl-XL/SN15 Bcl-XL SN15 Delta

Average Std Average Std Average Std

ELE 24796.6 77.2 24659.3 78.7 2326.4 31.7 189.1

VDW 2689.7 26.1 2600.2 25.2 212.0 5.8 277.5

GAS 21984.6 87.2 22048.1 87.6 248.1 32.5 111.6

PBSUR 58.4 1.48 57.1 1.38 11.7 0.2 210.5

PB 24081.4 75.0 23465.2 79.0 2465.7 30.2 2150.5

PBSOL 24023.0 74.3 23408.1 78.2 2454.0 30.1 2160.9

PBELE 28877.9 29.9 28124.5 28.6 2792.1 6.5 38.7

PBTOT 26007.6 46.4 25456.2 44.1 2502.0 12.5 249.3

TSTRA 16.7 0 16.6 0 14.5 0 214.4

TSROT 16.9 0 16.8 0 13.4 0 213.3

TSVIB 2110.7 8.5 1938.7 7.1 186.3 1.7 214.3

TSTOT 2144.4 8.5 1972.1 7.1 214.3 1.7 242.0

DGbind 27.3

Electrostatic energy (ELE); van der Waals contribution (VDW); total gas phase
energy (GAS); nonpolar contribution to the solvation free energy (PBSUR); the
electrostatic contribution to the solvation free energy (PB); sum of nonpolar and
polar contributions to solvation (PBSOL); sum of the electrostatic solvation free
energy and MM electrostatic energy (PBELE); final estimated binding free
energy (PBTOT); translational energy (TSTRA); rotational energy (TSROT);
vibrational energy (TSVIB), total entropic contribution (TSTOT); binding free
energy (DGbind).
doi:10.1371/journal.pone.0026014.t005
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Figure 5. Hydrophobic and charged surface of Bcl-XL. The shallow hydrophobic pocket of Bcl-XL is shown with yellow color, positive and
negatively charged residues present on the walls of the pocket represented with blue and red, respectively. The hydrophobic residues of peptides
h1–h4 of Bad (A), Bak (B) and h2–h4 of SN15 (C) are highlighted as sticks which lock with hydrophobic pockets of Bcl-XL. Complimentary charged
residues on Bad (D), Bak (E), SN15 (F) are highlighted as sticks and labeled accordingly.
doi:10.1371/journal.pone.0026014.g005

Table 7. Residual contribution of BH3 (Bad, Bak) and SN15 peptides for complex formation with Bcl-XL.

Bad Energy contribution (kcal/mol Bak Energy contribution (kcal/mol SN15a Energy contribution (kcal/mol

N1 1.65

L2 22.29

W3 20.14

A4 20.63

A5 22.81

Q6 22.28 G1 3.44

R7 20.68 Q2 20.96

Y8 22.88 V3 24.22

G9 21.67 G4 21.04 N29 2.66

R10 24.73 R5 23.4 E28 1.16

E11 0.97 Q6 22.82 P27 21.98

L12 23.3 L7 24.79 L26 24.95

R13 26.1 A8 22 L25 21.68

R14 20.69 I9 20.52 K24 20.46

M15 23.22 I10 24.27 W23 26.88

S16 1.98 G11 20.79 L22 22.1

D17 0.74 D12 20.56 D21 1.39

E18 1.2 D13 0.92 S20 22.56

F19 25.05 I14 21.7 F19 22.64

V20 21.54 N15 20.72 T18 20.19

D21 0.82 R16 20.6 E17 0.53

S22 1.35 Q16 25.72

F23 21.99 S15 2.17

K24 20.39

K25 0.17

aSN15 residues shown in reverse direction based on alignment with BH3 peptides (refer Figure 1E).
doi:10.1371/journal.pone.0026014.t007
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XL binding cavity walls leads to a modest binding affinity. The

tryptophan residue of SN15 contributes dominantly for complex

formation and forms both hydrophobic and hydrogen bonding

interactions at third hydrophobic pocket of Bcl-XL. This residue

contributes better than equivalent residues of BH3 peptides (M15,

I10 of Bad and Bak peptides respectively). Analogous interaction

pattern was observed between W23 of p53 and MDM2. This

anchoring interaction of tryptophan in both complexes could be

one of the reasons for susceptibility for mutational changes which

causes decrease or total loss of binding [50,59]. Recent evidence of

nutlin-3 binding in Bcl-XL substantiated the importance of

tryptophan or tryptophan mimics for dual target binding [67].

Our results provide insights into the molecular basis for

recognition of p53 peptide in MDM2 and Bcl-XL and could be

helpful to develop inhibitors which can bind to both targets.

Supporting Information

Figure S1 Secondary structural characteristics calculat-
ed using DSSP method in time dependent manner for
MDM2/p53 (A), Bcl-XL/Bad (B), Bcl-XL/Bak (C), and
Bcl-XL/SN15W23A (D) complexes. Initial and final confor-

mations of protein represented in cartoon style and secondary

structures are labeled. The helix length of the peptides are

represented with starting and ending residues of helix and

highlighted by arrows. Secondary structural features also labeled

accordingly to show the stability of the simulations.

(PDF)

Figure S2 Intra-molecular hydrogen bonds calculated
for the p53 (A), SN15 (B), Bad (C), and Bak (D) to
understand the stability of the helical content of the
peptides. All the four peptides demonstrated stable and in several

cases increased intra-molecular hydrogen bonding interactions.

(PDF)

Figure S3 Inter-molecular hydrogen bond interactions
observed between Bcl-XL and SN15 peptide. Interacting

residues are highlighted with sticks and hydrogen bonds

represented with dashed line.

(PDF)

Figure S4 The minimum distance measured between
side chains of D21 (SN15), D12 (Bak) and R139 of Bcl-
XL.

(PDF)

Figure S5 Residual decomposition and energy contri-
bution of each residue in complex simulations of Bcl-
XL/Bad (A), Bcl-XL/Bak (B), Bcl-XL/SN15 (C), and
MDM2/p53 (D). The straight line in graph represents the

missing residues (45–84) which presents on long loop between a1

and a2 helices of Bcl-XL protein.

(PDF)

Figure S6 The p53 peptidomimetic (PMI) interaction
pattern with MDM2 (A), and MDMX (B). The trio

hydrophobic residues and terminal proline residues of PMI are

shown as sticks and labeled. The hypothetical fourth hydrophobic

pocket forming residues in MDM2 and MDMX are also

highlighted as sticks.

(PDF)

Table S1 Components of binding free energy (in kcal/
mol) of Bcl-XL with Bad peptide.

(PDF)

Table S2 Components of binding free energy (in kcal/
mol) of Bcl-XL with Bak peptide.

(PDF)

Table S3 Components of binding free energy (in kcal/
mol) of Bcl-XL with SN15W23A peptide.

(PDF)
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