
Transcriptomic Characterization of a Synergistic Genetic
Interaction during Carpel Margin Meristem Development
in Arabidopsis thaliana
April N. Wynn1, Elizabeth E. Rueschhoff2, Robert G. Franks1*

1 Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America, 2 Department of Biology, Indiana University Southeast, New

Albany, Indiana, United States of America

Abstract

In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the
developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules
will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the
proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the
seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the
molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we
identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant
gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of
the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu
ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of
transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING
FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of
these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed
description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation.
Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional
redundancy of these two genes and illuminate the developmental and molecular events required for CMM development
and ovule initiation.
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Introduction

In both gymnosperms and angiosperms, ovules are critical for

reproductive competence. Ovules contain the female gametophyte

and thus the egg cell. Additionally, upon fertilization the ovules

develop into the seeds that nurture and protect the developing

embryos. In Arabidopsis thaliana, two rows of ovules develop from a

ridge of meristematic tissue on the inner surface of the seed pod or

gynoecium. Within the developing ovule primordia, much is

known about molecular patterning events along the proximal to

distal axis and the mechanisms of integument development [1,2,3].

Also dramatic progress has been made with respect to under-

standing the subsequent development of the female gametophyte

within the maturing ovule [4,5,6]. However, considerably less is

known about the earliest steps in ovule development: the

mechanisms of ovule initiation, and in the establishment and

maintenance of the meristematic tissues of the carpel margin

meristem (CMM) that generate the ovule primordia.

Gynoecial development in Arabidopsis initiates at stage 6 of

floral development (floral stages according to Smyth; [7]). The

gynoecial primordium is first morphologically recognizable as a

dome or mound of cells, oval in cross section, that forms from the

cells of the central most portion of floral meristem (i.e. floral whorl

4). During stage 6 the different spatial domains of the gynoecial

tube are already discernable based on the differential expression of

genes within the medial portion of the gynoecium versus the lateral

domains, as well as along the inner to outer (adaxial to abaxial)

axis [8,9,10] (Fig. 1A). During floral stages 6 and 7 the

proliferation of cells along the perimeter of the gynoecial dome

leads to the formation of a tube-shaped structure (Fig. 1B).

The single gynoecium primordium likely represents a composite

of two congenitally-fused carpel organs in a phylogenetic sense

(Fig. 1A) [8,11]. In this scenario, the medial portions of the

gynoecium represent the fused margins of the two component

carpels. The adaxial portions of the medial/marginal domain

maintain meristematic potential throughout the elongation of the

gynoecial tube and these regions have been termed carpel margin

meristems (CMMs) [12,13,14]. Each Arabidopsis gynoecium

contains two CMMs that are positioned within the adaxial

portions of the medial domain of the gynoecium. During floral

stages 7 and 8 the CMM takes the shape of a ridge of tissue (the

medial ridge) that extends along the apical basal extent of the
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gynoecial tube (Fig. 1C). During mid to late stage 8 each CMM

gives rise to two rows of ovule primordia from the peripheral

portions of the meristematic ridge (Fig. 1D). Later, the CMM also

gives rise to the gynoecial septum and transmitting tract and likely

generates portions of the stigmatic and stylar tissues. A variety of

data suggests that the proper specification of adaxial and medial/

marginal positional identities are important for the development of

the CMM and subsequent ovule initiation [12,15].

SEU and ANT act synergistically during CMM
development

A number of genes have been suggested to play a role in the

maintenance of meristematic potential in the CMM and for the

subsequent initiation of ovule primordia from the flanks of the

CMM. While no single mutant has been reported to strongly

disrupt ovule initiation, several higher order mutant combinations

have been reported to disrupt the initiation of ovule primordia

from the CMM [12,13,14,16,17,18,19,20]. The seuss aintegumenta

double mutant is one such genetic mutant combination [12]. The

number of ovule primordia in the seuss (seu) single mutant is nearly

wild type while the aintegumenta (ant) mutant conditions the loss of

about 50% of the ovule primordia. Together the loss of both the

SEU and ANT activities in the seu ant double results in the complete

loss of ovule initiation, indicating a synergistic genetic interaction

and suggesting a degree of overlapping function for SEU and ANT

during CMM development.

SEU and ANT both encode transcriptional regulators [21,22,23].

ANT encodes an AP2-type DNA binding transcription factor that is

expressed in all lateral organ primordia (leaves, floral organs, ovules)

[22,23]. Within the context of early gynoecial development, ANT is

expressed throughout the stage 6 gynoecial mound with a higher level

of expression within the adaxial core (central portions) [12,23]. At late

stage 7 and early stage 8 expression of ANT is strong in the ovule

anlagen and early ovule primordia as they arise. ANT activity during

primordium development supports organ growth by maintaining the

developmental period during which cell growth and cell divisions

occur [24,25]. ANT has also been shown to contribute to proper

specification of floral organ identity and polarity specification

[18,26,27]. While direct targets of ANT regulation have not yet been

published, PHB and cyclinD3 have been shown genetically to be

downstream of ANT regulation [12,18,24,28] further supporting a

role for ANT in organ polarity specification and regulation of cellular

proliferation and/or organ growth.

SEU encodes a transcriptional adaptor protein that is expressed

widely throughout the plant [12,21]. SEU does not have a specific

DNA binding activity but rather complexes with sequence specific

DNA binding proteins in order to exert its effects on transcrip-

tional regulation [29,30]. The best-characterized functional role

for SEU is in the repression of AGAMOUS (AG) expression during

floral organ identity specification [21]. In this context SEU

interacts with pairs of MADS-domain containing DNA transcrip-

tion factors and recruits the transcriptional repressor LEUNIG to

the second intron of the AG gene [29,30,31]. The binding of this

complex is thought to bring about repression of AG transcription

through the recruitment of histone deacetylase proteins [30,32].

Adaxial fate specification is compromised in the seu ant
double mutant

A variety of experimental data suggest that the disruption of

CMM development observed in the seu ant mutant is not

conditioned simply by a de-repression of AG, but rather that

SEU and ANT function to maintain or specify adaxial fate in the

gynoecium and that this fate specification is critical for proper

CMM development [12,16,19]. These studies demonstrated that

expression levels of PHABULOSA (PHB) and REVOLUTA (REV)

are reduced in the adaxial core of the stage 6 gynoecium in seu ant

mutant plants. PHB and REV encode transcriptional regulators of

the Homeodomain Leucine Zipper Class III type (HDZip-III) that

are known to play a key role in the specification of adaxial identity

in lateral organs [33,34,35,36,37,38,39,40]. These genetic studies,

however, were not able to determine if the effect of the loss of SEU

and ANT activity on HDZip-III expression was due to a direct or

indirect regulation of their expression or accumulation. Addition-

ally the defects in ovule and CMM development observed in the

seu ant double mutant were not rescued when PHB activity was

replaced, suggesting that either that PHB could not substitute for

the other HDZip-III family members or that gene functions in

addition to HDZip-IIIs are required downstream of SEU and ANT

for CMM development [12]. Synergistic disruptions of gynoecial

and CMM development observed in the ant rev double mutant, but

not in ant phb double mutant support the idea of a functional

differentiation between the PHB and REV activities within the

CMM [15]. The analysis of higher order mutants of the HDZip-

III family members also suggests a diversification of functional

roles within this gene family [40]. However these data do not

exclude the possibility that there are a large number of additional

gene regulation events critical for CMM development downstream

of SEU and ANT that remain to be elucidated.

Genetic analyses reveal a complex and highly redundant
mechanism supporting CMM development

Although no single mutant has been identified that eliminates

CMM development or ovule initiation, a number of double

mutant or higher order mutant combinations condition a severe

Figure 1. Spatial domains of the developing Arabidopsis
gynoecium. A) Diagrammatic representation of the Arabidopsis
gynoecial primordia at stage 6. Blue dotted arcs separate the lateral
domains from the medial domain. The medial domain represents the
fused margins of the two component carpels. The red dotted oval
separates abaxial (outer) positions from adaxial (inner) positions. adm -
adaxial margin; abm - abaxial margin; adv - adaxial valve; abv - abaxial
valve, CMM - carpel margin meristem. B) Scanning electron micrograph
of stage 6 gynoecial primordium. Medial plane is marked with a black
line. C) False colored confocal cross section of a stage 8 gynoecium.
Gynoecial domains have been colored with approximation. orange -
carpel margin meristem/medial ridge; red - abaxial margin/replum; blue
- adaxial valve; green - abaxial valve. D) Histological cross section of a
stage 11 Arabidopsis gynoecium. Ovules (ov) are indicated.
doi:10.1371/journal.pone.0026231.g001
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disruption of the CMM and CMM-derived tissues (e.g. ovules)

[12,16,18,19,20,27]. These data suggest that one or more

redundant genetic programs support the development of the

CMM. A portion of this resiliency is likely supported by the action

of multiple members of structurally related genes families. Both

SEU and ANT are members of gene families whose members have

been shown to share redundant function [16,27]. With respect to

the CMM, the SEUSS-LIKE genes, SLK1, and SLK2 genetically

enhance the ant mutant phenotype with respect to ovule initiation

defects [16]. Similarly the ANT-LIKE family member, AIL6, shares

a critical redundant function with ANT as the ant ail6 double

mutants flowers display reduced medial domain development and

initiate very few ovule primordia [27]. Other mutant combinations

indicate instances of molecularly dissimilar molecules sharing

overlapping functions during floral and CMM development. A

redundant function shared between ANT and the YABBY family

members YAB1 and YAB3 is suggested by the synergistic disruption

of ovule initiation observed in the ant yab1 and ant yab1yab3

mutants [18]. Analysis of ant shatterproof1 (shp1) shatterproof2 (shp2)

crabs claw (crc) mutants implicates the SHP MADS domain

transcription factors in CMM development. These studies together

highlight an important role for ANT function during CMM

development and ovule initiation as well as reveal a high degree of

functional redundancy within this tissue.

A high degree of redundancy hinders genetic
approaches to the study of the CMM

A number of key regulators of CMM development may be

difficult to recover with standard forward genetic approaches due

to a high degree of redundancy. Identifying genes that have

specific patterns of spatial and temporal expression in the CMM

would generate a set of candidate genes that could then be

analyzed by reverse genetic approaches. In this paper we employ a

transcriptomic profiling approach to identify sets of genes that are

differentially expressed in the developing carpels of the seu ant

double mutant. In particular we sought to identify transcripts

whose expression was dependent on the coordinated activities of

SEU and ANT gene products. We hoped to both identify novel

regulators of CMM development and to examine the molecular

mechanism of the functional redundancy of SEU and ANT during

CMM development. Our analysis identified a diverse set of

transcripts that display altered expression in the seu ant double

mutant tissues. Our in situ hybridization analyses indicate that

many of these genes are preferentially expressed within the

developing CMM. The analysis of overrepresented Gene Ontol-

ogy classifications suggests a preponderance of transcriptional

regulators including multiple members of the REPRODUCTIVE

MERISTEMS (REM) and GROWTH-REGULATING FACTOR

(GRF) families of transcriptional regulators are mis-regulated in

the seu ant gynoecia. This study is the first step toward a detailed

description of the transcriptional regulatory hierarchies that

control the development of the CMM and ovule initiation.

Results

Transcriptomic analysis reveals putative targets of SEU
and ANT regulation important for CMM development

In an effort to identify novel regulators of CMM development

and ovule initiation we identified genes that are preferentially

expressed within the CMM within the context of the gynoecium.

Additionally we endeavored to prioritize genes whose expression is

synergistically disrupted in the seu ant double mutant relative to

either single mutant. We isolated RNA from staged (floral stages 8

through 10) and hand-dissected gynoecia to limit the developmental

window of the sample to the period just before and then during

ovule primordia initiation, the earliest steps of ovule development.

This differentiates our work from that of the Gasser and Colombo

groups that have focused on later ovule developmental stages when

identifying ovule-specific transcripts [2,41].

We utilized the Arabidopsis ATH1 Gene Chip (Affymetrix) to

compare transcript levels between four different genotypes (Col-0,

seu-3, ant-1, and seu-3 ant-1 double mutant). We first analyzed

mRNA accumulation in each single mutant relative to the Col-0

wild type gynoecial samples. To identify transcripts whose steady-

state levels were altered in the single mutants relative to wild type,

we utilized a 1-way ANOVA and identified probe sets (transcripts)

that displayed a statistically significant difference in accumulation

by the genotype term. This analysis identified 120 under-expressed

and 200 over-expressed transcripts in the seu single mutant and

219 under-expressed and 241 over-expressed transcripts in the ant

single mutant (Tables S1, S2, S3, S4) Throughout this manuscript

we refer to transcripts that display a differential steady state level of

accumulation in a given sample as differentially ‘‘expressed’’ with

the caveat that we are measuring steady state levels and cannot

differentiate transcriptional from post-transcriptional effects on

RNA accumulation with these approaches.

Over-represented GO categories for the genes displaying reduced

expression in seu are reported in Table S5 and include ‘‘sequence

specific DNA-binding transcription factor activity’’ (GO:0003700)

and ‘‘leaf development’’ (GO:0048366). For genes that are over-

expressed in the seu single mutant the over represented GO

categories are reported in Table S6. Over represented GO

categories for the genes under-expressed in ant single are reported

in Table S7 and include ‘‘sequence specific DNA-binding

transcription factor activity’’ (GO:0003700) and ‘‘flower develop-

ment’’ (GO:0009908). Over represented GO categories for the

genes over-expressed in ant single are reported in Table S8.

As the seu ant double mutant fails to initiate ovule primordia, we

reasoned that genes critical for the earliest steps of ovule initiation

would display reduced expression in the seu ant double mutant

gynoecia, relative to either single mutant or the wild-type tissues.

To identify transcripts that are differentially expressed in the seu ant

double mutant relative to the other genotypes, we utilized two

statistical approaches. For Approach I we used a 1-way ANOVA

to identify probe sets for which the mean expression level was

significantly different in the double mutant relative to the overall

expression mean: 210 transcripts displayed reduced accumulation

(Table S9) and 128 displayed elevated accumulation in the double

mutant using this analysis approach (Table S10). In the set of

genes with reduced accumulation in the seu ant double mutant

statistically enriched GO categories included ‘‘transcription factor

activity’’, ‘‘ad/abaxial polarity specification’’, ‘‘flower develop-

ment’’, and ‘‘transmembrane receptor protein kinase activity’’

(Table S11). The GO terms that were significantly enriched in the

gene set with elevated accumulation are presented in Table S12.

We focused our attention on the genes that displayed reduced
expression within the seu ant double mutant because: 1) over-

represented GO terms suggest a role for this gene set in

transcriptional regulation and relevant developmental processes,

and 2) the reduced accumulation of these transcripts in the seu ant

double mutant suggests that they may be preferentially expressed

in the CMM in the wild-type gynoecium and, thus, are candidates

for novel regulators of CMM development.

Analytical Approach II yields 31 high-priority putative
CMM regulators

To further identify genes exhibiting reduced expression in the

seu ant double mutant we used a second analytical approach

Carpel Margin Meristem Development
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(Approach II) comprised of two steps. We first selected probe sets for

which the mean expression was significantly lower in the seu or ant

single mutant relative to wild type (The union of the genes sets

reported in Tables S3 and S4). As the seu-3 and ant-1 single mutants

display very minor morphological disruptions in stage 8 and 9

gynoecia, we reasoned that transcripts displaying reduced accumu-

lation in the single mutants would not simply reflect a morphological

loss of CMM tissue in these samples, but might be more likely to

reflect a reduction in the level of transcription of a given gene in the

mutant. We then applied a second selection criterion such that we

additionally required that the transcript abundance in seu-3 ant-1

double mutant gynoecia be lower than an expected value that was

estimated via an additive model using the data from each single

mutant. This was done with the JMP Genomics estimate builder

with a significance cutoff of alpha ,0.05. By using these selection

criteria, we hoped to enrich for genes that were synergistically

reduced in expression in the seu-3 ant-1 double mutant and that

might uncover the molecular basis of the synergistic phenotypic

enhancement in the seu ant double mutant.

Approach II yielded just 31 candidate genes (Table 1). Hereafter

referred to collectively as ‘‘Approach II candidate genes’’. The

majority (55%) of the Approach II candidate genes encode

transcriptional regulators. Several observations suggest that many of

these candidates are preferentially expressed in the developing carpel

margin and are likely important regulators of CMM development that

are downstream of SEU and ANT regulation. Firstly, twenty-eight of

the thirty-one Approach II candidate genes were also found within the

set of 210 genes showing significantly reduced accumulation in the

double mutant as identified by Approach I. Secondly, 11 of the 31

genes have been previously shown to be expressed preferentially in the

CMM or in CMM-derived tissues (e.g. ovules). These include

AT1G02800 (ATCEL2), AT3G55560 (AGF2), AT5g57720 (REM15)

AT2g46870 (NGA1), AT1G68640 (PAN), AT2G34710 (PHB),

AT4G37750 (ANT), AT1G70560 (TAA1), AT5G18000 (VDD),

AT3G17010 (REM22), and AT4G31610 (REM34 - previously

AtREM1) [2,12,15,22,23,40,41,42,43,44,45,46,47,48]. The expression

levels of two of these (PHB and TAA1) has been previously shown to be

reduced in seu, ant or seu ant mutant gynoecia [12,15,16]. Interestingly

even though SEU and ANT have been implicated in the repression of

AG in perianth organs, the levels of AG expression were not

significantly different from wild type in the seu or ant single mutant

gynoecial RNA samples (Table 3).

qRT verification of candidates
From this set of 31 genes that displayed reduced expression in

the seu ant double mutant we have confirmed by qRT PCR nine

out of ten genes tested (Table 2). We also confirmed an additional

7 of 7 genes that displayed increased expression in the seu ant

double mutant (Table 3).

REM family and AtGRF family transcriptional regulators
are significantly over-represented in Approach II
candidates

Surprisingly, seven out of the 31 Approach II candidate genes

were members of the B3 superfamily of transcription factors (Table 1)

[49,50]. This enrichment for genes encoding B3 transcription factors

within our sample is highly unlikely to have occurred by chance

alone (p = 2.5610210 by hypergeometric probability test). The

Arabidopsis B3 superfamily consists of 118 genes all of which encode

proteins containing one or more B3-type DNA binding domains.

The B3 superfamily is comprised of four sub-families: REM

(REPRODUCTIVE MERISTEM); LAV (LEAFY COTYLEDON2

[LEC2]-ABSCISIC ACID INSENSITIVE3 [ABI3]-VAL); ARF(AUXIN

RESPONSE FACTOR); and RAV(RELATED TO ABI3 and VP1). Six

of the seven B3 regulators that were identified in our transcriptomics

approach are from the REM subfamily for which there is little

functional data. Four of these genes, AT4G31610 (REM34/

AtREM1), AT5G18000 (VDD), At5G57720 (REM15) and

AT3G17010 (REM22), have been previously reported to display

CMM-enriched expression [41,42,43,47,51].

The GRF family of genes is also overrepresented in the list of

Approach II candidates (p = 6.961025 by hypergeometric prob-

ability test). Members of the GRF family in Arabidopsis have been

shown to regulate growth and development of leaves, cotyledons

and floral organs [52,53,54]. Over expression of members of this

gene family result in larger and wider leaves while grf5 single

mutants and grf1,2,3 triple mutants display narrower leaves,

suggesting a role in the regulation of cell proliferation within the

medial to lateral axis of the leaf.

Expression of several REM family genes marks the
gynoecial medial domain

We used in situ hybridization to further characterize the

temporal and spatial expression patterns of a number of the

Approach II candidates during early gynoecial development.

Although for several of these genes expression data from in situ

hybridization experiments were previously published, these data

did not examine the expression pattern of these genes in detail

during gynoecial development. We specifically focused on the

developing gynoecium and examined cross sections to determine

the expression patterns within the medial versus lateral gynoecial

domains. In some cases we also examined the expression in seu, ant,

and seu ant double mutant tissues. Our results indicate that all six

REM family members identified with Approach II analysis are

expressed preferentially within the medial gynoecial domain with

varying developmental profiles.

At3G53310 (REM16) was previously reported in stamen

primordia at stage 4 and carpel primordia at stage 6 [43]. We

detected expression of At3G53310 (REM16) weakly in the stage 1–

4 floral primordia, chiefly in L1 layer and in peripheral portions of

the floral meristem that will give rise to the sepal primordia

(Fig. 2A). Expression is also detected in stamen and petal

primordia as they arise at stage 4 and 5 (data not shown).

Expression in the gynoecium is difficult to detect before early stage

7 when expression is observed in the abaxial portions of the medial

gynoecial domain (Fig. 2B). Expression during stage 8 is seen in

the medial domains and begins to be detected in both adaxial and

abaxial portions. However expression is not observed in the L1

layer (Fig. 2C and G). The stage 8 medial domain expression

appeared reduced in the seu single and the seu ant double mutant

relative to wild type (Figs. 2D, E, F). In wild type tissue expression

continues to be detected in the ovule primordia throughout stages

9 through 11 and is confined to subepidermal cell layers (Fig. 2I).

During stage 7 and 8 expression in the stamens is detected mostly

in the subepidermal cells from which archesporial and tapetal cells

are derived (Fig. 2 C, H). During stage 9 expression is most

strongly detected in the tapetal cells (Fig. 2 H). Expression within

the stamen primordia also appeared to be reduced in the seu

mutant tissues (Fig. 2D, K). Hybridizations with sense strand

probes gave very little background staining (Fig. 2L).

Expression of At4G31610 (REM34/AtREM1) in the inflores-

cence meristem and in floral stages 2–5 has been previously

reported [42]. Franco-Zorrilla et al. also report expression of

AT4G31610 (REM34/AtREM1) is confined to gynoecial primor-

dium from stage 6 onward and later expressed in the medial ridge,

septum, style and stigma [42]. Our analysis of gynoecial expression

patterns reveals that At4G31610 (REM34/AtREM1) is expressed in

Carpel Margin Meristem Development
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the adaxial core of the stage 6 and stage 7 gynoecial primordia

(Fig. 3C and D). During stage 7 and 8 expression is strongest at the

apex of the gynoecium in the medial domain (Fig. 3E, G). During

late stage 8 expression is detected in the ovule anlagen (Fig. 3H)

while by stage 9 expression appears to be restricted to the cells that

lie between the ovule primordia and are likely to be the

progenitors of the gynoecial septum. Expression in the seu ant

double mutant tissue appeared reduced in the gynoecial primordia

during stages 6–10 but was similar to wild type during stage 2–3

(Fig. 3 A, B, J and L).

Expression of AT5G18000 (VDD) was previously reported in

inflorescence and floral meristems and in ovules, as well as within

the developing female gametophyte [41]. Within the gynoecium

we first observe expression of VDD at stage 7 when it is detected

weakly throughout the primordium (Fig. 4A). Expression was

stronger at the medial portions of the apex of the stage 7 and 8

gynoecial primordia relative to more basal positions (Fig. 4B, C).

Expression continues in the apical medial domain into stage 10

(Fig. 4G). Expression is also detected in ovule primordia as they

arise at stage 8 and continues throughout ovule development

(Fig. 4E and data not shown) [41]. Expression in ovule primordia

at stage 11 was strongest in the chalazal portions of the ovule.

Expression in the ant single mutant tissue at this stage appeared

reduced, suggesting that ANT may regulate the expression of VDD

in the chalazal portions of the ovule. Strong expression was also

detected in tapetal cells of the anther at stage 9 (Fig. 4H).

Expression of At3G17010 (REM22) in stamen and carpel

primordia has been previously reported [47,51]. We first detected

expression of AT3G17010 starting at late stage 4 or early stage 5 in

the stamen primordia as they arise (Fig. 5A). Within the gynoecium

expression can be detected preferentially in the medial domain as

early as stage 6 (Fig. 5B, C). AT3G17010 continues to be

preferentially expressed subepidermally within the medial domain

through stage 8 (Fig. 5E, F) and is strongly detected in the medial

Table 1. Approach II Candidate Genes.

AGI Gene Title

GO Category
Transcriptional
Regulator

B3 Family
member

wt log2
Lsmean

ant log2
Lsmean

seu log2
Lsmean

seu ant log2
Lsmean

2log(10)
P-value*

At2g46870 NGATHA1- B3 domain + + 8.42 8.52 7.85 7.17 5.06

At3g17010 REM22 - B3 domain + + 10.03 9.80 8.60 7.37 2.98

At3g53310 REM16 - B3 domain + + 11.09 11.00 10.50 9.93 1.58

At5g18000 REM20, VERDANDI - B3 domain + + 8.55 7.72 8.54 7.02 3.51

At5g57720 REM15 - B3 domain + + 9.45 9.48 8.97 8.45 2.01

At3g19184 REM1 - B3 domain + + 8.59 7.77 8.37 7.08 1.65

At4g31610 REM34 -B3 domain + + 10.18 10.12 9.53 8.98 1.12

At4g24150 AtGRF8, transcriptional regulator + 9.56 9.03 9.35 8.24 1.78

At1g31310 myb-like domain + 9.64 9.71 9.22 8.86 1.84

At1g51950 IAA18, transcription factor + 9.56 9.18 9.37 8.33 4.17

At1g68640 PERIANTHIA, DNA binding + 9.82 9.04 9.31 8.09 1.22

At2g34710 PHABULOSA, transcription factor + 9.49 9.21 8.95 8.24 2.90

At3g13960 AtGRF5, transcriptional regulator + 9.21 9.30 8.25 7.84 1.61

At3g55560 AGF2, DNA-binding protein + 8.47 8.00 8.22 7.26 2.18

At4g00180 YABBY3, transcription factor + 9.27 8.38 8.64 7.05 2.50

At4g37750 AINTEGUMENTA, DNA binding + 10.80 9.65 10.69 8.91 2.18

At5g61850 LEAFY, transcription factor + 9.76 8.96 8.90 7.41 1.58

At1g02800 ATCEL2, Cellulase hydrolase 11.93 11.47 11.18 9.95 1.90

At1g68780 leucine-rich repeat family protein 8.41 8.26 7.74 6.87 5.94

At2g27880 AGO5, argonaute protein 10.19 9.65 9.98 8.94 2.01

At3g21560 UGT84A2; UDP-glycosyltransferase 9.73 9.71 8.87 8.37 1.38

At1g01110 IQD18, calmoduin binding 8.85 8.78 8.30 7.63 4.87

At1g03710 cystatin-related 10.19 10.16 9.78 8.81 4.06

At1g03720 cathepsin-related 9.00 8.16 8.41 7.05 2.34

At1g70560 TAA1 - auxin synthesis 9.61 9.07 9.07 7.62 4.90

At1g73590 PIN1, auxin transporter 10.42 9.99 10.04 8.70 4.02

At2g21050 LAX2 - auxin influx carrier 9.95 9.57 10.23 8.76 6.11

At4g25240 SKS1 (SKU5 SIMILAR 1) 9.77 10.09 9.16 8.75 3.63

At5g07280 EXCESS MICROSPOROCYTES1 kinase 10.47 10.54 10.03 9.42 4.56

At5g17080 cathepsin-related 9.42 8.56 9.53 6.81 6.34

At5g48900 pectate lyase family protein 8.68 8.39 8.22 7.50 2.01

*–log(10) of P-value returned by JMP Genomics estimate builder.
doi:10.1371/journal.pone.0026231.t001
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domain at apical positions of the stage 8 gynoecium (Fig 5G).

Expression is detected in the ovule primordia during stage 9 and 10

in subepidermal layers (Fig. 5H and data not shown).

The AT3G19184 (REM1) transcript is detected throughout the

inflorescence meristem and throughout stage 1–4 floral meristems

(Fig. 6A). During stage 5 expression of AT3G19184 (REM1) is

strongest in stamen and petal primordia as they arise (data not

shown). Expression is detected throughout stage 6 and 7 gynoecia

(Fig. 6B). It is strongly detected at the apical regions of stage 7

gynoecia, particularly in medial positions (Fig. 6C). Expression in

stage 8 gynoecia is strongest in ovule primordia as they arise.

Expression in stage 7 stamen primordia is detected strongly in the

precursors of the archesporial and tapetal cells (Fig. 6B, C) and is

later expressed in microspores and tapetal cells during stage 9

(data not shown).

Expression of AT5G57720 (REM15) in stamen and carpel

primordia was previously reported [43]. We first detect expression

of AT5G57720 during early stage 4 as a ring of expression that

appears to mark whorl three positions just interior or adaxial to the

sepal primordia (Fig. 7A). During stage 6 AT5G57720 (REM15) is

detected in the gynoecium in the medial domain, most strongly in

abaxial positions (Fig. 7B). During stage 7 AT5G57720 (REM15) is

detected throughout the medial domain of the gynoecium (Fig. 7C)

and continues to be detected in adaxial portions of the medial

Figure 2. Results of in situ hybridization with At3g53310 (REM16) antisense probe. Results of in situ hybridization with At3g53310 (REM16)
antisense probe (A–K) or with sense strand control probe (L). Numbers indicate floral stages. All panels show transverse (cross sectional) tissue
orientation. Arrowheads indicate medial domain expression; ov - ovule; as, archesporial precursors; tp, tapetum. All scale bars are 100 microns. All
panels are Col-0 wild type tissue unless otherwise indicated.
doi:10.1371/journal.pone.0026231.g002

Figure 3. Results of in situ hybridization with At4G31610 (REM34/AtREM1) antisense probe. Numbers indicate floral stages. All panels show
transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression; ov - ovule. All scale bars are 100 microns. All panels are
Col-0 wild type tissue unless otherwise indicated.
doi:10.1371/journal.pone.0026231.g003
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domain during stage 8 (Fig. 7 D and E). AT5G57720 (REM15) is

detected in ovule primordia as they arise during stage 8 (Fig. 7F)

and continues to be expressed in the megaspore mother cell and in

nucellar portions of the ovule through stage 12 (Fig. 7G and H).

AT5G57720 (REM15) is also detected strongly in stamen tapetal

cells during stage 9 (data not shown).

Additional Approach II candidate genes are preferentially
expressed within the medial gynoecial domain

PERIANTHIA (PAN) expression patterns have been previously

published [44,55]. PAN is detected strongly in the stage 6 gynoecial

primordium within the medial domain (Fig. 8B). PAN expression

continues to be expressed at declining levels within the medial

domain throughout stage 7 and 8 (Fig. 8C, and E). Expression is

again strongly detected at late stage 8 or early stage 9 in the early

ovule primordia (Fig 8F). Expression of PAN in the seu ant double

mutant appeared reduced within the stage 7 medial domain and

later (Fig 8D). Additionally PAN was not detected in the seu ant

stage 9 gynoecia (Fig 8G).

Expression of AtGRF5 (AT3G13960) has been previously

reported as strongly expressed in actively growing tissues but only

weakly detected in mature tissues suggesting a role in regulation of

cellular proliferation [53]. Analysis of a GRF5:GUS reporter line

revealed expression within the proximal half of the young leaf

primordia, a domain with a high proportion of actively dividing

cells, however a detailed description of the expression within the

flower was not reported [54]. We detected expression of AtGRF5

(AT3G13960) in stage 1 floral primordia, and in a line that marks

the boundary between later stage floral primordia and the

inflorescence meristem (Fig. 9A). Expression was not detected in

floral stage 2 meristems, nor in the inflorescence meristem.

Expression was again detected in stage 3 floral meristems in the

sepal primordia and then in stamen and petal primordia as they

arise during stage 5 (data not shown). Within the gynoecium

expression is detected during stage 6 and 7 in the marginal portion

of the gynoecium, most strongly detected in abaxial portions of the

margin (Fig. 9C and D). During stage 8 AtGRF5 is detected in a

somewhat punctate pattern throughout the gynoecial primordia,

Figure 4. Results of in situ hybridization with AT5G18000 (VDD) antisense probe. Numbers indicate floral stages. All panels show transverse
(cross sectional) tissue orientation. Arrowheads indicate medial domain expression; ov - ovule; t- tapetal cells. Scale bar in J represents 100 microns for
all panels. All panels are Col-0 wild type tissue unless otherwise indicated.
doi:10.1371/journal.pone.0026231.g004

Figure 5. Results of in situ hybridization with AT3G17010 (REM22) antisense probe. Numbers indicate floral stages. All panels show
transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression; ov - ovule; st- stamen primordia. Scale bars in all panels
are 100 microns. All panels are Col-0 wild type tissue. Oblique section in panel B skews apparent location of medial domain slightly.
doi:10.1371/journal.pone.0026231.g005
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but with highest expression within the medial portions (Fig. 9E).

GRF5 is also detected in the ovule primordia are they arise

(Fig. 9G) and in subepidermal layers through at least stage 11

(Fig. 9H). Expression of AtGRF5 in the seu ant double mutant tissue

appeared to be slightly reduced in stage 1 and stage 3 floral

meristems (Fig. 9B) and then strongly reduced within the later

stage gynoecia (Fig. 9F)

The expression of EXCESS MICROSPOROCYTES (EMS) (also

named EXTRA SPOROGENOUS CELLS) has been previously

reported during stamen development [56,57]. During stage 6 EMS

is expressed weakly throughout whorls 3 and 4 (data not shown).

During stage 7 and early stage 8 EMS is expressed throughout the

gynoecium, but expression levels are slightly higher in medial

domain particularly in the apical region (Fig. 10B, C, D). During

stage 8 and 9, expression is evident in ovule anlagen and

primordia as they form (Fig. 10E). Expression continues in the

ovule primordia in the nucellar and chalazal domains during

megaspore mother cell stage and as integuments arise (Fig. 10F).

We detected strong LEAFY (LFY) expression in the stage 1–3

floral primordia as previously reported (Fig. 11A) [58]. In the seu

ant double mutant tissue expression of LFY in the floral stages 1–3

appeared reduced relative to wild type levels (Fig. 11B). During

floral stages 4 and 5 LFY is expressed strongly in the petal and

stamen primordia as they arise, but only weakly detected in the

central floral dome (data not shown). During floral stages 6 and 7

LFY expression is strongly detected in the adaxial core of the

gynoecium and within the medial domain at the apex (Fig. 11C

and D). Expression of LFY in the stage 6 seu ant gynoecia was very

reduced relative to wild type levels (Fig. 11E). In early stage 8 wild

type tissue LFY expression is detectable in the early ovule

primordia (Fig. 11 F).

Other Approach II candidate genes are expressed outside
the medial gynoecial domain

Several of the Approach II candidate genes that we assayed by in

situ hybridization displayed preferential expression within the

gynoecial valve domains or expression in both the medial and

valve/lateral domains. These data suggest that the effects of the loss

of SEU and ANT on gynoecial development are not specific for the

medial domain, but rather alterations of gene regulation occur in

both the medial and lateral domains in the seu ant double mutants.

YABBY3 (YAB3) (At4g00180) expression has been previously

reported as expressed within the abaxial portions of all lateral

organs derived from both the apical and floral meristems [59].

Expression of YAB3 is seen in the abaxial valve domains within the

gynoecium during stages 6 through 9 (Fig. 12). Expression is fairly

weak in the stage 6 gynoecia and becomes stronger in stages 7 and

8 (Fig. 12 A–C). YAB3 expression in not detected within the medial

portions of the gynoecium. Expression in the stage 8 seu ant double

mutant gynoecium is very reduced or undetectable (Fig. 12D).

BELL-LIKE HOMEODOMAIN 11 (BLH11) (AT1G75430) ex-

pression was detected weakly in the inflorescence meristem and

stage 1 and 2 floral meristems (data not shown). Expression is more

strongly detected in sepal primordia during stages 3 and 4 and in

stamen and petal primordia during stage 5 (data not shown).

Within the gynoecium expression is detected at stage 6 throughout

the primordium, but at higher levels in the valve domains.

Expression during stage 7 and 8 is predominantly within the valve

domains, but is detected within both valve and medial domains at

the gynoecial apex (Fig. 13B, C, and D). Expression is detected in

young ovule primordia during stage 8 and 9 (Fig. 13E.) and

continues to be detected in nucellar portions of the ovule through

stage 11 (data not shown).

Figure 6. Results of in situ hybridization with AT3G19184 (REM1) antisense probe. Numbers indicate floral stages. All panels show transverse
(cross sectional) tissue orientation. Arrowheads indicate medial domain expression. Section in panel B is located 8 microns below section in panel C.
ov - ovule; st- stamen primordia. Scale bars in all panels are 100 microns. All panels are Col-0 wild type tissue.
doi:10.1371/journal.pone.0026231.g006

Figure 7. Results of in situ hybridization with AT5G57720 (REM15) antisense probe. Numbers indicate floral stages. All panels show
transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; st- stamen primordia; mmc - megaspore
mother cell. Scale bars in all panels are 50 microns. All panels are Col-0 wild type tissue.
doi:10.1371/journal.pone.0026231.g007
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UGT84A2 (At3G21560) is expressed within the inflorescence

meristem and stage 1 and 2 floral meristems, chiefly in the L1 cell

layer (Fig. 14H). In stage 3 floral meristems UGT84A2 is strongly

expressed in the L1 epidermal cells of the sepals (Fig. 14H). Within

the stage 7 gynoecia UGT84A2 expression is detected most

strongly in the abaxial portions of the valve domains (Fig. 14A and

B). However at the apex of the gynoecium expression is detected in

the L1 layer in both medial and lateral/valve domains (Fig. 14 C).

During stage 8 expression was detected in the L1 epidermis of the

valve domains in both abaxial and adaxial positions (Fig. 14G).

Expression in the seu ant double mutant tissue was slightly reduced

in the inflorescence meristem and young floral buds and strongly

reduced in the stage 7 and 8 gynoecia (Fig. 14D, E, F, I).

The gene At1G68780 is annotated as a member of the RNase

inhibitor-like superfamily containing multiple leucine rich repeat

InterPro domains (InterPro:IPR001611) [60]. Expression of

At1G68780 was detected weakly throughout the inflorescence

meristem and floral stages 1–2 (Fig. 15A). During floral stage 3

expression was strongly detected within the sepal primordia. During

floral stages 6 through 8, At1G68780 is most strongly detected in

apical portions of the gynoecium throughout both medial and

lateral domains (Figs. 15B through 15D). Gynoecial expression was

significantly reduced in the stage 7 seu ant double mutant gynoecia.

Expression was detected in wild type flowers throughout petal

development during floral stages 5 through 12 (Figs. 15B, C, G and

data not shown). Expression within the petals was reduced in the ant

single mutant relative to wild type at stage 11 (Fig. 15H).

Discussion

Here we report the transcriptomic signature of the seu ant double

mutant gynoecium relative to wild type and single mutant gynoecia

in an effort to characterize both the set of genes important for CMM

development and those that are synergistically regulated by the

coordinated activities of the SEU and ANT transcriptional

regulators. We have identified a diverse set of transcripts displaying

altered expression levels in the seu ant double mutant tissues. The

analysis of the set of genes displaying reduced accumulation in the

seu ant double mutant tissue indicates a preponderance of

transcriptional regulators including multiple members of the

REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGU-

LATING FACTOR (AtGRF) families. Our in situ hybridization

analyses indicate that many of these genes are preferentially

expressed within the medial domain of the wild type gynoecia

further suggesting a role for these genes during CMM development.

GROWTH-REGULATING FACTOR (AtGRF) family
Members of the AtGRF gene family encode proteins with a

conserved QLQ domain that functions as a protein/protein

interaction domain and a conserved WRC domain that functions

as a nuclear localization signal and contains a putative DNA

Figure 8. Results of in situ hybridization with PAN antisense probe. Numbers indicate floral stages. All panels show transverse (cross
sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; Scale bars in all panels are 100 microns, except for panel B -
scale bar is 50 microns. All panels are Col-0 wild type tissue except as otherwise noted.
doi:10.1371/journal.pone.0026231.g008

Figure 9. Results of in situ hybridization with AtGRF5 (AT3G13960) antisense probe. Numbers indicate floral stages. All panels show
transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; b - boundary region between floral
meristem and inflorescence meristem. Scale bars in all panels are 100 microns. All panels are Col-0 wild type tissue except as otherwise noted.
doi:10.1371/journal.pone.0026231.g009
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binding C3H motif. AtGRF1, AtGRF2, AtGRF3 and AtGRF5 have

been shown to regulate growth and development of leaves,

cotyledons and floral organs [52,53,54]. Over-expression of

members of this gene family result in wider leaves and petals

while AtGRF5 single mutants and AtGRF1,2,3 triple mutants

display narrower leaves and petals. The phenotypic effects of the

loss of function of AtGRF1,2,3 and AtGRF5 are enhanced by

mutations in GRF-INTERACTING FACTOR1 (AtGIF1) [52,54].

AtGIF1 encodes a transcriptional co-regulator that physically

interacts with members of the AtGRF family. The AtGIF and

AtGRF family members are thus likely to support cell proliferation

required for the lateral (laminal) expansion of the leaf blade.

Additionally, mutations in AtGIF1 reduce female fertility and this

effect was enhanced as the dosage of wild type GRF family

members was reduced in the gif1 mutant background [52].

Recently, it has been observed that an AtGIF triple mutant, gif1 gif2

gif3, develops unfused gynoecia, that lack replum and septal

tissues, and contain fewer ovules ([61]; personal communication J.

H. Kim) These results support a role for AtGIF1 and AtGRF family

members in female reproductive development.

Figure 10. Results of in situ hybridization with EMS antisense
probe. Numbers indicate floral stages. All panels show transverse
(cross sectional) tissue orientation. ov - ovule; Scale bars in all panels are
100 microns. All panels are Col-0 wild type tissue.
doi:10.1371/journal.pone.0026231.g010

Figure 11. Results of in situ hybridization with LFY antisense
probe. Numbers indicate floral stages. All panels show transverse
(cross sectional) tissue orientation. Arrowheads indicate medial domain
expression. ov - ovule; Scale bars in all panels are 100 microns. All
panels are Col-0 wild type tissue except as marked.
doi:10.1371/journal.pone.0026231.g011

Figure 12. Results of in situ hybridization with YAB3 (At4g00180)
antisense probe. Numbers indicate floral stages. All panels show
transverse (cross sectional) tissue orientation. Scale bar in D represents
100 microns for all panels. Arrows indicate abaxial valve domain
expression. All panels are Col-0 wild type tissue unless otherwise
marked.
doi:10.1371/journal.pone.0026231.g012

Figure 13. Results of in situ hybridization with BLH11
(AT1G75430) antisense probe. Numbers indicate floral stages. All
panels show transverse (cross sectional) tissue orientation. Arrowheads
indicate medial domain expression. Arrows indicate valve domain
expression. ov - ovule; sp - microsporogenic cells. Scale bars in all panels
are 100 microns except for panel A where scale bar is 50 microns. All
panels are Col-0 wild type tissue.
doi:10.1371/journal.pone.0026231.g013
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REPRODUCTIVE MERISTEMS (REM) family
A function has been determined for two of the REM family

transcriptional regulators. VERDANDI (VDD) is required for

female gametophyte development while VERNALIZATION1

(VRN1) is required for the maintenance of the vernalization

response [41,62]. Although VDD is expressed within the medial

gynoecial domain and was identified in our transcriptomics

analysis as a potential regulator of CMM development, VDD-

RNAi constructs do not disrupt CMM development [41].

Mutations in At4G31610 (REM34 - previously AtREM1) and

At3G17010 (REM22) do not condition obvious developmental

defects [42,63]. Our unpublished analysis of loss-of-function alleles

of At3G53310 (REM16) and At3G19184 (REM1) also failed to

detect developmental defects. Given the strong expression of

several members of the REM family during early CMM

development, it is possible that REM family members share a

redundant function that may be revealed in the analysis of higher

order mutant combinations.

Characterization of the transcriptional hierarchies
required for CMM development

Although in situ hybridization is only a semi-quantitative

technique, in most cases the reductions in gene expression in the

single and double mutants that were detected in the ATH1

microarray and qRT PCR analyses were confirmed in our in situ

hybridization experiments. The in situ hybridization technique is

advantageous in that it allows a finer spatial and temporal

characterization of the expression differences between the

genotypes. In many cases, our in situ hybridization experiments

revealed a reduction in gene expression of a candidate gene before

an alteration in gynoecial or ovule morphology was apparent in

the mutant tissue. In these cases it is unlikely that the reduction of

transcript level is simply due to a loss of the tissue in the mutant.

However, the data we present here cannot distinguish between

direct and indirect transcriptional targets of SEU and ANT

regulation and thus our ability to define the transcriptional

hierarchy of CMM development is limited at this time. Future

analyses aimed to identify direct transcriptional targets of SEU and

ANT regulation through chromatin-immunoprecipitation or

glucocorticoid-inducible activities will help to identify the subset

of candidates listed here that are directly regulated by SEU and

ANT. These analyses will help to better delineate the levels of the

transcriptional hierarchy required for CMM development and

may illuminate the mechanistic basis for the synergistic genetic

interaction between seu and ant mutants during CMM develop-

ment. Synergistic genetic interactions are commonly observed in

animal, plant and fungal systems and yet the mechanistic basis for

the synergistic effect typically is poorly understood.

SEUSS may mediate the action of MADS domain-
containing protein complexes required for medial
domain development

Interestingly, ten of the 31 Approach II candidate genes

(including five of the seven B3 candidate genes) have been

previously identified by Gomez-Mena and colleagues as induced

in response to the MADS domain-containing transcription factor

AG [47]. Based on our ATH1 data and follow-up qRT-PCR

(Table 3), the levels of AG transcript accumulation are not

statistically different between the wild-type, seu, ant, or seu ant

double mutant in the gynoecial samples. These data suggest that

Figure 14. Results of in situ hybridization with UGT84A2
(At3G21560) antisense probe. Panels A, B, and C as well as panels
D, E and F are consecutive serial sections. The section in panel A was
located 16 microns basal to the section in panel C and section in panel
D was 16 microns basal to the section in panel F. Numbers indicate
floral stages. All panels show transverse (cross sectional) tissue
orientation. Scale bars are 100 microns in all panels. Arrowheads
indicate medial domain expression. Arrows indicate valve domain
expression. All panels are Col-0 wild type tissue unless otherwise
marked. ifm - inflorescence meristem.
doi:10.1371/journal.pone.0026231.g014

Figure 15. Results of in situ hybridization with At1G68780
antisense probe. Panels A–C show longitudinal tissue sections; panels
D-H show transverse (cross) sections. Numbers indicate floral stages.
Arrowhead indicates medial domain expression. s - sepal primordia; p -
petal primordia; ga - gynoecial apex; ifm - inflorescence meristem. Scale
bars in all panels are 100 microns. All panels are Col-0 wild type except
as noted.
doi:10.1371/journal.pone.0026231.g015
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SEU and ANT do not alter the levels of AG accumulation in the

CMM, but rather they may work in parallel to AG and/or might

alter the ability of the AG protein to function. The SEU

transcriptional adaptor is known to physically interact with dimers

of MADS domain DNA-binding proteins (including AP1, SEP3,

SVP, and AGL24) during the specification of floral organ identity

[21,29,30,31,64]. We speculate that SEU may function in the

developing gynoecium by mediating the action of MADS domain

proteins (AG and others) and thus support the expression of a

subset of the identified Approach II candidate genes. It is notable

that both VDD and REM16 (AT3G53310) are direct targets of the

MADS protein SEEDSTICK (STK) [41].

The medial apex of the gynoecium as a developmental
domain

Our in situ analyses together with the work of other groups

indicates that at least 16 of the 31 Approach II candidate genes are

expressed preferentially within the medial gynoecial domain with

respect to their gynoecial expression. The exact timing and

position of expression within the medial domain varies between

the candidates. Yet many of these genes similarly display strong

expression within the apical-most portion of the medial gynoecial

domain. These expression patterns suggest that the medial apex

might be functionally distinct from other portions of the

gynoecium as early as stage 6. The common expression pattern

of many of these candidates suggests that gene regulation events

within the apical medial domain of the gynoecium may be critical

for the subsequent initiation of ovule primordia from the medial

ridge tissues. In this scenario the maintenance of a particular

transcriptional or cellular state within the medial apex would be

required to maintain the meristematic potential of the medial

domain during elongation of the gyneocial tube.

The medial apex of the stage 6 gynoecium is also marked by the

expression of TRYPTOPHAN AMINOTRANSFERASE OF ARABI-

DOPSIS1 (TAA1) [15,45]. TAA1 encodes a tryptophan amino-

transferase required for the synthesis of auxin via the indole-3-

pyruvic acid (IPA) branch of the auxin biosynthesis pathway

[45,65]. We previously demonstrated an enhanced sensitivity of

the medial domain to the action of auxin transport inhibitors and

suggested a model in which patterning along the medial-lateral

axis of the gynoecium requires an auxin dependant signal [15].

Among the list of Approach II candidates, TAA1 as well as

INDOLE-3-ACETIC ACID INDUCIBLE 18 (IAA18), PINFORMED

1 (PIN1) and LIKE AUXIN RESISTANT2 (LAX2) all are known to

encode auxin synthesis, transport or response functions [66].

Additional experiments will be required to test the role of these

genes during medial domain development.

Non-cell autonomous functions during CMM
development

Several of the Approach II candidate genes displaying reduced

expression in the seu ant double mutant were not expressed specifically

in the medial domain in wild type gynoecia, but rather displayed

strong expression in valve domains (e.g. YAB3, BLH11 and

UGT84A2). YABBY family members are expressed in abaxial portions

of aerial lateral organs and support laminal expansion in response to

the juxtaposition of abaxial and adaxial fates during organ growth

[67]. The loss of CMM development in the ant yab1 yab3 triple mutant

indicates a role for YABBY genes during CMM development [18].

The YABBY genes likely exert a non-cell-autonomous effect on CMM

development suggesting that interactions between the developing

valve and medial domains may be important during early gynoecium

development. Our transcriptomics data indicates that expression of

YABBY1/FILAMENTOUS FLOWER (AT2G45190) is also significant-

ly reduced (to 45% of wild type levels) in the seu ant double mutant

(Table S9). However, YABBY1/FILAMENTOUS FLOWER did not

make our list of Approach II candidates because it did not display a

reduction in either of the single mutants.

The alterations of gene expression in the lateral domain of the

seu ant double mutant point to a role for SEU and ANT function

within the lateral domain. Although the most dramatic gynoecial

defects in the seu ant double mutant are observed within the CMM

and its derived structures, the size of the carpel valve, the overall

floral size and plant height are also reduced in the seu ant double

mutant indicating that the loss of SEU and ANT activity alters

more than just medial domain development [12]. The enhanced

effect of the seu ant double mutant on CMM development may

reflect an enhanced sensitivity of the medial domain to the loss of

SEU and ANT activities.

Methods

Transcriptomics data analysis
Whole inflorescences were fixed in ice cold 100% ethanol

overnight and then stored for up to one week in 100% ethanol

before hand-dissection of gynoecia from floral stages 8–10 under a

dissecting scope. RNA was isolated from staged gynoecia using the

RNeasy Plant Mini Kit from Qiagen. Linear amplification,

labeling, and fragmenting of the cDNA was carried out according

to GeneChip 39 IVT Express Kit instructions from Affymetrix.

The initial 25 ng of total RNA was amplified to approximately 11

to 15 micrograms of fragmented and labeled aRNA. Affymetrix

ATH1 microarrays were hybridized by Expression Analysis

(Durham, NC). Probe intensity data was imported into JMP

Genomics 4.1 (SAS, Cary, NC). The CEL or intensity files for

each array were compared with a distribution analysis for

similarity of the arrays. After visual inspection, none of our arrays

was excluded. The data for the arrays was normalized using the

Loess Model of Normalization. The probe set values were then

summarized by calculation of the mean for each probe set.

Two analyses were run on our data. The first was a simple 1-way

ANOVA by genotype. This method identified genes with expression

levels that were statically different from that of the mean of the

expression values. Class variables were specified as the genotype and

the genotype was modeled as a fixed effect. The data was not

compared to any baseline, but the LSMeans were run for simple

differences of genotype using pFDR for the multiple testing method

with an alpha of 0.05. Additionally we required that log2 of the

magnitude of the expression level difference between the compared

genotype means was greater than 0.35. The fixation method for the

data points with large residuals was set as the False Positive Rate and

the LSMeans standardization rate was set for Standard Deviation.

The second analysis method (Approach II) was directed at detecting

genes whose expression was synergistically affected in the seu ant

double. The null hypothesis tested here was that the value for the seu

ant double was equal to that of the addition of the seu value with the

ant value. We then accepted all values for the seu ant double that were

statistically different from the additive estimate. This analysis was

done in JMP Genomics using the estimate builder feature. Results of

the ANOVA and the calculated statistical significance of non-

additivity estimates from the estimate builder function for all 22,810

probe sets are reported in Table S14. We then applied a second

criterion to this list by requiring that the mean expression in the seu

or ant single mutant was significantly lower than the wild type mean

expression level (by ANOVA). This reduced the list of Approach II

candidates to 31 genes (See Table 1). Gene lists were moved to

virtual plant [68] to convert Affymetrix probe set IDs to AT gene
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identifiers and to generate intersection and union sets. GO TERM

enrichment analysis was carried out using ChipEnrich [69]. Chip

Enrich selects for p,0.001 hypergeometric probability without

correcting for multiple testing. The ChipEnrich program also

returned statistically overrepresented DNA binding motifs in a 1

kilobase region 59 to the annotated ATG of the genes in the set and

overrepresented transcription factor gene families. ATH1 data sets

have been submitted to the Gene Expression Omnibus (GEO)

database [70] (series record GSE30492) and the Array Express

database [http://www.ebi.ac.uk/arrayexpress/] with experiment

number (E-MEXP-3293).

Quantitative Real time RT PCR and in situ hybridization
analysis of candidate gene expression

For analysis of transcript abundances, RNA from stage 8–10

gynoecia isolated for microarray analysis (pre-amplification) was

used. cDNA synthesis and qRT-PCR were performed as

previously described [12], except we used the SuperScript III

First-Strand Synthesis System (Invitrogen) to generate cDNA and

the cDNA was diluted 1:4 for qRT-PCR analysis. A single qRT-

PCR experiment assayed four biological replicates each of wild

type, seu, ant, and seu ant genotypes. Each biological replicate was

assayed in triplicate. Results in Tables 2 and 3 are the mean

expression of the indicated gene normalized to the expression level

of ADENOSINE PHOSPHORIBOSYL TRANSFERASE1 (APT1,

At1g27450). Results shown are the average expression normalized

to APT1 and the standard error of the mean for four biological

replicates. APT1 was shown to be unaffected by genotype in our

gynoecial RNA samples by comparison of APT1 expression levels

with two other standards (TUB6; AT5G12250 and G6PD3;

AT1G24280) across the four genotypes. Statistical analysis of one

way ANOVA was conducted in JMP8 (SAS Institute Incorporat-

ed, Cary NC.) using a Tukey-Kramer HSD test and a p value

cutoff of 0.05. Sequences of the oligonucleotides used for qRT-

PCR analysis are described in Table S13. The in situ hybridiza-

tions were carried out as reported previously [21] with the

following modifications: acetic anhydride and RNase treatment

steps were omitted. A detailed protocol is available at http://

www4.ncsu.edu/,rgfranks/research/protocols.html.

Supporting Information

Table S1 Genes under-expressed (reduced accumulation) in the

seu single mutant via one way ANOVA.

(XLS)

Table S2 Genes over-expressed (increased accumulation) in the

seu single mutant via one way ANOVA.

(XLS)

Table S3 Genes under-expressed (reduced accumulation) in the

ant single mutant via one way ANOVA.

(XLS)

Table S4 Genes over-expressed (increased accumulation) in the

ant single mutant via one way ANOVA.

(XLS)

Table S5 Over-represented GO categories for gene set display-

ing reduced expressed in the seu single mutant.

(XLS)

Table S6 Over-represented GO categories for gene set over

expressed in the seu single mutant.

(XLS)

Table S7 Over-represented GO categories for gene set display-

ing reduced expressed in the ant single mutant.

(XLS)

Table S8 Over-represented GO categories for gene set over

expressed in the ant single mutant.

(XLS)

Table S9 Genes under-expressed (reduced accumulation) in the

seu ant double mutant via one way ANOVA.

(XLS)

Table S10 Genes over-expressed in the seu ant double mutant via

one way ANOVA.

(XLS)

Table S11 Over-represented GO categories for gene set

displaying reduced expressed in the seu ant double mutant.

(XLS)

Table S12 Over-represented GO categories for gene set over

expressed in the seu ant double mutant.

(XLS)

Table S13 Sequences of oligonucleotides used for qRT PCR

analysis of candidate gene expression.

(XLS)

Table S14 Output from JMP Genomics (SAS) ANOVA analysis

with values for estimate builder (non-additivity) model for double

mutant.

(XLS)
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gkq1184 Nucleic Acids Research 39 D1005-D1010.

Carpel Margin Meristem Development

PLoS ONE | www.plosone.org 16 October 2011 | Volume 6 | Issue 10 | e26231


