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ABSTRACT

Motivation: Sequencing projects increasingly target samples from
non-clonal sources. In particular, metagenomics has enabled
scientists to begin to characterize the structure of microbial
communities. The software tools developed for assembling and
analyzing sequencing data for clonal organisms are, however, unable
to adequately process data derived from non-clonal sources.
Results: We present a new scaffolder, Bambus 2, to address some
of the challenges encountered when analyzing metagenomes. Our
approach relies on a combination of a novel method for detecting
genomic repeats and algorithms that analyze assembly graphs
to identify biologically meaningful genomic variants. We compare
our software to current assemblers using simulated and real data.
We demonstrate that the repeat detection algorithms have higher
sensitivity than current approaches without sacrificing specificity. In
metagenomic datasets, the scaffolder avoids false joins between
distantly related organisms while obtaining long-range contiguity.
Bambus 2 represents a first step toward automated metagenomic
assembly.
Availability: Bambus 2 is open source and available from
http://amos.sf.net.
Contact: mpop@umiacs.umd.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Metagenomics, the direct sequencing of DNA from all organisms in
an environment without culturing, has recently emerged as a new
scientific field that enables the discovery of novel organisms and
genes (Yooseph et al., 2007)—as well as the study of population
structure and dynamics (Arumugam et al., 2011; Koenig et al., 2011).
Metagenomic studies have greatly expanded the understanding of
microbial diversity. For example, viral quasi-species have been
shown to affect pathogenicity in the poliovirus due to cooperation
between differently adapted individuals in a population, as well as
between coinfecting viruses (Vignuzzi et al., 2005). Other recent
studies have relied on metagenomics to identify novel genes and
uncultured microbes (Hess et al., 2011).

The assembly of metagenomic data is complicated by several
factors such as: (i) widely different levels of representation for
different organisms in a community; (ii) genomic variation between
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closely related organisms; (iii) conserved genomic regions shared
by distantly related organisms; and (iv) repetitive sequences within
individual genomes. Similar challenges occur in the assembly
of polymorphic eukaryotes, a challenging domain for existing
assembly algorithms. For example, the assembly of the sea squirt
genome Ciona savignyi required extensive manual intervention
and customized scripts despite the fact that this genome is
fairly ‘simple’—there were only two haplotypes of roughly equal
coverage (Vinson et al., 2005). Metagenomic data are considerably
more complex. Due to the lack of assembly tools specifically targeted
at metagenomic projects, studies rely on existing assemblers and
attempt to mitigate some of the challenges posed by the data through
iterative adjustment of assembly parameters and post-processing.
Tuning is critical as existing assemblers make frequent errors even
in simulated datasets with significantly lower complexity than true
environments (Mavromatis et al., 2007). At the same time, current
assemblers produce fragmented assemblies, hampering downstream
analysis. For example, in the analysis of the Global Ocean Survey
data, the CeleraAssembler (Myers et al., 2000) was heavily modified
to allow high error rates in order to account for strain variation, and
to overcome the effects of varied coverage levels on the statistical
repeat detection procedure (Rusch et al., 2007; Venter et al., 2004).
Only two assemblers were developed specifically for metagenomic
datasets (Laserson et al., 2011; Peng et al., 2011). However, neither
utilizes mate-pairs, our focus in this work.

We present novel scaffolding algorithms optimized for non-clonal
assembly. Though our algorithms are also applicable to polymorphic
genomes, the primary focus of this article is on metagenomic
analysis. These algorithms are implemented in a software tool
called Bambus 2. Bambus 2 supersedes our previous scaffolder,
Bambus (Pop et al., 2004), which was targeted at clonal Sanger
data. We will show that, when applied to metagenomic datasets,
Bambus 2 generates large scaffolds while avoiding false joins
between distantly related organisms. Furthermore, our software can
automatically identify genomic regions of variation that correspond
to previously characterized polymorphic loci.

1.1 Metagenomic scaffolding
In our opinion, the main challenge in metagenomic assembly is to
develop an assembler that can automatically generate contiguous
assemblies yet accurately capture genomic variation information
throughout the assembly process.

It is important to first define the basic concepts underlying genome
scaffolding. Most modern genome assemblers start by reconstructing
segments of the genome that are unambiguously defined by the set
of reads. These segments, called unitigs, are sections of the genome
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entirely contained in either unique regions or repeats, i.e. they do not
span the boundary between individual repeats or between repeats and
unique regions. The nucleic acid sequence of unitigs can, therefore,
be unambiguously reconstructed.

Irrespective of the assembly algorithm employed, the unitigs
themselves are generally small and assembly software must use
additional information to increase the size of the contigs produced.
Commonly, assemblers leverage the information contained in mate-
pairs—information constraining (in orientation, the DNA strand
from which the sequence originated, and approximate distance) the
pairwise position of reads along the genome. The process through
which mate-pair information is used to increase contig sizes, as
well as to determine a global arrangement of contigs along the
genome, is called scaffolding. Note that longer contigs can also
be constructed by careful analysis of the assembly graph without
the use of mate-pair information (Kingsford et al., 2010; Nagarajan
and Pop, 2009)—we broadly consider scaffolding to also include
such analyses. Most existing genome assemblers contain dedicated
scaffolding modules [e.g. Butler et al. (2008); Li et al. (2010); Myers
et al. (2000); Zerbino et al. (2009)]. The unitig graph is output by
a variety of modern assemblers such as Newbler (Margulies et al.,
2005), Celera Assembler (Myers et al., 2000) and SOAPdenovo (Li
et al., 2010), allowing scaffolding tools to operate as a stand-alone
module post-assembly (Dayarian et al., 2010; Gao et al., 2011; Pop
et al., 2004). Throughout the article, we will assume that the unitig
graph is given and will demonstrate how this information can be
used to effectively analyze metagenomic datasets.

Genomic repeats are the major challenge when assembling
isolate genomes, and their effect is compounded in metagenomic
datasets. Repeats link together disparate sections of the genome.
As the number of reconstructions grows exponentially with the
number of repeats (Kingsford et al., 2010), it is intractable to
find the one correct reconstruction. Therefore, most assemblers
start by masking out unitigs that appear to represent repetitive
segments of a genome. Celera Assembler, for example, uses depth
of coverage statistics to determine whether a particular unitig
represents a repeat, then ignores these unitigs until the later stages
of scaffolding (Myers et al., 2000). Coverage statistics are also
used in other assemblers (Butler et al., 2008; Dayarian et al., 2010;
Zerbino et al., 2009). An alternative approach relies on topological
information: unitigs that have multiple conflicting neighbors (Li
et al., 2010) can be inferred to represent repeats.

While the approaches described above work well in isolate
genomes, they can lead to false positives in metagenomic datasets.
Coverage-based methods can classify abundant organisms as
repeats, preventing the assembly of exactly those segments of
the community that should be easily assembled (Venter et al.,
2004). Distinguishing between repeats within the same genome and
conserved genomic segments shared by closely related organisms
can be difficult. As seen in Figure 1, the local unitig graphs and
coverage look identical in both cases. Below, we will describe new
approaches for repeat detection that work well in metagenomic
datasets.

Currently available scaffolders attempt to construct linear
scaffolds, i.e. where unitigs can be placed in a linear, non-
overlapping order. When multiple unitigs occupy the same genomic
region, they are either collapsed into one or the scaffolds are
broken apart. Collapsing unitigs assumes the differences are due to
error (Zerbino and Birney, 2008). Breaking scaffolds assumes the

(a)

(b)

(c)

Fig. 1. (a) The unitig graph representation of a single unitig, 3, having double
the coverage of the surrounding unitigs. Solid black arrows correspond to
reads comprising a unitig. (b) One of the possible resolutions of the graph
presented in (a). This example places unitig 3 in two locations along a single
genome. (c) A second of the possible resolutions of the graph presented
in (a). This example places unitig 3 at the same location in two genomes
(highlighted in different colors).

ambiguity is due to repeats (Dayarian et al., 2010). In metagenomic
assembly, such bubbles (multiple contigs occupying the same
position in the assembly) are common due to polymorphisms
between closely related strains, and fracturing the scaffolds at such
positions leads to fragmented assemblies. Collapsing unitigs can
lead to a ‘mosaic’ consensus sequence. If the variation occurs within
genes, the consensus may contain frameshifts and even make it
difficult to determine whether a gene exists. Previous attempts
at untangling the genomic variation information from assembly
data have relied on visualization techniques (Eppley et al., 2007a).
While valuable insights have been obtained through such studies,
these approaches are manually intensive and not scalable to large
metagenomic datasets. In this article, we propose an approach that
can preserve polymorphic bubbles within the assembly yet allows
long-range scaffolds to be constructed.

2 OUR APPROACH
We propose that repeats and genomic variation can be distinguished
from each other by examining the unitig graph. Repeats appear to
‘tangle’ the unitig graph, thereby masking the global structure of
the genome. Genomic variants, on the other hand, lead to localized
motifs in the graph. For example, assume that several strains of a
same organisms are virtually identical with the exception of a region
of variation (e.g. a locus of antigenic variation). The graph pattern
corresponding to this situation in Figure 2a appears as a bubble in
the unitig graph. We suggest that the global structure of the genome
can be best recovered if the ambiguity due to genomic variation is
maintained throughout the scaffolding process. Specifically, motifs
due to genomic variation do not affect the long-range structure
of the common backbone shared by related genomes. Instead of
resolving the bubbles, we detect regions of variation and replace
each of them with a single graph node, simplifying the graph without
obscuring the structure. Through the iterative application of this
process, interleaved with standard graph simplification procedures
we can obtain scaffolds that capture a large fraction of the common
genome structure of closely related organisms. For each variant, we
output a main sequence along with alternatives corresponding to the
haplotypes in the data. Fasulo and others (Fasulo et al., 2002) have
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(b)

(a)

Fig. 2. (a) A variant motif detected on the Sim3 dataset. The motif
corresponds to a ferrochelatase gene in E.coli. There are two alternate
versions of the gene within the E.coli K12 (2338) and E.coli O157:H7 (2034)
genomes. (b) A CLUSTAL W (Thompson et al., 1994) alignment of a subset
of the fasta output from Bambus 2, with an edit region corresponding to (a).

previously presented an approach for detecting and representing
variant bubbles during the assembly process, primarily targeting
short-range variation that can be found within a single sequencing
read. Our approach is more general and can tolerate larger scale
variants (our approach detected variants with an average size of
5606.2±8868.26 when scaffolding 75 bp reads). Used in concert
with the algorithm described by Fasulo et al. (2002) our method
will detect large-scale polymorphisms in addition to the short-range
within-read variants.

Underlying the procedure above is the assumption that the
ambiguity in the assembly graph is primarily caused by genomic
variants, i.e. repeats have been detected and removed from the
graph. We will describe two approaches for finding repeats in
metagenomic samples. The first approach is based on the observation
that repeat nodes appear to ‘tangle’ the graph structure—these nodes
look like focal points in the graph, as in Figure 3. We detect
such repeats using a measure of node centrality similar to the
vertex-betweenness centrality measure used in social network
analysis (Freeman, 1977, 1979). We also propose a variant of
coverage-based repeat detection that tracks the change in coverage
within-graph components instead of using a global coverage
statistic. We will show that this localized coverage measure is less
sensitive to coverage differences between organisms in the sample.

3 METHODS
Our algorithms operate on a contig graph. A contig may represent a single
unitig or an ungapped concatenation of multiple contigs. For each mate-
pair connecting pairs of contigs, we generate a link l with length d(l) and
orientation computed from the orientation and positions of the reads in
the contigs. The SD σ(l) is provided as input to Bambus 2. Using the set
of links between pairs of contigs, the orientation is set as the orientation
of the majority of the links. Once an orientation is selected, we check
whether the distance constraints implied by the links are consistent with
each other. If not, we discard the smallest number of links that results in
a consistent set S (the largest consistent set can be found in nlogn time
using an algorithm for maximal clique finding in an interval graph). Each

Fig. 3. The figure shows a subset of a bacterial assembly where nodes are
connected if they share paired-end reads. The shaded node, 119, is a repeat
that occurs on many shortest paths.

consistent set is output as an edge e with weight w(e)=|S|. The average

length l(e)=
∑ d(l)

σ(l)2∑ 1
σ(l)2

and SD σ(e)= 1∑ 1
σ(l)2

as suggested in Huson et al.

(2001). Additional information, such as overlaps between adjacent contigs
(contigs sharing common sequence), is also included when constructing the
edges. The resulting graph is bidirected (Medvedev et al., 2007).

Scaffolding consists of three operations: orientation, positioning and
simplification. Throughout the process, we prune the graph by removing
contradictory edges and recording their reason for removal.

To avoid the ambiguity introduced by repeats, we start with a repeat
detection step, then exclude all repeat contigs and incident edges from
scaffolding. The (possibly multiple) placement of these nodes can be
determined after the initial scaffolding is complete.

Centrality-based repeat detection: we calculate the all-pairs-shortest paths
with each edge having weight w=1. For each node, v, we calculate the
number of times it appears on a shortest path: Pv. Note that larger contigs
are expected to have a higher degree because they contain more reads
and, therefore, have a higher chance of being the end-point of a mate-pair
link. To correct for this, we linearly scale Pv by the contig length. Such a
length-dependent correction has been previously proposed in the context of
estimation of gene abundance in metagenomic samples (Sharon et al., 2009).
A node is declared repetitive if the scaled Pv > x̄+c×σ where c is a constant
(usually set to 3), x̄ is the mean of all scaled Pv ∀v∈V and σ is the SD of all
scaled Pv ∀v∈V .

Local coverage statistic: for each connected component S and for each
node v∈S, we compute the A-stat value (Myers et al., 2000). An abundant
organism is less likely to appear repetitive in our approach as the connected
component is more homogeneous. This operation is carried out after the
repeat nodes identified by all-pairs-shortest paths have been removed.

Orientation: we must first convert the bidirected graph into a directed
graph by choosing an orientation for each node in the graph. We call
reverse edges any pairwise constraints that require the adjacent contigs to
be in opposite orientations. It is impossible to assign a consistent order to
nodes involved in a cycle with an odd number of reverse edges without
discarding edges. We attempt to remove a minimum number of edges to
allow a consistent orientation to be assigned. Finding such a minimum set is
equivalent to the Maximal Bipartite Subgraph problem which is NP-hard
(Garey and Johnson, 1979). We rely on a greedy heuristic proposed by
Kececioglu and Myers (1995) that achieves a two-factor approximation. The
algorithm runs in O(V +E) time.

Positioning: in addition to assigning an edge direction, we want to assign a
position for each contig. There may be multiple edges assigning contradictory
positions to a node. These imperfect data are the result of experimental errors
and repeats (ambiguities in the placement of reads along a genome). We want
to maximize the number of satisfied edges by placing nodes as close to the
specified position as possible. This problem is similar to the Optimal Linear
Arrangement problem which is also NP-hard (Garey and Johnson, 1979).
We rely on the following greedy extension heuristic to linearly order the
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Table 1. Simulated data

Organism Reference size Identifier

Psychromonas sp CNPT3 3 052 410 AAPG00000000
Porphyromonas gingivalis W83 2 343 476 AE015924
Escherichia coli K-12 MG1655 4 639 675 U00096
Escherichia coli O157:H7 EDL933 5 528 445 AE005174

Dataset # Reads Size of simulated paired-end libraries P.sp CNPT3 P.gingivalis W83 E.coli K-12 E.coli O157:H7

Sim1 10 000 50% 5 kb, 50% 10 kb 1.97X 2.00X 2.01X 0.00X
Sim2 10 000 50% 5 kb, 50% 10 kb 5.30X 0.55X 0.56X 0.00X
Sim3 10 000 50% 5 kb, 50% 10 kb 0.55X 0.57X 1.68X 1.65X

Four reference genomes were used to generate three simulated datasets. Organism: the reference used to generate simulated data. Reference size: the size (in base pair) of the
reference. Identifier: the identifier of the reference in the NCBI Entrez database. # Reads: total number of reads simulated from the reference for a simulated dataset. The effective
coverage for each reference is listed in each dataset.

contigs: scaffolding starts by placing an arbitrary node at position 0. For
each node without a position, compute an initial position based on all already-
placed neighbors as a weighted average. Subsequent edges can reposition the
node within a limit of 3σ(e) where σ(e) is the SD of the edge. The extension
stops when the ratio of an edge weight w(e(u,v)) to the maximum weight
edge incident on node u or v is below a threshold. Edges eliminated from the
graph due to invalid orientation are not used in this step. The algorithm runs
in O(V +E) time. This heuristic is sufficient once the graph is simplified as
above and repeat contigs removed.

Simplification: a transitive reduction is applied to the contig graph and
redundant edges are removed. Transitive edges [an edge e(u,v) such that
there is a path p with a set of edges pe ⊂E incident on nodes pv ⊂V between
u and v not including e(u,v)] are removed from acyclical components of the
graph by performing a depth-first search from each node in topological order.
Given the sequence lengths of contig in the graph l(v) ∀v∈V and a path p, we
define the length of the path as l(p)=∑

∀ contigs v∈pv
l(v)+∑

∀ edges e∈pe
l(e).

Define the SD of the path as σ(p)=∑
∀ edges e∈pe

σ(e). A transitive edge
is removed when |l(e)−l(p)|≤σ(e)+σ(p). These edges can be removed
without loss of information. Simple paths (all nodes have in- and out-
degree equal to 1) are then collapsed: the nodes on the path are replaced
with a single node representing the concatenation of the original nodes, and
the intervening edges are removed from the graph. Finally, each simplified
connected component in the graph gets reported as a scaffold.

Variant detection: once we have oriented and positioned the contigs and
simplified the graph, we iteratively search for variation motifs. We search
for subgraphs where multiple paths begin at a source node and collapse to
one sink node within a certain number of hops. To allow for artifacts due
to incomplete coverage, we allow subgraphs where paths terminate before
reaching the sink.

Given graph G= (V ,E) and motif set S ⊂V

incoming edges=Sin(u,v)⊂E s.t. u∈V −S and v∈S

outgoing edges=Sout(x,w)⊂E s.t. x∈S and ∈V −S

∀e∈Sin(u,v),v=source, ∀e∈Sout(x,w),x=sink

That is, the incoming edges may only be incident on the source node and
the outgoing edges may only be incident on the sink node. Finally, to avoid
false positives due to layouts that satisfy edge constraints but where nodes
can be placed in a linear, non-overlapping order, we calculate the overlap
ratio.

Given S ⊂V , node v∈S, start coordinate of v, B(v) and end coordinate
of v, E(v)

length(S)=abs(E(sink)−B(source))

overlap(S)=
∑

∀(u,v)∈S

(min(E(u),E(v))−max(B(u),B(v))+1)

s.t. min(E(u),E(v))−max(B(u),B(v))+1)>0

The overlap ratio is then overlap(S)
length(S) . Intuitively, it is the total number of bases

covered by two or more nodes, divided by the total number of bases in
the motif. Motifs whose overlap ratio exceeds a threshold are marked as
a polymorphism. To make the problem tractable, only subgraphs with a
diameter of 2 are detected in the current implementation of our algorithm.
Each iteration of motif detection has a runtime of O(|V |×(�(G)3 +3�(G)))
where �(G) is the maximum degree of G. This algorithm has a worst-case
runtime of O(|V |×(|E|3 +3|E|)). However, in a contig graph it is likely
that �(G)<< |E|. Every level of depth multiplies the runtime by a factor of
�(G).

Output: Bambus 2 supports several output formats. Since we do not
linearize scaffolds and maintain ambiguity due to variation in the graph, the
native output is a graph [in Graphviz format Gansner and North (2000)].
Bambus 2 also finds the longest sequence reconstruction through each
scaffold. That is, it will ignore variant motifs and generate a single self-
consistent sequence for each scaffold. Additionally, Bambus 2 outputs each
variation motif as a set of sequences. For each motif, S, we start from the
source node, as defined above. For each child node c of source, we recursively
compute the sequences starting at c. The longest sequence starting at source
is the master sequence of the motif. The alternate sequences found in the
graph are also output, including edit positions specifying where within the
master sequence they belong. Figure 2b shows an example alignment of the
fasta output for a variant region within E.coli.

Test data: we tested the algorithm using nine datasets. Brucella suis 1330
comprised 36 080 reads and available as NCBI Trace Archive Project ID 320.
The reference includes: AE014291:AE014292 (2 107 792 bp, 1 207 381 bp).
Three simulated datasets were generated using MetaSim (Richter et al., 2008)
(Table 1). The acid mine drainage dataset, generated by Simmons et al.
(2008); Tyson et al. (2004), consists of 179 770 reads and is available as
NCBI Trace Archive Project ID 13696. The reference AMD dataset includes:
Ferroplasma acidarmanus Type I, Ferroplasma sp. Type II, Leptospirillum
sp. Group II 5-way CG, Leptospirillum sp. Group III and Thermoplasmatales
archaeon Gpl and is available as CH003520:CH004435. The Twin Gut data
were generated by Turnbaugh et al. (2008) and is available as SRA002775
(8.30M GS FLX fragments). The MetaHit datasets were generated by the
MetaHit consortium (Qin et al., 2010) and are available as ERS006526,
ERS006594 and ERS006494.

4 RESULTS
In the following section, we demonstrate the performance of
Bambus 2 by comparing it with two assemblers used in recent
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metagenomic projects [Celera Assembler (Myers et al., 2000) and
SOAPdenovo (Li et al., 2010)]. We have not included a comparison
with our previous scaffolder, Bambus (Pop et al., 2004), as it lacks
the functionality necessary in a metagenomic setting. Also, we
have omitted comparisons to Genovo (Laserson et al., 2011) and
Meta-IDBA (Peng et al., 2011) as neither of these use mate-pair
information during the assembly process.

4.1 Repeat detection
We benchmarked our algorithms for repeat detection using artificial
and real datasets by comparing repeats identified by Bambus 2
with those identified by the Celera Assembler (Miller et al., 2008)
with metagenomic settings (Rusch et al., 2007; Venter et al.,
2004) (referred to as CA-met). The CA-met settings increase the
tolerance for mismatches when building unitigs, providing longer
range contiguity, but possibly leading to mis-assembly. The repeat
detection from Celera Assembler relies on coverage, a common
approach and procedures for tuning this assembler for both isolate
and metagenomic assemblies have been documented (http://wgs-
assembler.sf.net). Figure 4 shows the results.

Ideally, the repeat detection should have both high sensitivity
and specificity. Sensitivity reflects how many true repeats are
detected. Detecting too few repeats can lead to assembly errors in
scaffolding. Specificity reflects the false positives. Detecting too
many repeats leads to a suboptimal assembly as these contigs do
not fully participate in scaffolding. In the case of B.suis 1330, both
methods have high sensitivity and specificity. Celera Assembler
repeat detection was designed for clonal organisms. Since the
B.suis dataset is clonal, CA can accurately detect repeats. In all
other cases, Bambus 2 has a higher sensitivity and specificity than
Celera Assembler. The default genome size estimates in CA are too
sensitive, identifying too many repeats. While varying the genome
size improves repeat detection, it is at the expense of sensitivity
or specificity. On all datasets, this tuning, which is difficult when
the true taxonomic distribution is unknown, still does not match
Bambus 2’s automated sensitivity and specificity result.

4.2 Scaffolding of simulated metagenomic datasets
We compared Bambus 2 to CA with default settings and CA-met.
While other assemblers have been used in metagenomic studies
[e.g. Phrap http://www.phrap.org/ and Newbler (Margulies et al.,
2005)], as far as we are aware, they have not been extended
to target metagenomic data. SOAPdenovo has also been used
for metagenomic studies; however, no scaffolding results were
reported (Qin et al., 2010).

We ran Bambus 2 to scaffold unitigs from CA-met and Minimus
(Sommer et al., 2007). As seen in Figure 5, for all genomes,
Bambus 2 outperforms CA. For all but one genome, Bambus 2
also outperforms CA-met. The only case where CA-met performs
better than Bambus 2 is E.coli O157:H7 EDL933. The closely
related E.coli strains are present at sufficient combined coverage
for CA-met to obtain large scaffolds. However, the low-abundance
genomes in the same sample are not assembled. In scaffolds over
2 kb, CA-met only includes 10.90 and 13.31% of the low-abundance
genomes, versus 17.24 and 18.37% for Bambus 2. Additionally,
CA-met constructs a ‘mosaic’ sequence of the two E.coli strains,
masking variation and potentially introducing error (Supplementary
Material). As we will show below, on the acid mine dataset, this

Fig. 4. Repeat detection comparison. Ideal repeat detection corresponds to
the top-right corner of the graph, with 100% sensitivity and specificity.
We vary the genome size estimate (a critical parameter in the procedure
for detecting repeats) for CA, generating a curve for each dataset. The
CA-met default is indicated by large shaded points. The Bambus 2 repeat
detection is fully automated, generating a single point. As CA is designed
for clonal organisms, only the default genome size estimate is used for
B.suis. The gold standard is built from REPuter. All tests are run using the
set of unitigs generated by CA-met. Sensitivity: True Positives

True Positives+False Negatives .

Specificity: True Negatives
True Negatives+False Positives .

Fig. 5. Assembly results for three simulated datasets. The y-axis represents
the minimum number of scaffolds that add up to 1% of the genome size.
Lower bars represent a better assembly. Bambus 2 produces large scaffolds
for a wide range of coverage levels in our simulated datasets. Bambus 2
(CA-met) is Bambus 2 run using CA-met instead of using Minimus unitigs.
We aligned the assembly (all contigs >2 kb) to the reference and counted
coverage by reciprocal best matches over 95% identity. We use reciprocal
best matches to avoid double counting Bambus 2 motifs that cover the same
genomic region. We divide the number of scaffolds by the genome coverage
and average the results, by genome, on all three simulated datasets to evaluate
performance across varying coverage.

‘mosaic’ assembly leads CA-met makes more mistakes (chimeric
scaffolds) than Bambus 2.

We examined all datasets for variation motifs detected by
Bambus 2. A total of 16 motifs were found in the Sim1 dataset,
and 6 motifs in the Sim2 dataset. Each of the motifs appear to be
false positives (all the contigs comprising the motif originate from
the same genome). The analysis of the sequence of the overlapping
unitigs could be used to detect and correct such mistakes. Such
analyses will be included in future versions of our software.
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Fig. 6. Assembly results for the acid mine metagenomic dataset. The y-axis
represents the minimum number of scaffolds that add up to 1% of the genome
size. Lower bars represent a better assembly. Bambus 2 produces larger
scaffolds that CA-met in three of the five genomes. We calculated assembly
statistics as in Figure 5. In three genomes, both CA and Bambus 2 produced
slightly >100% coverage. This is due to redundancy within the MUMmer
alignments.

A total of 30 variation motifs were detected in the Sim3 dataset.
The motifs detected include genes for ferrochelatase (Fig. 2a) as
well as outer membrane proteins and integrase for prophage, which
are known to vary across strains of E.coli (Perna et al., 2001) and
more broadly, across other enterobacteria.

4.3 Scaffolding of the acid mine drainage metagenome
We tested Bambus 2 on an acid mine drainage (Tyson et al., 2004)
metagenomic set. These data represent an ideal benchmark as they
comprise a low number of organisms, and the genomic variation
between related members of the community has been extensively
studied. We generated unitigs using CA and scaffolded them with
Bambus 2. The Bambus 2 assembly has fewer scaffolds in three
of the five organisms present in this sample when compared with
CA-met (Fig. 6). In two genomes, Leptospirillum sp Group III and
Ferroplasma acidarmanus Type I, Bambus 2 halves the number of
scaffolds while reconstructing a larger percentage of the references,
as compared to CA-met. In one case, Ferroplasma sp Type II, CA-
met produces fewer scaffolds than Bambus 2. However, we found
that over 61% of the contigs in the Ferroplasma sp Type II CA-
met assembly cannot be uniquely assigned to a single reference
genome. We hypothesize that CA-met combined the assemblies
of Ferroplasma acidarmanus Type I and Ferroplasma sp Type II,
creating chimeric contigs and scaffolds.

We validated our hypothesis by counting the fraction of contigs
in chimeric scaffolds. Chimeric scaffolds either include a chimeric
contig or contain contigs from different organisms (Supplementary
Material). Bambus 2 had the lowest rate of chimeras, 5.66%, while
CA-met had the highest at 23.07%. This is expected as CA-met
was tuned to maximize scaffold size, possibly merging unrelated
organisms. Bambus 2 built large scaffolds while making fewer
mistakes.

The acid mine community used in our analysis is dominated
by two genera: Leptospirillum bacteria and Ferroplasma archaea.
A large extent of genomic variation, primarily due to recombination,
was characterized in both these groups of organisms (Eppley
et al., 2007b; Simmons et al., 2008; Tyson et al., 2004). Initial
studies of this environment indicated that most genomic variation

can be found in Ferroplasma sp Type II, with no predominant
functional groups being associated with the variable regions (Tyson
et al., 2004). Subsequent publications with additional sequencing
(included in our dataset), also showed significant variation in
Leptospirillum sp Group II ‘5-way CG’ (Simmons et al., 2008).
Here we evaluated whether Bambus 2 is able to rediscover these
results. We detected a total of 99 motifs, of which 66 represented
alternate sequences (two contigs occupying the same positions) and
33 represent insertion/deletion of sequence. The majority of motifs
could be assigned to regions from the Ferroplasma sp Type II,
as expected. However, as a percentage of bases contained within
variation motifs (the extent, rather than number of motifs), the most
varied organisms appear to be Leptospirillum sp Group II ‘5-way
CG’ and Leptospirillum sp Group III, followed by Ferroplasma sp
Type II. The difference in the patterns of variation (frequent but small
in Ferroplasma and less frequent but large in Leptospirillum) was
also observed by Simmons et al. (2008) and could be explained by
different biological mechanisms that drive the genomic variability.
It was hypothesized (Eppley et al., 2007b) that recombination
frequently occurs within Ferroplasma possibly due to the fact that
that these organisms (as well as many other archaea) lack the mutS
and mutL DNA repair systems. Conjugation or transduction, which
produce large events (as they are dependent on the F-plasmid and
phage size), was hypothesized to contribute to the genomic variation
in Leptospirillum (Simmons et al., 2008).

We compare the genes within variation motifs to those identified
in previous publications. We annotated the assembly by taking
non-overlapping best BLASTX (Altschul et al., 1990) hits for
each unitig and assigned a COG (Tatusov et al., 2000) functional
category to each hit. We tabulated the counts of each COG
category within the assembly and within the motifs. We then
characterized the functional categories that are statistically enriched
in motif regions (Supplementary Material). The functional category
corresponding to ‘DNA replication, recombination and repair’
(category L) is significantly enriched (P=0.006, hypergeometric
test). Also enriched (P=0.25, hypergeometric test) is one of the
poorly characterized COG categories, ‘general function prediction’
(category R). Our results are consistent with previous analysis
of the data (Simmons et al., 2008). One specific motif identified
within Leptospirillum sp Group II ‘5-way CG’, corresponds to
glycosyltransferase, a gene previously characterized as occurring
within a mobile region of Leptospirillum sp Group II and
Leptospirillum sp Group III (Goltsman et al., 2009). Thus, it is
expected that this mobile element would mutate and recombine
independently within the members of the Leptospirillum sp
population, giving rise to the motif.

4.4 Scaffolding output of NGS assemblers
Finally, we tested Bambus 2 on four dataset composed of next-
generation sequencing reads. The first dataset, comprising the gut
microbiome of twins (Turnbaugh et al., 2008), was assembled
using Newbler (Margulies et al., 2005) followed by Bambus 2. Our
assembly combined all 18 individual samples from the original
study. The assembly generated 3230 variation motifs. Since we
lacked a reference, we could not map our assembly and tabulate
statistics as with previous datasets. Instead, we evaluated the
assembly contiguity. We sorted the scaffolds in decreasing order
by size and counted the number and size of the smallest scaffold
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Table 2. Assembly results on test datasets

Dataset ASM # Scaffolds Mean Max # Scf Len at 5 Mb # ORFs / MB # Scf in 1% # Errors

GUT Newbler 11 012 4115.1 46 150 275 12 769 0.00217 19.18 7
Bambus2 11 450 4778.9 80 512 134 25 370 0.00204 15.24 10

V1.CD-2 SOAPdenovo 5794 4889.0 84 000 230 14 207 0.00186 15.54 51
Bambus2 4057 5680.6 237 167 166 18 210 0.00200 7.28 67

V1.UC-8 SOAPdenovo 15 029 5371.3 176 511 87 39 282 0.00178 1.34 13
Bambus2 12 952 5954.0 257 939 58 55 905 0.00183 0.80 18

MH0012 SOAPdenovo 27 451 6470.1 356 312 30 115 466 0.00172 2.67 33
Bambus2 23 994 5704.7 823 131 35 84 700 0.00180 0.99 43

The contiguity results on four NGS datasets. #Scaffolds: the number of scaffolds >2 kb. Mean: the average length of scaffolds. Max: the maximum length scaffold in the assembly.
Scaffold at 5 Mb: we sort the scaffolds in decreasing order by length and count the number and size of the smallest scaffold required to reach 5 Mb. The #ORFs/MB measures the
number of open reading frames (ORFs) identified by MetaGeneMark (Lukashin and Borodovsky, 1998) in the assembly. The counts are normalized by total sequence length in the
assembly. The # Scf in 1% is reported as in Figures 5 and 6 using a reference identified by BLAST (Altschul et al., 1990); lower scores are better. The errors are reported by dnadiff
from the MUMmer 3.20 package (Kurtz et al., 2004). The GUT dataset did not include paired-end information and we relied on the Newbler contig graph to perform scaffolding
with Bambus 2. Therefore, the Newbler results are reported on contigs not scaffolds as no scaffolds were generated by Newbler on this dataset.

required to reach 5 Mb (Table 2). To assess scaffold correctness,
we used BLAST (Altschul et al., 1990) to identify a dominant
organism within the datset. The best hit was Bifidobacterium longum
NCC2705 (AE014295). We mapped the assembled scaffolds to
the reference using nucmer (Kurtz et al., 2004) and calculated the
errors in scaffolds and the number of scaffolds to cover 1% of the
reference. We also ran MetaGeneMark (Lukashin and Borodovsky,
1998) to identify open reading frames (ORFs) within the assemblies
and include the results in Table 2. We annotated the assembly
and evaluated COG functional category enrichment in motifs as
before. The COG functional categories for ‘amino acid transport and
metabolism’ (category E), ‘nucleotide transport and metabolism’
(category F), ‘carbohydrate transport and metabolism’ (category G),
‘DNA replication, recombination and repair’ (category L) and ‘cell
envelope biogenesis, outer membrane’ (category M) were enriched,
while categories for ‘cell motility and secretion’ (category N) and
‘unknown function’ (category S) were depleted in the variation
motifs found by Bambus 2. Interestingly, the enriched functional
categories were characterized as ‘core’ for the gut biome (categories
universally found across all subjects) in Turnbaugh et al. (2008).
Other categories classified by Turnbaugh et al. as core, such as
‘transcription’ (category K), were also found enriched in our motifs,
but not significantly (Supplementary Material). Turnbaugh et al.
noted that while no core microbiome exists at a taxonomic level, a
core can be detected at a functional level. The over-abundance of
these core genes in the detected motifs may explain this observation.
We hypothesize that the core genes can occur in different genomic
contexts due to lateral transfer, allowing a diverse set of organisms
to survive within the human distal gut, and thereby explaining an
enrichment of such genes within variation hotspots. These results
would not be apparent from the analysis of the contig consensus
sequences and demonstrate the importance of performing detailed
analyses of the data underlying the assembly (i.e. the assembly
graph) to characterize an environment.

We selected three samples at random from the MetaHit consortium
(V1.CD-2, V1.UC-8 and MH0012) (Qin et al., 2010). We reran
SOAPdenovo to generate unitigs and scaffolds. We used Bambus 2

to scaffold the unitigs produced by SOAPdenovo (Li et al., 2010) and
compare Bambus 2 scaffolds to those generated by SOAPdenovo
(Table 2). One dataset (V1.CD-2), comprising over 51M Illumina
reads was analyzed in ≈3.5 h with a peak RAM usage of 10.0 GB.
The largest dataset (MH0012) comprising 186M reads was analyzed
in ≈20 h.

In all cases, Bambus 2 produced more contiguous scaffolds than
SOAPdenovo, in two cases more than doubling the largest scaffolds.
We again identified a dominant organism within each dataset and
map scaffolds to it. The best hits were Bacteroides coprophilus
DSM 18228 (NZ_ACBW00000000), Methanobrevibacter smithii
ATCC 35061 (NC_009515) and Akkermansia muciniphila ATCC
BAA-835 (CP001071.1) for V1.CD-2, V1.UC-8 and MH0012,
respectively. Bambus 2 produced more ORFs per MB of assembly.
It also required fewer scaffolds to cover the reference while not
introducing many errors.

We hypothesize that the improvement in contiguity is due to
Bambus 2 overcoming genomic variation within the data, where
we identified 2763 variation motifs. To evaluate our hypothesis, we
aligned Bambus 2 motifs to SOAPdenovo scaffolds and counted
motifs that span multiple scaffolds. Out of the 2763 motifs in the
assemblies, 2554 mapped to multiple scaffolds, confirming that
Bambus 2 motifs correspond to scaffold breaks in SOAPdenovo.

5 DISCUSSION
Bambus 2 is not a stand-alone assembler. Instead, it is a drop-in
scaffolding module optimized for non-clonal data and is compatible
with the output of many modern assemblers. Thus, Bambus 2 can
be applied to virtually all existing sequencing technologies—it is
sufficient to start with an assembler that is best suited for that type
of data. We have shown that it can easily be applied to the output
of CeleraAssembler, Newbler, SOAPdenovo and Minimus, and have
demonstrated its performance in Sanger, 454 and Illumina data.
Bambus 2 includes an executive script (named goBambus2) that
will automatically process input data in a variety of formats and run
the pipeline, making it easy to use.
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The current version of our code does not make use of sequence
information when performing graph simplification. We plan to
incorporate such information in the future, allowing Bambus 2
to merge contigs, when appropriate. In addition, using sequence
information can allow Bambus 2 to avoid false positives in detecting
variation motifs. We also plan to distribute a visualization tool to
allow users to interact with the variants and the assembly graph.

The repeat detection procedures used in Bambus 2 are sensitive
without sacrificing specificity, and could also be applied to the
assembly of single genomes, in particular in single-cell projects
where depth-of-coverage artifacts are common. The scaffolds
generated by Bambus 2 cover a large percentage of the genomes
in the samples, while largely avoiding misjoins. The fasta output
of variants motifs facilitates analysis of the full diversity in
an environment. Furthermore, the ability to highlight regions of
variation has proven useful in detecting biologically meaningful
patterns that match previously published results.

Accurately assembling metagenomic datasets automatically is
challenging with current assemblers, and often requires manual
tuning of parameters and post-processing. Bambus 2 represents a
first step toward automated metagenomic assembly, and is able to
obtain long-range contiguity in metagenomic datasets while also
characterizing regions of variation.
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