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Abstract

Background: Advances in ‘‘omics’’ technologies have revolutionized the collection of biological data. A matching revolution
in our understanding of biological systems, however, will only be realized when similar advances are made in informatic
analysis of the resulting ‘‘big data.’’ Here, we compare the capabilities of three conventional and novel statistical approaches
to summarize and decipher the tomato metabolome.

Methodology: Principal component analysis (PCA), batch learning self-organizing maps (BL-SOM) and weighted gene co-
expression network analysis (WGCNA) were applied to a multivariate NMR dataset collected from developmentally staged
tomato fruits belonging to several genotypes. While PCA and BL-SOM are appropriate and commonly used methods,
WGCNA holds several advantages in the analysis of highly multivariate, complex data.

Conclusions: PCA separated the two major genetic backgrounds (AC and NC), but provided little further information. Both
BL-SOM and WGCNA clustered metabolites by expression, but WGCNA additionally defined ‘‘modules’’ of co-expressed
metabolites explicitly and provided additional network statistics that described the systems properties of the tomato
metabolic network. Our first application of WGCNA to tomato metabolomics data identified three major modules of
metabolites that were associated with ripening-related traits and genetic background.
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Introduction

The technologies common to systems biology approaches –

transcriptomics, proteomics, ionomics and metabolomics (the ‘‘-

omics’’) – are now capable of generating data orders of magnitude

more efficiently than was previously possible. This increasingly

economical flood of data is placing very significant limitations on

the ability of scientists to store, process and analyze it [1,2]. While

many field are grappling with the contemporary challenge of ‘‘big

data’’, it is proving particularly demanding for many biologists,

who historically have often been able to rely on relatively simple

statistical and computational methods. Although such well-known

methods (e.g. ANOVA) are powerful when investigating small

numbers of variables, most are extremely susceptible to the

multiple testing problem in large systems biology datasets, often

forcing the user to invoke biology-independent filters (such as

minimum expression fold change thresholds) in order to produce

manageable numbers of interesting candidates and to limit Type I

and Type II errors [3]. Thus, new approaches are needed that are,

ideally, both efficient in extracting meaningful associations from

these highly multivariate datasets and are easily and intuitively

understood by the end user.

Network analyses have been proposed as a solution to systems

biology studies, particularly those involving transcriptomic data-

sets, as this approach both models the interactions of real

biological networks and is intuitively understood by users [4,5,6].

The reconstruction of biological networks allows processes to be

examined from a truly systems-scale perspective and provides

unique insight into the structure and behavior of the molecular

interactions that underlie important phenomena such as develop-

ment and nutrient deficiency stress [7,8]. Furthermore, the

clustering of co-expressed molecules into "modules" mirrors

regulatory associations found in biological systems and provides

information on unknown nodes through "guilt by association" with

well-characterized ones. Such analyses can be focused on

identifying properties associated with key molecules or can be

applied in a non-targeted manner, where the networks themselves

are the primary focus of interest. The latter approach often leads

to the interrogation of molecules that display certain network

properties or associations with external traits [4]. Although

numerous improved methods have been proposed to model and
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describe these networks, it is not difficult to find studies that

continue to rely on more traditional, and less effective, approaches

to analyze such highly complex datasets.

Weighted gene correlation network analysis (WGCNA) is one

new approach to network modeling that relies on easily

understood statistical methods and improves on simple correlation

networks [9]. WGCNA has been implemented in R, a free and

open source statistical programming language that is widely used,

maintained and improved by an active community [10]. WGCNA

was developed to more efficiently analyze microarray datasets by

quantifying not only the correlations between individual pairs of

genes, but also the extent to which these genes share the same

neighbors. The resulting topological overlap matrix is then

converted to a dissimilarity measure and submitted to hierarchical

clustering. This process creates a dendrogram that clusters

similarly expressed genes into discrete branches, with the most

highly connected nodal points or "hubs" located at the branch tips.

WGCNA, as implemented in R, then provides various methods

through which individual branches can be clustered in separate

"modules" [9]. By allowing additional genetic, phenotypic,

developmental and behavioral traits to be associated with tens of

modules or nodal points, instead of thousands of individual

variables (i.e. gene probes), WGCNA not only alleviates the

multiple testing problem, but also provides a direct route through

which the effects of experimental treatments can be detected in

modeled networks. While WGCNA was developed to analyze

transcriptomic profiling experiments, we assert that this method is

equally powerful and illustrative to analyze metabolomic finger-

printing experiments.

Metabolomic technologies, which have historically lagged

behind transcriptomics and proteomics, are proving increasingly

useful in systems biology [11]. As a major component of

economically important phenotypes such as quality and compo-

sition, the metabolome holds concrete relevance to the biology of

organisms. Furthermore, as metabolites occupy a generally

downstream location relative to the transcriptome and proteome,

their presence is both likely to integrate the full sum of changes

that occur in upstream regulatory steps and may additionally

provide causal anchors to model directional biological networks

[12,13,14]. Metabolomics additionally incurs relatively low per

analysis costs relative to common transcriptomic and proteomic

approaches [14]. Moreover, metabolomics can be taken advantage

of to provide a high-throughput platform for phenotyping, which

has become an increasingly unavoidable bottleneck in systems

biology as upstream genomic, transcriptomic and proteomic

technologies improve [15]. Although identification of detected

metabolites is not trivial, a given molecular species, once

elucidated, can be expected to have similar phenomenology in

different organisms, which greatly assists the annotation of

modules.

Metabolomic approaches are particularly valuable in plant

biology, where more than 200,000 secondary metabolites have

been identified so far [16]. This chemical diversity exists both

within and among different chemical classes. For example,

flavonoids currently contain more than 7,000 known members.

This includes 232 different glycosides of a single flavonol,

quercetin, one of the most common flavonoids in tomato fruit

[17,18,19]. The chemical diversity found within tomato fruits in

particular has been relatively well characterized and shown to play

critical roles in physiology, development and ecology

[13,20,21,22,23,24,25]. The tomato fruit metabolome varies not

only with genetic background and due to the impact different

alleles of key regulatory genes, but also by specific tissue type

within the fruit. Furthermore, major metabolomic reorganizations

are known to occur during the transition from green mature,

through red ripe to overripe tomato fruit. The accumulation and

dissolution of major primary and secondary metabolites has been

well characterized, with dramatic changes in pigmentation, flavor,

scent and nutritional quality due to variation in many compounds

[13,20,22,26,27,28,29,30].

Following initial pulses of cell division and expansion, a

developing tomato fruit reaches the mature, green stage, at which

point it becomes competent to undergo ripening. Initiation of

tomato fruit ripening is climacteric, requiring a burst of respiration

that is triggered by the phytohormone ethylene [20]. Tomato

ripening is additionally regulated by a light-dependent pathway,

which appears most critical for pigment accumulation (e.g.

carotenoids and flavonoids) [20,31]. Onset of ripening is

additionally coordinated through transcription factors produced

by genes such as LeMADS-RIN, which potentiates ethylene

dependent fruit ripening. If LeMADS-RIN function is impaired,

fruit development essentially arrests at the mature green stage

[32,33]. A spontaneous mutant form of LeMADS-RIN exists that

exhibits a dose-dependent phenotype [33]. In the heterozygous

state, this natural rin mutation inhibits ripening only partially,

producing a fruit with an extended shelf life. Such Rin/rin

genotypes have been used extensively in commercial fresh market

tomatoes for decades [34].

Here, we apply non-targeted NMR profiling and WGCNA to

explore the impact of the rin mutation on the tomato fruit

metabolome, using the spontaneous mutation in two genetic

backgrounds together with wild type tomatoes and a transgenic

line expressing LeMADS-RIN in an antisense orientation. We

additionally compare the relative ability of two currently popular

statistical approaches to metabolomics data (PCA and BL-SOM)

to analyze, visualize and interpret our results. To our knowledge,

this is the first time WGCNA has been applied to a metabolomics

dataset.

Results

Non-targeted NMR Provides a High-throughput View of
the Tomato Fruit Metabolome

For this proof of concept study, we chose a small number of

closely related tomato varieties that exhibited significant pheno-

typic variation to demonstrate the utility of WGCNA to explain

metabolomic data. As mentioned above, a hypomorphic allele of

LeMADS-RIN is in widespread use by tomato breeders to prolong

shelf life [34]. This usage implies acceptance by producers,

consumers and other stakeholders of the rin effect on tomato fruit

composition [35]. The rin mutation has been introgressed into

heirloom varieties (Ailsa Craig [33]), modern breeding lines

(NC1rinEC) and commercialized varieties (Mountain Crest [36]).

A phenocopy of the rin mutant was created to verify identification

of the LeMADS-RIN gene as responsible for the rin mutation [33].

Thus, using six tomato accessions, we could examine the effect of a

single gene mutation with strong phenotypic effect in two genetic

backgrounds representing different levels of genetic improvement

(heirloom versus modern cultivars; Table 1). To further simplify

our analyses, we used methanolic extracts from whole, mature fruit

grown in a greenhouse to represent a tomato fruit metabolome

relevant to human consumption.

The NMR dataset was constructed by individually measuring

the spectra of methanolic extracts from each of 60 fruits (ten

separate fruits per genotype), thereby providing information on the

intrinsic biological variation within the samples. Compound

identification utilized 1D and 2D spectroscopic techniques to

establish through-bond connectivities, and the concentrations of

WGCNA of Tomato Fruit Metabolomes
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each compound was determined by manual profiling against the

spectra of more than 150 standard compounds. This produced a

list of 46 metabolites that accounted for most of the NMR

intensities, although a significant number of important resonances

remain unidentified and could not be profiled. As expected, the

use of water-methanol extracts resulted in appreciable concentra-

tions of sugars and acids, which are important biomarkers for

flavor, nutrition and food quality. Their inclusion, however, may

have also limited the dynamic range of the NMR spectra and

obscured other signals [37]. WGCNA is especially adept at

combining multiple disparate datasets. In this proof-of-concept

study, however, we chose to focus on the metabolite concentra-

tions determined by the profiled NMR analyses, which produces

annotated PCA, BL-SOM and WGCNA plots that are extremely

information-rich, and provide a better understanding of what

might be expected from an analysis with a greater number of

variables.

Principal component analysis clusters tomato fruit by
genetic background and phenotype, but does not
provide fine-scale information about the metabolome

Principal components analysis (PCA) is a technique whereby the

behavior of hundreds or thousands of variables are summarized by

a small number of orthogonal "principal components," which are

linear combinations of the original variables. The first principal

component describes the dimension that displays the greatest

variation in the dataset; the second principal component describes

the dimension that displays the second greatest variation, etc. The

first two or three principal components usually describe the

majority of the variation seen in the entire dataset. PCA allows the

user to view the relative similarity of different individuals along

principal components while associating each principal component

with a set of original variables. PCA reveals the relative similarity

among samples in an unbiased fashion. Although this is an

extremely useful tool for the initial exploration of multidimensional

data, it is not particularly effective at clustering or classifying data

[38,39]. While PCA score and loading plots often do indicate

which features dominate differences among sample types, there is

no further explanation. PCA does not inform the user of the larger

reasons that underlie differences between sample types, nor does it

provide a route to investigate specific differences in more detail.

PCA of non-targeted NMR profiles grouped the six genotypes

into two primary clusters with clear separation by genetic

background (Figure 1). Principal component 1 explained 25.2 %

of the variation in the data and roughly separated genotypes based

on ripening phenotype and Rin allele status. This component was

associated positively with formate, threonine, glutamate, phenyl-

alanine, leucine, GABA, t-methylhistidine, tyrosine and NADP

(loading values .0.20) and negatively with malic acid (loading

value ,2 0.10). While principal component 1 separated the three

varieties in the AC background by apparent degree of ripeness, an

explanation for the relative positions of the three NC varieties was

not as apparent. Principal component 2 was positively associated

with this difference between AC and NC backgrounds and

explained 15.7 % of the variation in the data. This component was

associated positively with indole-3-acetic acid, malic acid, an

incompletely identified sterol, chlorogenic acid, citrate, and

coumaric acid (loading values .0.20) and negatively with

aspartate, indole, glucose and cytidine (loading values ,20.20).

Table 1. Study panel for tomato fruit metabolomic profiling.

Abbreviation Description Source Note
Fruit at Maturity (color,
firmness)

AC Ailsa Craig (Rin/Rin) Tomato Genetics Resource
Center

Heirloom variety Fully ripe (red, soft)

AC rin Ailsa Craig (rin/rin) Tomato Genetics Resource
Center

Heirloom variety with isogenic
mutation

Unripe (green, hard)

AC tg rin Ailsa Craig (antisense
LeMADS-rin)

Ref #33 Heirloom variety with
transgenic construct

Incompletely ripe (some ripening
due to leaky gene silencing)

NC NC84173 (Rin/Rin) Ref #36 Modern breeding line Fully ripe (red, soft)

NC rin NC1rinEC (rin/rin) Ref #36 Modern breeding line (mutant) Unripe (yellow, hard)

NC F1 NC841736NC1rinEC (cv.
Mountain Crest)

Ref #36 Commercial hybrid with
extended shelf life

Incompletely ripe (red, reduced
softening)

doi:10.1371/journal.pone.0026683.t001

Figure 1. Principal component analysis (PCA) of metabolic
profiles of whole tomato fruit. Six tomato genotypes from two
genetic backgrounds were analyzed by PCA using 46 NMR-profiled
metabolites. Within each background (AC, an heirloom variety; NC,
modern production varieties), variation existed at the Rin locus such
that one fully ripening type (red squares), one partially ripening type
(orange diamonds), and one non-ripening type (yellow circles) existed.
Ten individual fruits were profiled per genotype.
doi:10.1371/journal.pone.0026683.g001
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Batch learning self-organizing map (BL-SOM) clusters
metabolites by expression pattern but does not illustrate
relationships among genotypes

BL-SOM clusters metabolites in a two-dimensional matrix

according to relative similarities in expression patterns and has

been used extensively in plant metabolomic studies [7,40,41,42].

Metabolites with similar expression patterns are located in

adjacent cells in the matrix and metabolites with nearly identical

expression patterns share the same cell. This method makes

comparisons between any two samples easy to visualize. One can

also easily compare one sample versus the mean population values.

BL-SOM was used to analyze our tomato data set [43]. Based on

the relationships detected and the rules of the program, lysine was

placed adjacent to phenylalanine, while fructose and glucose were

collocated, as were aspartate and glutamate (Figure 2A, Figure S1).

A heat map was generated to describe the metabolome of a wild

type AC fruit relative to the mean values for the complete data set;

thirteen clustered metabolites were more abundant in AC than the

population mean, while fifteen were less abundant (Figure 2B). A

relative comparison was made between one of the AC and NC

samples; nine clustered metabolites were more abundant in AC

sample #2 than NC sample #5, while five were less abundant

(Figure 2C). However, there is no direct way to compare genotypes

represented by multiple replicate samples, or to make higher order

comparisons. Together, PCA and BL-SOM indicate which

metabolites share similar expression patterns and which vary the

most among genotypes, but provide limited insight to understand

higher order relationships within a complex data set.

Weighted correlation network analysis clusters
metabolites by expression pattern, identifies highly-
connected ‘‘hubs’’ and associates specific modules with
genetic and phenotypic traits

WGCNA is a correlation-based method that describes and

visualizes networks of data points, whether they are gene

expression estimates, metabolite concentrations or other pheno-

typic data [6]. The actual connectivity of features (topology) of the

network is indicated by their position in a dendrogram or other

network diagram. Features are clustered into co-expressed

"modules" so that one can easily appreciate the complete dataset.

Module assignment in WGCNA is a flexible process that permits

the user to influence the minimum number of features contained

in each module, and therefore the total number of modules

identified. Each module is obtained through semi-automated

pruning of the dendrogram and is notated by a unique color.

Summarizing a network with a limited number of modules can

reduce the complexity of a dataset from hundreds or thousands of

metabolites or genes to a far smaller number of modules, which

can be analyzed with greater statistical power using univariate or

multivariate statistics. This overall approach permits broad-scale

statistical analysis of feature clusters while retaining the fine-scale

relationships for further analyses. This powerful feature of

WGCNA allows the user to explore sample-dependent differences

at multiple scales, possibly offering explanations for any observed

differences.

Network statistics based on WGCNA
WGCNA supports the assembly of both signed and unsigned

networks. Here, we constructed unsigned networks using the 46

metabolite data set, which co-localize both positively and

negatively correlated metabolites into three modules (Figure 3).

The WGCNA package additionally provides easy quantification of

several network statistics, or indices [5,44]. In a weighted

correlation network, connectivity equals the sum of connection

strengths between a node and all of its neighbors, which has been

associated with essentiality in protein and metabolic networks

Figure 2. Batch Learning Self Organizing Map (BL-SOM)
analysis of metabolic profiles of whole tomato fruit. Six tomato
genotypes from two genetic backgrounds were analyzed by BL-SOM
using 46 NMR-profiled metabolites. Metabolites were clustered by
expression patterns among six genotypes, with highly similar metab-
olites appearing in the same cells and similar metabolites appearing in
adjacent cells. A. BL-SOM Lattice. Numbers indicate how many
metabolites are contained within each cell. Metabolites that were
clustered in the ‘‘blue’’ module of WGCNA are labeled to facilitate
comparison. A complete representation of metabolite locations within
the BL-SOM analysis is presented as Figure S1. B. Comparison of AC
sample #1 with population mean values. The metabolome of a
single wild type AC fruit was compared with the population mean
values using BL-SOM. Red highlighting indicates cells where one or
more metabolites are more abundant in AC than the population (red:
greater than one standard deviation above the mean; pink: less than
one standard deviation above the mean). Blue highlighting indicates
where one or more metabolites were less abundant in AC than the
population (blue: more than one standard deviation less than the
population mean; turquoise: less than one standard deviation less than
the population mean). The four cells without highlighting were not
different in the comparison. C. Comparison of AC sample #2 with
NC sample #5. The metabolomes of two single fruit were compared
with each other. Nine cells contained metabolites more abundant in AC
than NC; five cells contained metabolites less abundant in AC than NC.
doi:10.1371/journal.pone.0026683.g002
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[45,46]. Additionally, highly connected hubs may play a

disproportionate role either in influencing the expression patterns

of other nodes in the network, or alternatively may act as

"sentries," communicating changes that occur elsewhere in the

network. Scaled connectivity indicates the connectivity of a given

node relative to the most connected node within the same module.

The maximum adjacency ratio is related to connectivity; low

values indicate nodes with many, weak connections to their

Figure 3. Weighted correlation network analysis (WGCNA) of metabolic profiles of whole tomato fruit. Six tomato genotypes from two
genetic backgrounds were analyzed by WGCNA using 46 NMR-profiled metabolites. Metabolites were clustered by expression patterns as
represented by the dendrogram and correlation heat map. Clusters of like-regulated metabolites are referred to as modules by color (red, blue,
turquoise). Metabolites that could not be assigned to a module are labeled gray. In the heat map, intensity of red coloring indicates strength of
correlation between pairs of metabolites on a linear scale.
doi:10.1371/journal.pone.0026683.g003

WGCNA of Tomato Fruit Metabolomes

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e26683



neighbors, while high values indicate nodes with few, strong

connections to their neighbors. In some situations, the maximum

adjacency ratio may be more effective than connectivity to identify

important hub features [5]. The clustering coefficient indicates the

local density of a network, or the extent to which a node’s

neighbors are all strongly connected to each other. Other statistics

are used to describe modules instead of individual nodes. Network

density describes how tightly co-expressed a set of nodes within a

module are, while centralization and heterogeneity describe the

extent to which nodes within a given module differ in connectivity.

Network heterogeneity describes the variation in connectivity

within a module while centralization describes the extent to which

a network contains many nodes that connect to a central hub

node, but do not connect to their neighbors [5].

Module analysis based on WGCNA
Module and metabolite-specific network statistics were calcu-

lated for this network (Tables 2 and 3). The turquoise and blue

modules were the largest modules, containing 13 and 12

compounds respectively, while the red module contained 6

(Figure 3, Table 2). Fifteen metabolites were not assigned to any

module, and were labeled with the color gray. All three modules

are similar in centralization, while the red module is denser and

less heterogeneous than the blue and turquoise modules; these

features can easily be observed when the network is displayed

using Cytoscape (Figure 4) [47]. Aspartate has the highest

connectivity in the dataset (1.66) and, logically, the highest scaled

connectivity within its module (1.00; Table 3). It surpasses all other

metabolites in its number of connections, many of which are

strong and link shared neighbors. Sterol, which has a single, very

weak connection, has the lowest connectivity among the three

modules (0.45). Fructose has the highest maximum adjacency ratio

among all metabolites (0.26), which is reflected in its single, yet

extremely strong connection to glucose. This connection is

consistent with the precursor/product roles of glucose and fructose

in glycolysis and gluconeogenesis [48]. Similar precursor/product

or product/co-factor relationships were recognized by the

WGCNA between isoleucine and threonine, leucine and GABA,

and alanine and AMP, as evidenced by their high connectivity

within the network (Figure 4) [48]. Formate has one of the lowest

maximum adjacency ratios in the dataset (0.08) and has many

weak connections. The lowest maximum adjacency ratio within

the turquoise, blue, and red modules (0.05) belongs to tyrosine,

which has a single, very weak connection. NADP+ has the highest

clustering coefficient (0.11) due to the dense connections among all

of its neighbors. Glucose has the lowest clustering coefficient

within the three modules (0.05), which is reflected in its connection

to two completely unconnected nodes.

One of the most common challenges in systems biology

experiments is that of multiple testing. It is extremely common

to have very few observations on hundreds to tens of thousands of

different entities (e.g. metabolites, genes). WGCNA addresses this

issue by allowing the user to investigate associations among specific

network nodes or clusters with other factors, such as genetic

background or the impact of a mutation. For example, instead of

searching for correlations between a given factor or trait (e.g.

ripeness) and thousands of genes in a dataset, attention could be

focused only on the most highly-connected ‘‘hub’’ genes that might

be expected to play the most influential regulatory roles.

Alternatively, external traits can be compared to the typical

expression pattern (an ‘‘eigengene’’, or analogously an ‘‘eigenme-

tabolite’’) of putatively co-regulated modules instead of to every

constituent molecule individually. In our analysis, the turquoise

module is positively associated with wild-type fruit ripening (and

the presence of functional Rin alleles) (Figure 5). The blue module

shares this pattern and is additionally positively associated with the

difference in genetic background (AC versus NC), possibly

indicating which metabolites prevented principal component 1

of the PCA from completely predicting ripeness. By estimating a

set of eigenmetabolites, WGCNA allows the user to apply commonly

Table 2. Network statistics for modules.

Module Node Count Density Centralization Heterogeneity

Turquoise 13 0.04 0.06 0.67

Blue 12 0.06 0.08 0.51

Red 6 0.12 0.06 0.34

Node count indicates the number of features assigned to each module. Density
describes how tightly interconnected the features within each module are.
Centralization indicates the extent to which modules contain hubs with much
higher connectivity than their neighbors. Heterogeneity describes the variation
in connection strength among features in each module. Metabolite features
that were not assigned to a module are not included in this table.
doi:10.1371/journal.pone.0026683.t002

Table 3. Network statistics for the three most connected hub features in each module.

Feature Module
Whole Network
Connectivity Scaled Connectivity Clustering Coefficient

Maximum Adjacency
Ratio

Leucine * Turquoise 1.32 0.80 0.05 0.11

Citrate * Turquoise 1.27 0.77 0.06 0.16

GABA * Turquoise 1.13 0.68 0.06 0.10

Aspartate * Blue 1.66 1.00 0.06 0.16

Glutamate * Blue 1.54 0.93 0.07 0.15

Phenylalanine * Blue 1.36 0.82 0.07 0.13

Threonine * Red 1.31 0.79 0.06 0.12

Asparagine Red 1.05 0.64 0.07 0.22

Glutamine Red 0.99 0.60 0.08 0.22

Whole network connectivity indicates the extent to which a node is connected to many other nodes, while scaled connectivity is a relative measure of connectivity
within each module. Cluster coefficient reflects the extent to which the neighbors of a node are all connected to each other. Maximum adjacency ratio indicates
whether a high connectivity is due to few, strong connections or many, weak connections. Asterisks indicate features that were also identified as significant by PCA.
doi:10.1371/journal.pone.0026683.t003
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used and well-understood statistical approaches such as ANOVA

to investigate specific hypothesis within the data, by limiting the

number of necessary comparisons that are required to query the

entire data set.

Discussion

A new emphasis on the thoughtful use and adoption of statistical

analyses is required in order for the biological sciences to keep

pace with the increasing dominance of complex and highly

multivariate systems biology data. Here, we compare the relative

utility of two common and one novel statistical approach to

investigate a non-targeted metabolomic profiling dataset. While

our present data set contains only six related varieties and 46

compounds, we assert that this is an adequate test case to evaluate

different statistical methods and draw attention to the need for

more descriptive and powerful statistics in the analysis of

metabolomics data. PCA revealed relative variation among the

six genotypes but was only able to separate genotypes based on the

major sources of variation. While the differences between the AC

and NC genetic backgrounds were identified and visualized, the

potentially more interesting differences associated with Rin allele

state and ripening phenotype were not. For example, while PCA

demonstrated that AC tg rin is intermediate between AC and AC

rin, as would be expect by the gross phenotype, PCA did not allow

us to ask if there are fine scale differences in phenotypes caused by

two expression states for Rin as a required factor for ripening.

Additionally, while NC and NC rin are the parents of NC F1,

which has an intermediate ripening phenotype to its parents, PCA

did not assign these three varieties as we would have predicted.

PCA placed NC rin as intermediate between NC and NC F1,

where NC rin was nearly contained within NC, in spite of the fact

that NC was fully ripe, NC rin was unripe, and their hybrid was

intermediate. This is a fundamental limitation of PCA that extends

even to the major sources of variation. The few metabolites that

explain most of the variation among genotypes are often obvious,

e.g. with loading values well above +0.1 or below 20.1, but the

identification of other, potentially significant differences are

difficult as there is little further discrimination among features.

Additional variables are presumed to be unimportant because they

explain little of the total variation, but this cannot be confirmed

empirically if such secondary candidates cannot be identified.

Similarly, as PCA plots are dominated by the influence of those

metabolites that best describe the overall variation, adding

additional layers of information may not enrich the analysis.

BL-SOM rapidly allows the user to visualize relationships

between metabolites in a test population, using a lattice to organize

the results [43]. This method organizes like regulated metabolites

into cells of the lattice, where heat maps can then be generated to

illustrate differences between single samples and the population

mean or any two samples (Figure 2). BL-SOM does not offer much

flexibility for analysis, nor does it facilitate making every pair-wise

comparison between samples and sample types within a complex

dataset.

WGCNA differs fundamentally from the methods mentioned

previously by defining a network that continuously links all

variables and then clusters the most highly co-expressed variables

in flexibly defined modules. Explicitly defining all of the

relationships between metabolites at multiple scales facilitates

additional comparisons in a way that the lattice display of BL-

SOM does not. WGCNA can be used to create both signed

networks, which separate positively and negatively correlated

nodes into separate modules and also unsigned networks, which

assess correlations by their absolute values. We chose to use

unsigned networks in this study, which is consistent with the

coordinated changes in the tomato metabolome that occur during

ripening [20,22]. Grouping features into modules has several

advantages. First, condensing a very large network into a small

number of modules or, alternately, hub nodes, allows external

traits to be compared to a limited number of variables, providing a

solution to the multiple testing problem. This is also consistent

with the biology of ripening, where many structural genes are

regulated by small number of key regulators such as Rin [20].

Second, module construction provides a means by which the roles

Figure 5. Association of WGCNA module eigenmetabolites
with tomato genotypes. ANOVA was used to compare the typical
expression patterns (eigenmetabolites) of each module. Significant
differences in eigenmetabolites among genotypes within for each
module are indicated by letters (at Bonferonni-adjusted threshold of
0.0167). Metabolites in the blue module were more highly expressed in
the NC than the AC background. Metabolites in both the blue and
turquoise modules were more highly expressed in fully-ripe relative to
partially-ripe and unripe fruit. Interestingly, the metabolites in the red
module were high in both NC and NC rin, but not in the NC F1 hybrid.
doi:10.1371/journal.pone.0026683.g005

Figure 4. WGCNA of whole tomato fruit metabolic profiles as
represented by node and edge graph. 22 of 46 NMR-profiled
metabolites were clustered into three modules (red, blue, turquoise);
remaining metabolites were not assigned to any module (color coded
as gray). Connection strength is represented by edge width (edges
,0.10 omitted). The topological overlap measure from the WGCNA was
displayed using Cytoscape to illustrate the network assembled from the
22 metabolites.
doi:10.1371/journal.pone.0026683.g004
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of unidentified or poorly characterized molecules can be inferred

from their better-annotated neighbors. The identification of co-

regulated modules helps to annotate the results from systems

biology scale experiments, adding valuable biological information.

Third, since the influence of minor variables is not masked by the

most dramatic differences in terms of absolute scale, as occurs in

PCA, WGCNA allows the combining of disparate datasets.

Preliminary analysis of other metabolomics data collected from

these tomato fruits using liquid chromatography/mass spectrom-

etry suggests that WGCNA can combine thousands of compounds

that vary over many logs of abundance in a highly meaningful

way, including the clustering of precursor and product ions of

provisionally identified compounds (DiLeo, Strahan and Hoe-

kenga, unpublished observations). This provides further evidence

that WGCNA is an appropriate method for metabolomic

fingerprinting and profiling data beyond the analysis of microarray

and physiological trait data for which it was created. Finally,

WGCNA allows the topology and dynamics of the molecular

network itself to be studied, providing a truly systems perspective.

The corresponding molecular networks of various biological

entities can be compared at multiple scales, assessing both the

presence of major, high-level reorganization and fine-scale

differences. While BL-SOM also groups metabolites into co-

expressed clusters, this method does not define the relative

similarity among metabolites, making the assignment of metabo-

lites to different modules difficult. Also, unlike WGCNA, BL-SOM

does not allow the user to compare relative differences among

different classes of samples, nor does it provide network statistics.

In addition to the statistics described here, WGCNA can also be

used to analyze causality in a network, using genetic markers or

other data [5,44,49].

While it is not novel to propose a method of generating

molecular co-expression networks, few approaches provide such a

complete network investigation toolkit as WGCNA, particularly in

the straightforward generation of network statistics, the flexible yet

objective delineation of modules and the ability to compare the

typical expression values of a small number of modules or hub

molecules to external traits. While the implementation of

WGCNA in R is not as straightforward as a standalone program

such as SimpleSOM or many software packages that provide for

PCA and ANOVA, we believe that the extent to which WGCNA

gives insight into and control of data gives it a critical advantage

over relying on more common but less powerful methods. While

future methods will certainly eclipse WGCNA’s effective balance

of analytical power and ease of use, it is unlikely that biology will

soon return to a state where groundbreaking work can be done

with minimal statistical analysis. WGCNA, when incorporated

into a thoughtful data analysis plan, can provide not only a rich

and multi-perspective view of systems biology data, but also an

easy introduction to the R statistical environment, and therefore

facilitate data analyses where the investigator has greater flexibility

and control over the process of analysis.

Conclusions
It increasingly appears that much of the low-hanging fruit in

crop genetics (e.g. non-lethal single genes of major effect) have

already been picked [50]. With the advent of affordable, high-

throughput systems biology technologies, new statistical approach-

es are required to fully interrogate the resulting mountains of data.

Here, we demonstrate how WGCNA, a powerful and user-friendly

approach, can be used to more fully analyze a non-targeted

metabolomic profiling dataset than would be possible with more

common statistical methods such as PCA and BL-SOM.

Specifically, we show how WGCNA can recognize and model

systems-level differences in biological networks even where poorly

defined phenotypes preclude the use of simple, deductive

experimentation. We suggest that this approachable network

analysis tool would be extremely useful to biologists who are

hoping to condense meaning from large, multidimensional and

incompletely annotated datasets.

Materials and Methods

Plant material and processing
Tomato varieties were selected from two genetic backgrounds:

heirloom Ailsa Craig (AC) and modern accessions from the

Mountain Horticultural Crops Research and Extension Center of

North Carolina State University (NC; Table I). Plants were

grown in a greenhouse during the first quarter of 2008 under

standard horticultural practices in Ithaca NY. Three AC

genotypes with different combinations of Rin alleles were included

in this study: homozygous wild-type Rin/Rin (AC wt), homozygous

rin/rin mutant (AC rin) and transgenic that was homozygous for an

antisense LeMADS-RIN full-length cDNA construct (AC tg rin)

[33]. Three NC genotypes with different combinations of Rin

alleles were included in this study: homozygous wild-type Rin/Rin

NC84173 (NC), homozygous rin/rin mutant NC1rinEC (NC rin)

and the heterozygous Rin/rin Mountain Crest (NC F1), which is a

commercialized hybrid of NC84173 and NC1rinEC grown in the

Mid Atlantic region of the US as a fresh market tomato [36].

Plants were hand pollinated in the greenhouse so that staged fruit

could be harvested. Fruit were harvested 15 days past breaker

stage except for some AC tg rin fruit, which were harvested 7 days

past breaker due to difficulties assessing progress through ripening.

Wild-type fruit (AC wt and NC wt) and the commercial hybrid

(NC F1) were bright red at harvest. AC rin fruit were usually green

and occasionally yellow. While the AC tg rin exhibited full

suppression of LeMADS-RIN in the initial description (2002), we

observed far less complete gene silencing in the 2008 greenhouse

[33]. For this study, AC tg rin fruit were generally yellow-orange

and occasionally green. NC rin fruit were usually yellow, which is

consistent with the selection of NC rin to have enhanced light

dependent ripening responses [36]. Ten fruit from 4–6 plants per

genotype were collected according to a standard methodology

[51]. Briefly, approximately 10 g segments of whole fruit were

flash frozen in N2 (l), ground to a fine powder with an Ika Mill, and

extracted 3:1 (v/w) in a methanol: formic acid solution

(99.875:0.125 % v/v). These ten fruit per genotype were handled

as separate biological replicates and measured individually by

NMR.

Non-targeted NMR metabolic profiling
Methanolic extracts were concentrated using a SpeedVac, then

reconstituted to near- natural concentrations by the addition of

500 mL of 400 mM sodium phosphate buffer with a pD value of

6.59, and containing 5 mM TSP for referencing and 2 mM

sodium azide to inhibit bacterial growth. Each sample was then

centrifuged for five minutes to remove water-insoluble extracts and

transferred to a standard 5 mm NMR tube and analyzed using a

Varian INOVA 11.7 T (Tesla) NMR MHz, equipped with an

inverse-detect probe with Z-PFG. Proton spectra were acquired at

400 MHz and 20 C, using a 1D-NOESY pulse sequence with a

100 ms mixing time and presaturation of the solvent signal during

the relaxation times. Standard 90u flip angle pulses were used with

a relaxation delay of 5 s, and 256 fid transients with 64K data

points were acquired. Proton spectra were apodized with a

0.25 Hz exponential line broadening and zero-filled once.
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Selected samples of different tomato genotypes were analyzed in

greater depth to assign metabolite compounds. These experiments

included 1D-13C and 135u DEPT, and gradient versions of 2D

homonuclear and heteronuclear experiments. The 13C and DEPT

experiments, at 100 MHz, were acquired with 25 k or 30 k Hz

sweep-widths. The 13C spectra were averaged over 10,000

transients, used a relaxation delay of 2 s and a standard 45u flip

angle. The DEPT spectra used standard 90u and 135u flip angles,

10,000 transients and a relaxation delay of 1 s. These spectra were

processed with a 2.5–5 Hz exponential line-broadening and zero-

filled once.

The 2D-NMR studies included gradient enhanced versions of

COSY (Correlation Spectroscopy), HSQC (Heteronuclear Single

Quantum Correlation) or HMQC (Heteronuclear Multiple

Quantum Correlation), HMBC (Heteronuclear Multiple Bond

Correlation) (16 Hz coupling) and TOCSY (Total Correlation

Spectroscopy). The proton homonuclear COSY and TOCSY

(80 ms mixing time) 2D experiments were recorded with spectral

widths of 6 k or 8 k Hz in both dimensions, using 4096 points in

the directly-detected dimension, and 512 increments in the second

dimension; 16 transients per fid were collected with a 2 s delay

between scans. The 1H-13C heteronuclear experiments, HSQC

(non-edited), HMQC and HMBC (8 Hz and 16 Hz coupling),

were recorded using 4096 data points and spectral widths of 6 k or

8 k Hz in the proton dimension (directly-detected). For the carbon

(indirectly-detected) dimension, 120–512 increments were ac-

quired with a spectral width of 25 k or 30 k Hz, a 1–2 s delay

between scans, and 64–256 transients per fid. The F1 dimension of

all heteronuclear spectra were forward linear predicted up to 2

times the number of data points, using the half data set as the

basis. Spectra were apodized with a sine or sine-squared function

and a shift of 0u or 70u. Assignments were performed using Sparky

to analyze through-bond connectivities, and resonance values were

compared to those in the literature when available

[52,53,54,55,56]. This raw data was both analyzed directly as a

fingerprint (450 features) and manually profiled, revealing 45

metabolites.

Chenomx software (Alberta, CA) was used for baseline

correction, spectral binning, and chemical compound profiling

of the 1D 1H NMR spectra of individual tomato fruits. Raw

spectra were initially binned in equally spaced 0.02 ppm

increments between 10 ppm and 0.5 ppm, excluding the water

peak region between 4.5 and 5 ppm. This enabled the rapid

assessment of the overall data quality using PCA. An in-depth

analysis of the metabolite concentrations in each fruit was

performed using the Chenomx software to manually fit the

individual spectra to the Chenomx profile database of compounds,

which was augmented by the profiles of ,20 other standard

compounds. The profiles of these standard samples were based on

1D-1H spectra acquired at ,1 mM concentration and used the

same buffer as the tomato samples.

Statistical Analysis
Most statistical analyses were performed in R (version 2.10.1)

[10]. NMR profile data were analyzed by principal component

analysis (PCA), batch learning self-organizing maps (BL-SOM)

and weighted correlations network analysis (WGCNA). Data were

autoscaled prior to statistical analyses in order to reduce the

dominance of dynamic, high-concentration metabolites. PCA was

performed with R package pcaMethods with SVD [10], ANOVA

was performed with R package stats and BL-SOM was performed

with Simple BL-SOM [43]. Unsigned, weighted correlation

networks were produced with R package WGCNA with the

default power of six [6,10].

Supporting Information

Figure S1 Annotation of metabolites associated with
each cell in BL-SOM. Six tomato genotypes from two genetic

backgrounds were analyzed by BL-SOM using 46 NMR-profiled

metabolites. Metabolites were clustered by expression patterns

among six genotypes, with highly similar metabolites appearing in

the same cells and similar metabolites appearing in adjacent cells.

This figure indicates the identity of metabolites contained within

each cell of the BL-SOM output (Figure 2). Metabolites are

highlighted according to WGCNA module assignment to enhance

comparison between analysis methods (Figure 3).

(TIF)
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