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Abstract
A novel approach to constructing robots is based on concentrically combining pre-curved elastic
tubes. By rotating and extending the tubes with respect to each other, their curvatures interact
elastically to position and orient the robot's tip, as well as to control the robot's shape along its
length. Since these robots form slender curves, they are well suited for minimally invasive medical
procedures. A substantial challenge to their practical use is the real-time solution of their
kinematics that are described by differential equations with split boundary equations. This paper
proposes a numerically efficient approach to real-time position control. It is shown that the
forward kinematics are smooth functions that can be pre-computed and accurately approximated
using Fourier series. The inverse kinematics can be solved in real time using root finding applied
to the functional approximation. Experimental demonstration of real-time position control using
this approach is also described.

I. Introduction
Minimally invasive medical procedures involve the manipulation of tools, sensors and
prosthetic devices inside the body while minimizing damage to surrounding tissue
structures. In many cases, navigation to the surgical site involves steering the instrument
along three-dimensional curves through tissue to avoid bony or sensitive structures
(percutaneous procedures), or following the interior contours of a body orifice (e.g., the
nasal passages) or body cavity (e.g., the heart). Once at the surgical site, it is often necessary
to control the position and orientation of the instrument's distal tip while holding relatively
immobile the proximal inserted length.

The instruments used in minimally invasive procedures can be grouped into three general
categories. The first category includes straight flexible needles that are used for
percutaneous procedures in solid tissue. Needle steering along a curved insertion path is
achieved by applying lateral forces at the needle base or tip that cause it to flex as it is
advanced into the tissue. Consequently, these instruments possess no ability to produce
lateral tip motion without further penetration into solid tissue.
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The second category of instruments is composed of a straight, stiff shaft with an articulated
tip-mounted tool and is in common use for minimally invasive access of body cavities (e.g.,
chest or abdomen) [1]. The shaft must follow a straight-line path from the entry point of the
body to the surgical site. Lateral motion of the tip depends on pivoting the straight shaft
about a fulcrum typically located at the insertion point into the body.

The third category of instruments includes elongated, steerable devices, such as multi-stage
micro-robot devices, [2], [3] and steerable catheters [4],[5]. Multi-stage micro-robot devices
are typically sufficiently rigid to support their own weight as well as to apply appreciable
lateral forces to the surrounding tissue. Since the steerable length is modest, however, these
devices are often mounted at the distal end of a rigid shaft. Similarly, only the distal portion
of catheters is steerable, however, their proximal length is of sufficient flexibility so as to
conform to the curvature of the vessel through which it is advanced. An alternate novel
technology enables extension along an arbitrary 3D curve [3]. This technology is, however,
nonholonomic in that lateral motion of the tip is only accomplished in combination with
tangential motion.

Concentric tube robots possess the best properties of all three types of instruments. With
cross sections comparable to needles and catheters, they are nevertheless capable of
substantial actively-controlled lateral motion and force application along their entire length.
Since robot shape can be controlled, they enable navigation through the body along 3D
curves. Furthermore, the lumen of the tubes can house additional tubes and wires for
controlling articulated tip-mounted tools. An example is shown in Fig. 1.

Thus, this technology holds the potential for enabling many new and exciting minimally
invasive interventions. An important class of applications for such a device would be to
enter a body lumen by steering along a curved path through tissue or through a body orifice.
Once inside the lumen, the proximal portion can remain relatively fixed while the distal
portion manipulates tools within the lumen to perform minimally invasive surgery.

The kinematic modeling for real-time control of these robots is challenging in comparison to
that of traditional robots whose links are relatively rigid and whose joints are discrete. The
forward kinematics can be cast as a 3D beam-bending problem in which the kinematic input
variables (tube rotations and displacements at the proximal end) enter the problem as a
subset of the boundary conditions. The remaining boundary conditions are comprised of
point forces and torques applied to the distal ends of the tubes. Contact along the robot's
length (e.g., with tissue) generates additional distributed and point loads.

Thus, it can be anticipated that the most general kinematic model can be expressed as a two-
point boundary value problem involving a differential equation with respect to arc length
along the common centerline of the tubes. Phenomena that may be included in the model are
bending, torsion, friction, shear, axial elongation and nonlinear constitutive behavior.

Since real-time control necessitates balancing accuracy of the model with efficiency of its
computation, the first kinematic models developed treated the curved portions of the tubes
as torsionally rigid [6]-[11]. The torsionally rigid model, first derived in [6], results in an
algebraic expression for curvature of the combined tubes that can be analytically integrated
to yield position and orientation of the robot's tip. The resulting forward kinematic model is
also algebraic and can thus be computed quickly.

Closed form inverse kinematic solutions only exist for very simple concentric tube robots
[8]. Jacobian-based inverse kinematics using the algebraic curvature model were first
formulated in [8] and experimentally implemented in a teleoperation system in [9]. Despite
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error in the kinematic model, position control of the slave was possible since the human
operator visually closes a feedback loop on position error.

Despite its computational efficiency, this approach is not, however, amenable to achieving
smooth, high-bandwidth performance. Toward this end, a forward kinematic model and
Jacobian matrix were formulated that includes torsion in the straight proximal portions
(transmission lengths) of the tubes, but treats the curved portions as torsionally rigid [7],
[11]. With this model, each computation of the forward model and Jacobian involves solving
a root-finding problem for the torsional twist in each of the tubes' transmission lengths. This
approach can appreciably reduce modeling error for robot designs with long transmission
lengths at the computational cost of real-time root finding.

The most recent forward kinematic models for concentric tube robots include torsional
compliance along the entire length of the constituent tubes [12]-[14]. This work also
demonstrates experimentally that the predicted twisting in the curved portions of the tubes
does occur and can be substantial [12],[14]. While providing significantly improved
accuracy over earlier models, these new models are, as anticipated, considerably more
complex.

They consist of second-order differential equations with split boundary conditions.
Furthermore, integration of these equations yields curvature as a function of arc length. To
solve for the robot tip frame relative to the base, curvature must be integrated along the arc
length once more to yield tip frame orientation and a second time to obtain tip frame
position.

The computational difference between the various forward kinematic models can be
summarized as follows. Solution of the torsionally rigid model involves evaluating algebraic
expressions. This is comparable to the kinematics of standard open-chain robots comprised
of rigid links and discrete joints. Including torsional compliance in the straight transmission
lengths of the tubes converts the computation to an algebraic root finding problem. Finally,
including torsional compliance in the curved portions of the tubes converts the algebraic root
finding problem to root finding on the (numerically computed) solution of second-order
differential equations followed by the additional integrations needed to compute position
and orientation.

The contribution of this paper is to provide a framework that enables real-time position
control using the kinematic models incorporating torsional compliance along the entire
length of the tubes. The paper is arranged as follows. Section II summarizes the torsionally
compliant model. Section III describes the proposed approach in which the forward
kinematic solution is pre-computed over the robot's workspace and approximated by a
product of truncated Fourier series. The inverse kinematic solution is solved at each time
step using a root finding method applied to the functional approximation. Experimental
implementation of closed-loop position control is described in Section IV and conclusions
are presented in Section V.

II. Kinematic Modeling
This section summarizes the model of [12] that includes bending and torsion for an arbitrary
number of tubes whose curvature and stiffness can vary with arc length. Effects that are
neglected include shear of the cross section, axial elongation, nonlinear constitutive
behavior, friction between the tubes and deformation due to external loading. Note that these
effects are neglected, but not necessarily negligible. For example, deformation due to
external loads during environment interaction is an important topic that we are also
considering [15].
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In the remainder of the paper, subscript indices, i = 1, 2,…, n, are used to refer to individual
tubes with tube 1 being outermost and tube n being innermost. Arc length, s, is measured
such that s = 0 at the proximal end of the tubes. The total length of each tube is designated
by Li.

As shown in Fig. 2, material coordinate frames for each cross section can be defined as a
function of arc length s along tube i by defining a single frame at the proximal end, Fi(0),
such that its z axis is tangent to the tube's centerline. Under the unrestrictive assumption that
the tubes do not possess initial material torsion, the frame, Fi(s), is obtained by sliding Fi(0)
along the tube centerline without rotation about its z axis (i.e., a Bishop frame [16]). As the
tubes move, bend and twist, these material frames act as body frames tracking the
displacements of their cross sections. It is also useful to define a reference frame, F0(s),
which displaces with the cross sections, but does not rotate about its z axis.

As the ith tube's coordinate frame Fi(s) slides down its centerline, it experiences a body-
frame angular rate of change per unit arc length given by

(1)

in which (uix, uiy) are the components of curvature due to bending and uiz = 0 is the
curvature component due to torsion.

The kinematic input variables consist of the rotation and translation of each tube about and
along the common centerline of the combined tubes. The rotation angle, θi(s), is defined as
the z -axis rotation angle from frame F0(s) to frame Fi(s). The translation variable, li, is
defined as the arc length distance from frame F0(0) to the initially coincident frame Fi(0).
Elastic interaction of the tubes is a function of relative rotation angles of the tubes so these
are also defined as

(2)

The forward kinematic equations for n tubes of arbitrary stiffness and initial curvature can
be written in terms of 2n − 2 state variables {αi, uiz}, i = 2,…, n as [12]

(3)

In these equations, kixy and kiz are the bending and torsional stiffnesses, respectively, of the
ith tube. A circumflex on a curvature component is used to designate the initial pre-curvature
of a tube. Rz(αj) is the rotation matrix for a rotation of angle αj about the z axis. Also, ui∣x,y
denotes the x and y components of the vector.

Half of the boundary conditions for this equation are obtained from the kinematic input
variables, θi(0)
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(4)

The remaining boundary conditions are defined by the torque applied at the distal ends of
the tubes. Assuming no external torque, the torsional bending moment and thus curvature
are zero at this location,

(5)

Equations (3)-(5) are easily applied to any combination of pre-curved tubes. The stiffness
and pre-curvature of each tube can be an arbitrary function of arc length – even
discontinuous. Consequently, there is no need to subdivide the domain during integration
over a telescoping arrangement of tubes. Distal to the physical end of each tube, its stiffness
and curvature can be defined as zero. Details of the numerical solution are presented below.

III. Closed-loop Position Control
Tool-frame position control involves solving the forward and inverse kinematic problems at
real-time rates. The forward kinematic model (3)-(5) presents a challenge in this regard
since it is a nonlinear second-order differential equation with split boundary conditions.
Furthermore, these equations yield curvature as a function of arc length. Curvature must be
integrated once more to yield tip frame orientation and a second time to obtain tip frame
position.

To achieve a real-time implementation, the approach taken here is to pre-compute the
model's forward kinematic solution over the robot's workspace and then to approximate it by
a product of truncated Fourier series. The inverse kinematic solution is solved at each time
step using a root finding method applied to the functional approximation. These techniques
are described in the following subsections.

A. Forward Kinematic Functional Approximation
For solving (3)-(5), we note that robot shape is independent of rigid body translation and
rotation. Since rotation or translation of all tubes simultaneously produces rigid body
motion, the number of independent kinematic inputs can be reduced by two. Given the form
of (3), we choose the rotation and translation of the first tube, θ1 and l1, as references for
measuring all tubes' angles and linear displacements. Thus, the reduced set of kinematic
input variables is {α2-n (0),l2-n} = {αi(0),li}, i = 2,…, n and the desired output is the tip
frame position and orientation relative to the base, g1 (α2-n (0),l2-n). Here, the subscript 1
indicates that the displacement is for the reference values of θ1 = l1 = 0. The transformation
for nonzero values is given by

(6)

To pre-compute the forward kinematic solution over a grid of kinematic input values, it is
convenient to define the grid at the robot's tip in terms of {αi (L),li}, i = 2,…,n and so solve
(3) and (5) as an initial value problem by integrating backward in arc length from L to 0.
This yields the curvature along the robot as well as the input twist angles, αi (0), i = 2,…,n.
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Curvature can then be integrated along the robot's length to yield tip position and orientation
relative to the base, g1(α(0),l) as defined above. Integrating curvature is analogous to
integrating body frame twist velocity. A variety of numerical integration methods are
available that preserve group structure on SE(3) [17],[18].

A dense discretization of {α2-n(0),l2-n} yields a large data set of g1(α2-n (0),l2-n). While one
approach is to store this data as a lookup table, functional approximations offer reduced
storage requirements at modest computational cost. Since the input variables have a periodic
effect on the tip frame, each of the tip frame coordinates can be modeled using a product of
truncated Fourier series.

Define a scalar Fourier series H of order q as

(7)

in which cj ∈ ℂ,  and asterisk indicates complex conjugate. We model each of the tip
coordinates in p1 =[x1, y1, z1]T using a product of series in the form of (7). For example,
assuming n tubes that can be rotated and translated and using the same order series for all
input variables, x1 is of the form

(8)

in which the linear displacement variables, li, are scaled by appropriate wavelength
variables, λi.

Tip orientation can be modeled in a similar fashion. For example, for the five degree of
freedom robot used in the experiments, roll angle is undefined and a tangent vector can
define orientation, t1 = [tx1, ty1, tz1]T, with components modeled by (8).

Multiplying out the product expansion for each component of tip position and direction
produces sets of unknown constant coefficients that can be estimated using linear least
squares from the data set g1(α2-n (0),l2-n). The resulting approximation is denoted as g̃1(α2-n
(0),l2-n) and it can be used in (6) to produce the approximated forward kinematic solution,
g̃0(α2-n(0), l2-n,θ1,s1).

B. Real-time Inverse Kinematics

Given the desired tip frame , the inverse kinematics problem can be posed as a root
finding problem. The desired joint values correspond to the zero of a scalar- or vector-
valued function, , representing the distance between the actual and desired tip
frames. One example of  is the twist vector corresponding to the screw motion
between g̃0 and . In this context, the standard Jacobian inverse approach is an on-line
implementation of Newton's root finding method.

For the five degree of freedom robot used in the experimental implementation described
below, tip frame roll angle is undefined and so the function  is selected as
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(9)

Here, tip position is given by p0 and tip tangent direction by unit vector t0. The scaling
factor γ is given by the ratio of maximum tip position error to maximum orientation angle
error,

(10)

Root finding is accomplished using the Gauss-Newton method. The method requires the
Jacobian of (9) with respect to the joint variables. This can be evaluated numerically using
additional function evaluations of (9) or computed from the analytic form of the Jacobian.
The latter is easily obtained since the partial derivatives of (8) with respect to the joint
variables have the same functional form as (8).

The number of iterations needed to converge to the inverse solution depends on the initial
magnitude of (9). In teleoperation, the current joint values and tip location can be used to
initiate root finding for the next time step. Thus, the maximum magnitude is usually small
and can be estimated from the desired tip motion bandwidth and controller cycle time. For
example, a 10 mm amplitude sinusoidal tip displacement at 10 Hz has a maximum
displacement of less than 1 mm during a 1 kHz control cycle. Consequently, the algorithm
typically converges within a controller time step. For those cases when convergence is not
obtained within a control cycle, motion is still well behaved since the implementation is
such that error decreases with each iteration. As described below, our current unoptimized
implementation can compute up to eight iterations during the 1 msec time step of our 1 kHz
controller.

IV. Experiments
To demonstrate real-time position control using the approach described above, a
teleoperation system using the robot shown in Fig. 3 and Fig. 4 was implemented using the
controller shown in Fig. 5. The system includes a master arm comprised of a PHANTOM
Omni haptic device (Sensable Technologies, Inc.), a slave arm consisting of the concentric
tube robot, and master and slave controllers. The robot consists of the three NiTi tubes
shown in Fig. 4 and possesses five degrees of freedom. The tubes comprising the outer pair
are of almost equal stiffness and are translated as pair. Thus, they form a section of variable
curvature with kinematic input variables consisting of tube rotation angles, θ1, θ2, and a
single translation variable for the pair, l1 = l2. The innermost tube is much less stiff than the
outer pair such that the portion of its length retracted inside the outer pair conforms to the
curvature of the pair. Its kinematic variables are θ3,l3. The five kinematic inputs are used to
control the robot's tip position and tangent direction.

The properties of the tubes are given in Table 1. To solve the forward kinematics, (3)
requires the ratio of bending to torsional stiffness for each tube as well as the relative
stiffness of the tubes. For linear elastic tubes, the former is given by 1+ν and was computed
using a value of ν = 0.3.
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Given that the tubes are of the same alloy and were processed similarly, the relative stiffness
of the tubes should be computable as the ratio of moments of inertia. Stacking the tolerances
for inner and outer diameters of tube pairs, however, produces large variations in stiffness
ratio. Instead, calibrated stiffness ratios were computed by measuring the individual tube
pre-curvatures and the pair-wise combined curvature for αi(s) = π using a camera
measurement system (Vision Appliance, Dalsa, Inc.). Using this approach, it was observed
that the curved section of Tube 3 was a third of the stiffness of the straight portion. This
observation is in agreement with the flattening of the stress-strain curve that occurs for NiTi
alloys at strains greater than 1%.

In Fig. 5, the slave controller receives the position and tangent direction of the tip of the
master arm (represented by ) and calculates the inverse kinematics of the concentric tube
robot using the method described in the preceding section. Then, a set of PID controllers
calculate the torques/forces applied to the joints of the robot. The master controller reads the
joint configuration of the robot and calculates the position and direction of its tip. The force
feedback provided to the master is governed by a proportional control law based on the
Cartesian position error between the master and slave tip positions.

The teleoperator system of Fig. 5 is implemented by a multi-thread process under Windows
2000. While Windows 2000 does not natively support hard real-time scheduling, it does
support soft real-time scheduling with a time-critical thread priority. When used
appropriately, a time-critical thread may be used to maintain a regular 1 kHz update rate
with sufficiently low timing variations to be used for closed-loop control. For this particular
controller, the slave mechanism bandwidth is less than 10 Hz, so soft real-time
implementation of a 1 Khz control loop was more than sufficient.

The process includes two time-critical user mode threads running at 1 kHz that implement
the controllers and an application thread that updates a GUI (not shown). One of the time-
critical threads executes the PID controller of the slave arm and the other executes the
master controller and inverse kinematics block of the slave controller. The separation of
threads eases integration between the master with its IEEE-1394 based interface and the
slave controlled through a Quanser Q8 data acquisition board with its realtime IO subsystem
support accessed through the HIL SDK.

A. Forward Kinematic Model
The method of section III.A was used to arrive at a functional approximation of the forward
kinematic model. Removing the rigid body degrees of freedom, the reduced set of kinematic
input variables is given by {α2, α3, l3}. Solving (3) and (5) as an initial value problem, the
resulting curvature was integrated backward in arc length from L to 0 to get
g1(α2(0),α3(0),l3) for a uniform 40×40×40 grid of {α2(L),α3(L),l3}. As an example, the
position coordinate x1 is plotted as a function of α2 and α3 for a fixed value of l3 in Fig. 6. It
can be seen that the coordinate is a smooth, periodic function of the inputs.

This data set was used to construct a second-order product series (8) for each component of
position vector p1 and direction vector t1 using a wavelength of . The resulting
functional approximations, each defined by 125 constant coefficients, were evaluated
against a second data set constructed using grid values midway between those of the original
set. In this evaluation, the average tip position error was 0.025 mm (0.1 mm maximum) and
the average tip direction error 0.02 degrees (0.06 degrees maximum). This approximation
error is insignificant in comparison to a modeling error of several mm and degrees [12].
Furthermore, it is a fraction of the desired model error of 1 mm and 5 degrees that is suitable
for many clinical applications.
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B. Inverse Kinematic Model
Inverse kinematics were implemented as described in section III.B. Tube lengths and pre-
curvatures limit maximum tip position and orientation errors over the entire workspace to
approximately 200 mm and π radians, respectively. For convenience of interpretation, the
scaling factor of γ = (180 mm) / (π rad) was selected yielding a tangent error magnitude in
degrees.

Our current unoptimized implementation of the Gauss-Newton method can perform eight
iterations in 0.5 msec, however, convergence to the accuracy of the functional
approximation is usually achieved in five or fewer iterations. This fits easily within the 1
msec cycle time of our controller.

In addition, the inverse kinematic implementation enforces continuity of the inverse solution
and enforces joint limits on the tube extension variables, l1 = l2 and l3.

C. Demonstration Task
Performance of the teleoperation system was evaluated for a task that consisted of touching
a sequence of nine 2 mm diameter beads embedded in the faces of three dodecahedral dice
suspended on posts as shown in Fig. 7. This task requires the operator to control both the tip
position and tangent direction to contact the beads. As shown in the accompanying video,
teleoperation is smooth and responsive.

Since the inverse kinematic model converges within a single time step, any trajectory
following error is due to two factors: kinematic modeling error and electromechanically-
imposed bandwidth limitations. Steady state control error is due only to modeling error.

V. Conclusions
Concentric tube robots are a novel technology that has broad potential in minimally invasive
surgery. While the most recently proposed and most accurate kinematic models are two-
point boundary value differential equations, the solutions are smooth periodic functions that
permit accurate approximation. This property is exploited and combined with an on-line root
finding method for implementing realtime position control. Unoptimized control code
running on a PC was easily able to compute the three-tube inverse kinematic solution at 1
kHz rate. Thus, both analytically and numerically, the approach provides the capacity for
extension to robots with greater numbers of tubes. It can also be easily adapted to future
kinematic models that include currently neglected effects such as friction and nonlinear
constitutive behavior.
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Fig. 1.
Concentric tube robot comprised of four telescoping sections that can be rotated and
translated with respect to each other.
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Fig. 2.
Tube coordinate frames are denoted Fi(s). The relative z-axis twist angle between tube
frames 1 and 2 is α2 (s). Due to torsional twisting, it varies from a maximum α2 (0) at the
base to a minimum α2 (L) at the tip.
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Fig. 3.
Three-tube concentric tube robot.
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Fig. 4.
Tubes comprising the robot. Tubes 1 and 2 form a variable curvature balanced pair that
dominate tube 3. Ruler shows units in mm.
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Fig. 5.
Teleoperator block diagram.
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Fig. 6.
Model computed tip position coordinate x1 as a function of α2 and α3 for l3 = 20.5 mm.

Dupont et al. Page 16

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2011 October 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Teleoperated real-time position control task. Touching sequence of nine silver beads
embedded in dice involves controlling both position and tangent direction of robot tip.
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Table 1

Tube Parameters.

Tube 1 2 3

Outer Diameter (mm) 2.77+/-0.01 2.41+/-0.01 1.85+/-0.01

Inner Diameter (mm) 2.55+/-0.01 1.97+/-0.01 1.65+/-0.01

Sections of constant pre-curvature listed base to tip (length, mm; radius, mm) (l=150; r=242) (l=18; r= ∞)
(l=150; r=260)

(l=186; r= ∞)
(l=57; r=35)

Calibrated stiffness (relative to Tube 1) 1 1.53 0.21 (straight)
0.07 (curved)

Maximum % strain to straighten curved section 0.57 0.46 2.64
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