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Abstract
Our previous studies of limb coordination in healthy right and left-handers led to the development
of a theoretical model of motor lateralization, dynamic dominance, which was recently supported
by studies in patients with unilateral stroke (For Review, see Sainburg, 2010: Lateralization of
Goal-Directed Movements, in Human Kinetics). One of our most robust findings was on single
joint movements in young healthy subjects (Sainburg and Schaefer, 2004: Interlimb differences in
control of movement extent). In this study, subjects made elbow joint reaching movements toward
4 targets of different amplitudes with each arm. Whereas, both arms achieved equivalent task
performance, each did so through different strategies. The dominant arm strategy scaled peak
acceleration with peak velocity and movement extent, while the nondominant strategy adjusted
acceleration duration to achieve the different velocities and distances. We now propose that these
observed interlimb differences can be explained using a serial hybrid controller, in which
movements are initiated using predictive control and terminated using impedance control. Further,
we propose that the two arms should differ in the relative time that control switches from the
predictive to the impedance mechanisms. We present a mathematical formulation of our hybrid
controller and then test the plausibility of this control paradigm by investigating how well our
model can explain interlimb differences in experimental data. Our findings confirm that the model
predicts early shifts between controllers for left arm movements, which rely on impedance control
mechanisms, and late shifts for right arm movements, which rely on predictive control
mechanisms. This is the first computational model of motor lateralization, and is consistent with
our theoretical model that emerged from empirical findings. It represents a first step in
consolidating our theoretical understanding of motor lateralization into an operational model of
control.
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1. Introduction
The pioneering research by Sperry and Gazzaniga (Gazzaniga, 1998) established
hemispheric lateralization as a fundamental principle of neural organization. This research
showed that each hemisphere is advantaged for different neurobehavioral processes. For
example, the left hemisphere in most individuals mediates semantic and lexicon features of
language, while the right hemisphere mediates speech prosody and non-verbal
communication (Heilman et al., 1986; Hauser, 1993; Foundas et al., 1994; Hellige, 1996;
Grimshaw, 1998). In fact, neural lateralization is now understood as a basic principle of
cognitive, emotional, and language systems (Bisazza et al., 1998; Rogers et al., 2004).
However, these advancements have yet to be realized for motor lateralization and related
clinical disorders. This is largely due to the fact that decades of previous research has failed
to identify the control processes that underlie handedness. The purpose of the current study
is to address this shortcoming by presenting and testing a computational model of
lateralization for motor control processes.

We previously developed a model of motor lateralization that emerged from studies of limb
coordination in healthy right and left-handers, and was more recently expanded by studies in
patients with unilateral stroke (For Review see Sainburg, 2010). One of our most robust
findings was on single joint movements in young healthy subjects (Sainburg and Schaefer,
2004). In this study, subjects made elbow joint reaching movements toward 4 targets of
different amplitudes with the dominant and nondominant arms. Each arm achieved
equivalent task performance through different control strategies, reflected in the acceleration
profiles. The dominant strategy scaled peak acceleration with peak velocity and movement
extent. The nondominant strategy showed reduced scaling of peak acceleration, but adjusted
acceleration duration to achieve different velocities and distances. As a result, the velocity
profiles of nondominant arm movements to different targets had overlapping initial slopes,
but the peak velocity occurred progressively later for movements made to further targets. In
contrast, the velocity profiles of dominant arm movements showed different initial slopes,
but the peak velocities for all targets occurred synchronously. The subjects were not aware
of these differences in strategy, presumably because each arm showed equivalent task
performance. We concluded that these two strategies reflected fundamental control
differences between the limbs that could be attributed to hemispheric specializations for
different aspects of control. We further speculated that the dominant arm strategy was based
on predictive control mechanisms, and the non dominant strategy reflected feedback
mediated impedance control mechanisms. However, we were unable to directly assess this
hypothesis at the time. We now examine this hypothesis by testing the predictions of a
hybrid controller that represents both of these control mechanisms.

We propose that the observed differences between the velocity profiles of the dominant and
nondominant arms can be explained using a control paradigm where movements are
initiated with predictive control and terminated with impedance control. The idea that
movements of both arms would be initiated by predictive mechanisms that specify an
optimal solution was inspired by previous research that has provided evidence that at
movement initiation, feedback gains are reduced (Shapiro et al., 2002), that the early
components of the EMG are not influenced by perturbations around movement initiation
(Brown and Cooke, 1981), and by the heuristic evidence that initial agonist EMG parameters
are determined prior to movement onset (Brown and Cooke, 1984, 1986). These lines of
evidence support the idea that movements are initiated through predictive control
mechanisms. A great deal of previous and current research has supported the idea that such
predictive control is based on optimization algorithms that minimize costs related to task
performance, energetics, and signal dependent noise (Flash and Hogan, 1985; Nakano et al.,
1999; Todorov and Jordan, 2002; Bays and Wolpert, 2007; Liu and Todorov, 2007; Nishii

Yadav and Sainburg Page 2

Neuroscience. Author manuscript; available in PMC 2012 November 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and Taniai, 2009). Other lines of work have supported the idea that reflex-based impedance
mechanisms play a role in deceleration and stabilization of the limb at the end of motion
(Barnett and Harding, 1955; Ghez et al., 2007; Gottlieb, 1996, 1998; Schabowsky et al.,
2007).

Based on these foundations, we developed a control scheme that combines predictive control
with feedback-based impedance control. We chose to employ a serial relationship between
these two controllers as a simple and modifiable mechanism of hybrid control. According to
this scheme, one can change the influence of either controller by the time at which control
switches from predictive to impedance mechanisms. We first present a mathematical
formulation of our hybrid controller and then present numerical methods to compute the
parameters that characterize it. We will then test the plausibility of this controller by
investigating how well our predictions are supported by the model when it is fit to
experimental data. It should be stressed that we fit our simulation to our data in order to test
our predictions about controller parameters.

Our previous research has indicated that the dominant arm displays patterns of coordination
that are more energetically efficient than those of the dominant arm, and relies on such
predictive mechanisms to adapt to novel task dynamics (Bagesteiro and Sainburg, 2002;
Sainburg, 2002). In contrast, the nondominant arm relies on impedance control mechanisms
to adapt to novel task dynamics (Duff and Sainburg, 2007; Schabowsky et al., 2007), and
respond to mechanical perturbations (Bagesteiro and Sainburg, 2003). Based on such
findings, we hypothesize that during targeted reaching movements, the nondominant arm
relies more on impedance control, while the dominant arm should relies more on predictive
control.

In our serial control scheme, the time that control switches from predictive to impedance
control should indicate the extent to which each arm depends on each type of controller. In
addition to calculating the relative time of switch between predictive and impedance
mechanisms, we will also compute four other parameters that characterize the predictive
control and impedance control mechanisms. Two of these parameters that weigh the position
and velocity errors relative to the total work required to perform the movement uniquely
define the predictive control scheme. We propose that the same predictive control scheme is
used to initiate movements of the dominant and nondominant arm. Therefore, we predict
that the parameters weighing position and velocity errors will not show significant
differences between movements of the two arms. The other two parameters, stiffness and
viscosity, define our impedance controller. Since the nondominant arm is hypothesized to
rely on impedance mechanisms earlier in movement than the dominant arm, we expect that
these values might be different between the limbs. Experimental methods used to collect
data for single joint elbow movement are presented next.

2. Experimental and Numerical Methods
2.1 Experimental methods

This study is designed to test our hybrid model of control by fitting our controller to
experimental data and testing predictions about our control parameters, specifically the time
of the switch between predictive and impedance controllers. Our controller paradigm is
defined only by 5 free parameters; 2 of which specify predictive mechanisms, 2 specify
impedance mechanisms and 1 specifies the timing of switch between these two modes of
control. Once the data is fit using our scheme, we test our predictions about model
parameters. The most important of these predictions is that nondominant arm movements
should rely more on impedance control, while dominant arm movements rely more on
predictive control. This should be reflected in systematic differences in the time at which
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control is switched from predictive to impedance control mechanisms for our simulations
that have been fit to the subject data. We will first describe our experimental data. This
study is based on data obtained and previously reported by (Sainburg and Schaefer, 2004).
We will provide a brief review of that experiment and data below.

2.1.1. Experimental data—Twelve neurologically intact right-handed adults (4 males
and 8 females) aged from 20 to 25 year old, performed fast point-to-point single-joint
elbow-extension movements. Only right-handers were recruited; handedness was
determined using a 12-item version of the Edinburgh inventory (Oldfield, 1971). All the
experiments were conducted according to the guidelines of the Institutional Review Board
of The Pennsylvania State University. The subjects gave informed consent prior to
participation. Each subject performed two single 150-trial experimental sessions (1 with
each arm). Six subjects performed with their left arm first (L group) and the other six with
their right arm first (R group).

Figure 1 illustrates the experimental setup. Subjects sat facing a projection screen with either
the right or left arm supported over a horizontal table top, positioned just below shoulder
height (adjusted to subjects’ comfort), by an air-jet system, which reduces the effects of
gravity and friction. A cursor representing finger position, a start circle, and a target were
projected on a horizontal screen positioned above the arm. A mirror, positioned parallel and
below this screen, reflected the visual display, so as to give the illusion that the display was
in the same horizontal plane as the fingertip. Calibration of the display assured that this
projection was veridical. All joints distal to the elbow were immobilized using an adjustable
brace. This virtual reality environment assured that subjects had no visual feedback of their
arm during an experimental session. Movements of the trunk and scapula were restricted
using a butterfly-shaped chest restraint. Position and orientation of the segments proximal
and distal of the elbow joint were sampled using a Flock of birds (FoB)® (Ascension-
Technology) magnetic six-degree-of-freedom (6-DOF) movement recording system,
digitized at 103 Hz. Custom computer algorithms for experiment control and data analysis
were written in REAL BASIC™ (REAL Software, Inc.), C and IgorPro™ (Wavemetric,
Inc.). Numerical methods to compute the controller parameters were written in MATLAB.

2.1.2. Experimental task—Prior to all trials, the index finger position was displayed in
real time as a screen cursor. The shoulder position was restrained by a brace at 20°, while
the shoulder-elbow angle (angle formed between upper arm and forearm) established the
start and end locations of the movements. The start location was 80°, while the target
locations were 90°, 100°, 115°, and 125°; thus, target positions required 10°, 20°, 35°, and
45° of elbow extension, respectively (Figure 2). Although target positions were individually
set for each subject according to elbow angles, the average Euclidean distances were 7 cm,
13 cm, 21 cm, and 27 cm, respectively. All targets were displayed as 2.5 centimeters in
diameter. Subjects were to hold the cursor within the starting circle for 200 milliseconds,
and were instructed to move the finger cursor to the target using a single, uncorrected
motion in response to an audiovisual “go” signal. Targets were presented in a pseudorandom
order, such that no single target was presented consecutively. The first 44 trials of each
session were discarded to allow for task familiarity. Kinematic analysis was conducted on
the following 100 trials.

These 100 trials comprised of 25 single joint movements toward each of 4 targets. The
movements toward each target of each subject were synchronized to match the instant of
peak joint acceleration prior to maximum velocity. After synchronizing the movements, we
computed an average trajectory from all 25 trials to each target for each subject. This
average trajectory was then fit with our simulation, using an optimization algorithm.
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2.1.3. Previous results—Figure 2 shows the general results of the experiment. More
detail can be obtained in (Sainburg and Schaefer, 2004). The peak speed, accuracy, and
distance of subjects’ movements varied with target distance, but not with arm. However, the
velocity profiles varied systematically with arm. As shown in example velocity profiles of
Figure 2B, and the corresponding acceleration profiles in Figure 2C, the peak acceleration
showed substantially greater variation with target distance for the dominant than the
nondominant arm, whereas the time of peak velocity, or cross zero of the acceleration,
varied substantially more for the nondominant than the dominant arm. Notice in Figure 2
that right arm movements tend to show bimodal profiles with an early peak and a later peak
or plateau, while left arm movements tend to have unimodal profiles, skewed toward the
left. The asymmetric velocity profiles presented here are not unusual to previous reports of
manual aiming movements. Such velocity profile asymmetries have previously been
reported in a variety of studies (Atkeson and Hollerbach, 1985; Carson and Goodman, 1992;
Dounskaia et al. 2005; Milner, 1992; Nagasaki, 1989), and have been associated with
movements that are not ballistic, and that are adjusted during deceleration to conform to the
spatial accuracy requirements of the aiming task.

In our previous publication of the experimental paradigm presented here (Sainburg and
Scheafer, 2004), we described the different control patterns for the dominant and non-
dominant arms, using the pulse-height and pulse-width strategies, introduced by Ghez (Ghez
C. Contributions of central programs to rapid limb movement in the cat. In: Asanuma H,
Wilson VJ, editors. Integration in the nervous system. Tokyo New York: Igaku-Shoin;
1979.) We now hypothesize that this mode of control can be explained, mechanistically, by
the current control scheme. That is, using purely predictive control to reach to different
target amplitudes will result in pulse-height modulation, while using the same predictive
mechanism and then switching to an impedance mechanism will produce pulse-width
modulation. To test these predictions, we computed joint angle trajectories that will result
from these two control strategies for an acceleration-controlled single joint model of elbow
movement. We introduced a first order smoothing of the control signal (acceleration) to
account for actuator dynamics and to prevent unrealistic changes in acceleration. Figure 3
below presents velocity and acceleration profiles for 2-different amplitude targets (20° and
45°) obtained using these two control schemes. The graphs on the left show velocities (top)
and accelerations (bottom) obtained using our predictive law to initiate the movement
(initial 50 ms), and our impedance law to terminate the movement. Here different amplitude
movements are achieved by increasing the duration of movement. The plots on the right
show velocities (top) and accelerations (bottom) for movements using only our predictive
law. When using the hybrid control scheme (left), the duration of acceleration is modulated
to achieve the larger velocity. In contrast, using the predictive scheme (right) results only in
scaling of acceleration amplitude, not timing. We, conclude that pulse-height and pulse-
width modulation can be interpreted as an effect of our control scheme.

We next present a mathematical development of our serial hybrid controller paradigm and
numerical methods we use to fit experimental data to our computational model. The key
parameters of the experimental data that we will fit using our model are final position
accuracy, and the characteristic shapes of the velocity profiles. Once we fit the data to our
model, we will compare the parameters of our hybrid controller for left and right arm
movements.

2.2 Numerical methods
2.2.1. Hybrid control model—Our hybrid control model initiates movements using a
fixed predictive scheme. Once the movement is initiated, an impedance mechanism takes
over the control strategy. It is proposed that the predictive control generates commands that
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minimize the cost of movement. This cost is a combination of the total work required to
perform movement and error from the desired final posture. For a single joint motion, the
function that describes this cost is:

(1)

where θ is the elbow angle, Qs = [ Qθ, Qθ ̇] are the cost weights that are used to represent the
task goal of driving the arm to the desired final posture. This cost function weights 2
important aspects of movement, error from desired posture and total work done by the
joints. Let Twork denote the torque profile that minimizes the cost function in Eq. (1). We
propose that the observed advantage in coordination strategies of the dominant arm is result
of a later switch to the impedance controller, and the advantage of the nondominant arm in
posture control is due to an early switch. The mathematical equation describing our hybrid
serial controller is

(2)

where T is the torque applied by the human controller, K and B define the impedance control
law that drives the joint angles θ to θf. w is a sigmoid function that describes the switching
between the predictive and impedance mechanisms as

(3)

where tc=0.015 is the time constant describing how quickly the w varies from 0 to 1, tf is the
movement time, and s is the dimensionless parameter called switching instant. Switching
between predictive and impedance control, described by the parameter s, is computed as the
ratio of the time of switch and the total movement time. If s is zero, the resulting control
mechanism will be purely impedance and if s is equal to 1, the resulting control mechanism
will be purely predictive. To test the validity of such a controller we held the values of Qs, K
and B constant, and computed the resulting torque profiles by varying only the switch instant
s. We then performed a forward integration on a single joint arm model to compute the
resulting velocity profiles.

Figure 4 shows the velocity profiles generated by our predictive controller (dashed), and by
our hybrid controller (solid), for different values of s, representing the time of the switch
from predictive to impedance control. Notice that the predictive velocity profiles are
bimodal, displaying a late plateau, and look similar to our empirical dominant arm profiles
in Figure 2B. This shape of predicted velocity profile is determined by the cost weighing
(Qs). A greater relative weight on velocity errors will restrict larger velocities, and result in
movements with bimodal or flattened velocity profiles, while a lower weighing will result in
smoother more symmetric profiles.

The hybrid profiles with low values of s (early switches) are unimodal and skewed to the
left, similar to our nondominant arm profiles in Figure 2B. In addition, for lower values of s,
the velocity profiles are less steep than those with later values of s. These findings indicate

Yadav and Sainburg Page 6

Neuroscience. Author manuscript; available in PMC 2012 November 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that by varying just one factor (s) that determines the relative contributions of predictive and
impedance mechanisms, movement patterns are obtained that resemble the empirical data
from either the dominant or nondominant arms. By comparing the movement profiles in
Figure 4 with the data shown in Figure 2, we make the following predictions, for our model
when it is fit to the empirical data for each target and each subject:

Switch times (s) will be significantly lower for nondominant arm movements than dominant
arm movements.

The dominant arm will travel greater percentage of movement using predictive control. This
metric is defined as the ratio of elbow angle (θ) traveled at switch instant and the maximum
movement extent i.e.

(4)

θper is the percentage of distance traveled using the predictive mechanisms until switch
between predictive and impedance control occurs. Larger values imply that greater
percentage of distance is traveled using predictive mechanisms.

Switch instants for the nondominant arm will occur prior to the time of peak velocity for the
nondominant arm, and after the time of peak velocity for the dominant arm. This metric is
defined as

(5)

S rel, v is defined as the switch instant relative to the time at which the velocity peaks. A
negative value indicates that switch from predictive to impedance mechanisms occurs prior
to peak velocity, and positive value implies that the same switch occurs after peak velocity.

We propose that the left arm uses predictive mechanisms for movement initiation only.
Therefore, the time of switch and the instant of peak acceleration prior to maximum velocity
must be lower for the left arm when compared to the right arm movements. We measure the
proximity to time to peak acceleration using

(6)

Srel,a describes the proximity between instant of switch from predictive to impedance
mechanisms and the instant of peak acceleration.

We next present the numerical method we developed to compute the parameters of our
controller that best explain the observed movement pattern under our hybrid controller
paradigm, and then present the experiments and statistical analysis to test our predictions.

2.2.2 Computation of controller parameters—We compute the parameters that
characterize our hybrid control law in 2 steps. The first step involves computation of an
optimal trajectory that explains the initial phase of movement, i.e. find Qs that give the
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trajectory that best fits the average trajectory traced by a subject toward one target. We
computed these coefficients using a particle-swarm optimization based algorithm. These
optimal trajectories were computed for each subject for movement toward each target. In the
second step, we computed the switch instant (s) and parameters for impedance controller
(stiffness K and viscosity B). These parameters were also computed using a particle-swarm
based method. Details of each of these steps are provided next.

Computing optimal trajectory: This step is an optimization-within-optimization process.
To compute the Qs (= [ Qθ Qθ ̇]) that best represent the initial phase of movement, we need
to know the optimal trajectory resulting from a choice of Q. For a set of Qs, we compute this
optimal trajectory between initial and final joint position by first approximating it as an 8th
order polynomial, and then computing the coefficients of this polynomial. We minimize the
cost function of Eq. (1) for each choice of Qs, subject to the initial and final position,
velocity, acceleration and movement time constraints. We first define the fit between a
trajectory (q) and its approximation (qapprox) as

(7)

We computed the trajectory that fits the initial phase of movement by calculating the
corresponding Qs. We defined the initial phase of movement as the time to maximum
acceleration. There are several combinations of parameters Q that may give the same
trajectories during the initial phase of movement. We, therefore, chose Qs that gave a
trajectory with the same initial phase of movement and that fit the overall trajectory,
including matching the peak velocity. These requirements for the optimal trajectory are
expressed as a cost function

(8)

The aim was then to compute the set of Q parameters that minimized the cost function in Eq.
(8). Note that, if Jin(Q) is equal to 0, the optimal trajectory (θQ) is the same as the trajectory
(θ) traced by the subject. We weigh the errors in velocity and acceleration profiles until time
to maximum acceleration (ta,max) higher (0.45) to ensure that during computation of the
optimal trajectory, greater weighing is given to fits during initial phase of movement. A
particle-swarm based optimization technique is implemented to compute the Q parameters.

In the particle swarm optimization, a set of initial guesses (or particles) of Qs was first
chosen. The next step involved computing the error function Jin(Q). At each iteration i, we
stored the best solution achieved by the entire group (Qi,global) and the best solution
achieved by each particle (Qi,p-best). We then used these values along with a random set of Q
(Qi,rand) and use them to compute the next set of values of Qi+1. Including Qi,rand in the
update law helped explore the possible solution space of Qs and avoided the cases where the
solution might get stuck in a local minima. This process was repeated until some stopping
criteria (usually maximum iterations or fits better than a preset value) are met. The update
rule for particles is given by
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(9)

The value of Qs that gave the best solution until ith iteration (Qi,global) was the solution from
the optimization scheme at ith iteration. The weighing of individual terms were obtained
heuristically. Although the final solution does not significantly depend on the choice of
these parameters, the number of iterations and particles required to obtain this solution vary.
With this choice of parameters, our optimization scheme gave solutions starting with 10
particles, and after following the update rule, Eq. 9 for 40 iterations. The same method was
repeated for each subject and each target. Once the optimal trajectory was computed, the
next step was to compute the stiffness (K), viscosity (B) and switch instant (s), that along
with the optimal trajectory, best explained the trajectories traced by subjects.

Computing switch instant, stiffness and viscosity: We next computed the stiffness (K),
viscosity (B) and switch instant (s) for our hybrid controller. To do so, we implemented
another particle swarm optimization routine that minimized the error between the simulation
and our experiment data. The cost function to be minimize was

(10)

where P is the parameter set (K,B,s). The weights 0.2 and 0.8 on velocity and acceleration
errors were chosen heuristically. We weigh the acceleration errors more than the velocity
errors because matching higher order derivatives of a signal partially ensures good fits for
lower order derivatives. This is because the cumulative errors introduced due to integration
are much lower than the high frequency error introduced due to differentiation. The final
results, however, do not vary significantly with the choice of these parameters. The current
choice of parameters sufficed to ensure quick convergence to the desired solution. The
update law used for this particle swarm optimization is the same as Eq. (9). However, for
this optimization, we chose to start with 20 initial guesses and ran the simulations for 40
iterations.

Statistical analysis
The individual dependent measures (switch timing and controller parameters) used in this
paper were analyzed using two-way repeated-measure ANOVA. The design was
counterbalanced, such that 1/2 of the subjects performed with the dominant arm, whereas the
other 1/2 performed with the nondominant arm. The two factors assessed were hand and
target. Post hoc analysis was done using Tukey-Kramer analysis when warranted by
significant main effects.

3. Results
The results are presented in 3 different sections. The first section presents results to
demonstrate how well our hybrid controller paradigm is able to replicate the movement
patterns observed in experiments. The second section present the results for statistical
analysis applied on the metrics that represent relative contributions of predictive and
impedance schemes. The third section presents trends in the controller parameters that
characterize these schemes.
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3.1. Goodness of fit
In order to examine our hypothesis about control, it is necessary that our hybrid controllers
can adequately fit our data. The numerical methods developed in the previous sections were
applied to each of the average path toward each target for a subject to compute the controller
parameters that uniquely characterized our hybrid controller. Representative plot of joint
angles from our controller paradigm and from the experiment for movement toward one
target for a representative subject are shown in Figure 5.

Figure 5 shows that for this representative trajectory, our hybrid controller (simulated) was
better able to reproduce the movement pattern of the subject than the predictive controller
alone. Similar results were obtained for movements toward different targets for all the
subjects. Figure 6 presents the mean ± standard error plots of goodness of fit [R2 = 1 -
r2(θ,θhyb,t), where θ is the experimental trajectory for each subject and target,, θhyb is the
trajectory from our hybrid controller and t is the movement time].

As illustrated by Figure 6, the hybrid controller scheme was able to reproduce the joint
trajectories observed in experiment to a high degree of accuracy. This is not unexpected
because our model parameters specify the control mechanisms, therefore, we were able to
not only fit the joint angle profiles, but also the velocity and acceleration profiles. A
polynomial fit with the same number of free parameters gave poorer fits for higher order
derivatives (velocity and acceleration), suggesting that our method of fitting data based on
hybrid control is superior to polynomial methods. Quantile analysis revealed that 90% of the
movements had goodness of fits greater than 0.99 (or 10% quantile > 0.99). These results
indicate that our controller paradigm can be used to further examine the differences between
dominant right arms and nondominant left arms of subjects. Therefore, by studying the
parameters of our hybrid controller and dependent measures, we expect to draw inferences
about the control scheme being employed by human subjects.

3.2. Relative contributions of predictive and impedance mechanisms
Figure 7 presents the switching instant (s) values for the subjects who performed the tasks in
our experiment. The subjects who performed movements with the dominant right arm
switched to the impedance scheme later in the movement, as compared with the subjects
who performed the movements with their nondominant left arm. Statistical analysis revealed
a significant interaction for hand suggesting that the observed difference in relative
contributions of control processes was significantly different.

To further investigate if right arm movements were in fact dominated by predictive
mechanisms, we examined the percentage of distance traveled prior to the switch instant, in
our best fit trajectories. Figure 8 presents the mean ± standard error plots of percentage of
distance traveled using predictive control mechanism. Mean ± standard error plots confirm
our hypothesis that the right arm covered a greater percentage of distance using predictive
mechanisms, than did the left arm.

These results for θper and s suggest that the right arm relied more on predictive mechanisms
than the left arm, to cover the same distance. We next investigated how the switch instant
varied in relation to the time to peak velocity for the two groups.

Based on our empirical findings, we predicted that the left arm would switch to impedance
control in the initial stages of movement, (i.e. before peak velocity), while the right arm
would switch in the later stages, (i.e. after peak velocity). These predictions were strongly
supported by the mean ± standard error plots of srel,v presented in Figure 9.
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As predicted, srel,v for the right arm were greater than 0, and for the left arm were less than
0. These results support our hypothesis that predictive mechanisms are used by the left arm,
only to initiate movements. Once the movement is initiated, the left arm switches to
impedance mechanisms, which are used to carry the arm through the rest of the movement
trajectory.

Previous research has indicated that during single joint elbow movements, as studied here,
movement events that occur prior to peak acceleration are determined by predictive
mechanisms (Bizzi et al., 1978; Brown and Cooke, 1981, 1984; Bock, 1993; Bennett et al.,
1994; Bagesteiro and Sainburg, 2003; Sainburg and Schaefer, 2004). Thus, we expected that
the switch to the feedback dependent impedance controller should not occur in either limb,
until after the peak in acceleration. We therefore examined srel,a representing the time of
switch relative to the peak acceleration for the movement.

Mean ± standard error plots of srel,a, presented in Figure 10 show that the switch instants for
both left and right arm occur after peak acceleration. However, the left arm switches
substantially earlier when compared to the right arm.

The switch from predictive to impedance mechanisms occurred after the instant of peak
acceleration in 45 of 48 cases. This switch occurred prior to the instant of peak acceleration
in only 3 left hand movements. The srel,a metric for these 3 movements, was greater than
−0.04 (−0.036, −0.012, −0.020) indicating that the switch occurred close to the instant of
peak acceleration.

3.3. Interlimb differences in control mechanisms
We have demonstrated that interlimb differences between single joint movements of the
elbow can be attributed to differential contributions of predictive and impedance
mechanisms. We first investigate the interlimb differences in Qθ. Figure 11 presents the
mean ± standard error plots for Qθ. As predicted, the movement extent (target) appeared to
have a significant effect, however, there is no effect of hand nor hand by target interaction.
The ANOVA table also confirms these observations.

The next controller parameter we investigated was cost of velocity deviations. As the tasks
of our experiment have no requirements on tracking any velocity profile, we anticipated that
the cost of velocity errors would not change across targets nor the hands. Mean ± standard
errors plots in Figure 12 support our claim that there was no difference in cost for velocity
errors between left and right arms.

Taken together, the results for parameters (Qs) that determine the predictive control, suggest
that the predictive mechanisms used by the left and right arm were not different. We next
compared the parameters that defined our impedance control law.

According to our hypothesis and our findings, the left arm used impedance control for
performing movement, where as the right arm uses it only to bring the arm to rest toward the
end of movement. As left and right arms used the impedance law differently, we expected
differences between stiffness and viscosity constants for the left and right arms. Figure 13
presents mean ± standard error plots for stiffness (K).

It is important to note that stiffness constants at the elbow are low and within ranges
reported by previous literature (Osu and Gomi, 1999; Popescu, 2003). However, the bar
plots indicate that stiffness values are modulated differently for movements made by left and
right arms. These different patterns can be understood by considering the different roles that
stiffness plays for each limb. For the nondominant arm, stiffness drives the arm to the final
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position while accelerating the arm through peak velocity. The driving force is a function of
the angular difference between the current and targeted displacement and the stiffness
constant. For shorter distance movements, the angular differences are smaller, and the
stiffness must be higher to generate appreciable driving force. This may account for the
slight reduction in stiffness from targets 1 through 4. For the dominant arm, stiffness is
required only to stop the limb toward the end of motion, and is not used to accelerate the
arm to larger velocities. The slight increase in stiffness might be related to the fact that the
dominant arm switches to impedance control slightly earlier for the longer, target 4,
movements than the shorter, target 1 movements. Thus stiffness mechanisms must drive the
arm further for these movements. Regardless of these target dependent effects, there were no
main effects of arm for stiffness, indicating that both arms had similar stiffness constants,
even though the values varied with target differently.

We next investigated how the damping (B) constant varied across different targets for the
two hands. The damping mechanisms were also used by left and right arms differently. Note
that for the left hand, the switch from predictive to impedance mechanisms occurred prior to
peak velocity. Therefore, impedance mechanisms were used to accelerate the arm to peak
velocity. As impedance mechanisms were used to accelerate the left arm, we expected the
viscosity values to be lower. This is because larger viscosity values would oppose the
acceleration of the arm. On the other hand, the right arm switched from predictive to
impedance mechanisms after peak velocity. Impedance mechanisms were used by right arm
only for deceleration, which could be enhanced by larger viscosity values. The mean ±
standard error plots in Figure 14, confirm our prediction that the left arm impedance
controller employs lower viscosity.

Taken together, our results confirm the plausibility of our hypothesis that the movements of
left and right arm can be explained by a serial hybrid controller that uses predictive
mechanisms to initiate the movement and impedance mechanisms to terminate it, in the later
stages of movement. The right arm used predictive mechanisms to travel greater distance
than the left arm. The left arm used predictive mechanisms only to initiate movement. Once
movement was initiated, the left arm switched to impedance mechanisms. This switch
between predictive and impedance mechanisms occurred between the instant of peak
acceleration and peak velocity for the left arm. In contrast for the right arm, this switch
occurred after peak velocity, indicating that impedance mechanisms were employed only to
terminate the movement.

4. Discussion
In this study, we presented and tested a computational model of hybrid control, based on our
theoretical model of motor lateralization. The purpose of this study was to examine the
plausibility of our theoretical model and to formalize an operational model of control. As a
first step, we modeled our empirical findings for single joint movements of the elbow. This
was done because these findings showed robust differences between the arms, and because
these differences could not be attributed to differences in task performance. That is, both
arms made task equivalent movements of the same amplitude, accuracy, and speed, but did
so using different control strategies, as reflected by the acceleration and velocity profiles
(Sainburg and Schaefer, 2004). Our previous research on motor lateralization led to the
development of the dynamic dominance hypothesis that proposes that each hemisphere
contributes unique control properties to each arm (Sainburg, 2010). Control of each arm is,
thus, achieved through a hybrid process that recruits different control processes from each
hemisphere. Because of more direct sensorimotor connections, each arm relies more heavily
on its contralateral hemisphere, and that hemisphere’s specialized control process. Our
findings that dominant arm dynamics tend to be more efficiently coordinated in a predictive
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manner (Sainburg and Kalakanis, 2000; Bagesteiro and Sainburg, 2002; Duff and Sainburg,
2007) suggested that the dominant arm/hemisphere system may be specialized for predictive
control, while findings that the nondominant arm relies on impedance control mechanisms
for adaptation (Bagesteiro and Sainburg, 2003) and final position achievement (Sainburg,
2002) suggested that the nondominant hemisphere/limb system is specialized for impedance
control. Our serial hybrid controller presented here is an operationalization of this
conceptual model for motor control.

The hybrid control scheme in our simulations is characterized by 5 “open” parameters that
could be altered to fit the model to subjects’ movements. These were elbow stiffness (K),
elbow viscosity (B), position-cost (Qθ), velocity-Cost (Qθ ̇), and the time that control
switches from predictive to impedance mechanisms (s). We fit our simulation to individual
subject movements for right and left arms. The goodness of fit qualified our methods for the
study. We asked how these different parameters changed in order to fit our subject data. We
expected that the predictive mechanisms (characterized as Qs) should not differ between
right and left arms, since the same predictive controller should initiate both arm movements.
We expected that elbow stiffness (K) and Viscosity (B) should be within ranges reported in
previous literature and fairly low for these submaximal movements. Further, we expected
that these values might differ between the arms because of the reliance on impedance
control for different features of the movement. Finally, and most important, we predicted
that the time of switch should systematically differ between the arms, such that the dominant
right arm relied more on predictive control (larger s), and the nondominant arm relied more
on impedance control (smaller s). Our results supported these predictions, indicating no
difference in predictive control law between arms (Q’s), only slight differences between
stiffness’s and viscosities that could be accounted for by how impedance was employed in
the movements. Most importantly, our data indicated that s values were substantially higher
for right arm movements and lower for left arm movements. These differences in timing of s
appeared to account for the differences in the shape of the velocity profiles between right
and left arms (Figure 2B). Both right and left s values occurred after peak acceleration,
consistent with the fact that feedback-mediated processes do not appear to contribute to
rapid elbow joint movements prior to peak acceleration. Furthermore, right arm s values
were longer than the time of peak velocity, which might account for the fact that peak
velocity is suggested as a distinguishing point between feedforward and feedback phases of
control for dominant arm movements (Shapiro et al., 2004). Taken together our findings
provide support for our conceptual and our computational model of motor lateralization. It
should be noted that several control models have been proposed in literature to explain how
human movements may be generated using combinations of predictive and impedance
control mechanisms (Gottlieb, 1993; Hirayama et al., 1993; Schiedt and Ghez, 2007).

In particular, Schiedt and Ghez (2007) described a control model that is very similar to the
hybrid model presented here. Movements were initiated using a minimum jerk trajectory
controller, and after initiation an impedance trajectory drove the arm to desired position. The
authors conducted a qualitative study and compared movement patterns between simulation
and experiment, heuristically. However, our predictive controller is based on a control law
that can result in asymmetric velocity profiles and curved trajectories that are more
representative of a range of experimental results, including those modeled here. In addition,
the innovation of the current model is in predicting dominant and non-dominant arm
coordination profiles by modifying a single parameter that reflects the timing of the switch
between predictive and impedance control schemes. Thus, while Schiedt and Ghez (2007)
provided an important background for this study, our work expands these ideas in terms of
both control scheme and in predicting coordination patterns that reflect arm dominance.
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Our results imply that the differences in movement characteristics between the dominant and
nondominant arms are likely due to differences in the underlying neural mechanisms. We
attribute the differences in movement coordination to neural mechanisms and not to
differences in muscle properties between the limbs because the joint torques in this task are
very small. Furthermore, our model of dynamic dominance has successfully predicted
hemisphere specific ipsilesional movement deficits, following unilateral stroke to the right
or left sides of the brain (Schaefer et al, 2005; Schaefer et al, 2009). This confirms that the
interlimb coordination differences associated with our model are related primarily to
hemispheric specializations in the central nervous system, and not peripheral adaptations of
the limb musculature. However, we cannot rule out the possibility that peripheral
adaptations might modify or enhance interlimb differences in coordination.

Optimal Control
Optimization procedures have been developed for use in engineering applications, and seek
the minimum or maximum for a given “cost function”, subject to a set of constraints.
Previous research has explored various cost functions that make sense heuristically and have
shown that optimization of certain costs can reproduce many invariant characteristics
observed in human motion. For example, Flash and Hogan, (1985) proposed a model that
optimized the smoothness of the hand trajectory. Other studies examined costs related to
movement dynamics, such as mean squared torque change, peak work, or muscle energy.
These models accounted for some experimental observations that could not be accounted for
by optimizations based on kinematic parameters, alone. Wolpert and colleagues accounted
for the small, trial-to-trial variability seen during repetitions of the same task, proposing that
the CNS seeks to minimize the variance of the final arm position (For review see Bays and
Wolpert, 2007). Taken together, these studies suggest that the planning of movements
considers explicit performance criteria that are associated with successful task performance,
but also implicit criteria that aren’t consciously considered, such as making energetically
efficient and reliable movements. Taking these considerations into account, our cost
function included both task performance criteria, and mechanical efficiency criteria.

Most previous optimization models yield a desired trajectory that is simply executed in an
open-loop manner, once it is planned. However, the idea that an optimal control can also
incorporate knowledge about the instantaneous “state” of the body and the environment has
more recently been advocated (Todorov and Jordan, 2002). For example, Liu and Todorov,
(2007) imposed target jumps that altered the accuracy and stability requirements of the
targeted movements, and showed commensurate changes in the relative contributions of
energetic and accuracy costs to subjects movements. The plausibility that the costs guiding a
motion, in our study reflected by the Qs parameters, can be varied during the course of a
movement is supported by our current results. Thus, one would expect that as subjects near
the target, the energetic cost becomes less important, while the cost of achieving stable and
accurate position becomes larger. It should be noted that this type of optimal control would
be indistinguishable from our impedance controller, which stabilizes the arm in the final
position. Therefore, our simplified control scheme that initiates movements with a static
optimal pattern, and terminates movements with an impedance controller is not inconsistent
with more elaborate optimal control schemes that incorporate feedback control policies and
allow modification of control policy weights throughout the course of movement.

Impedance Control
Flexible control of limb impedance has been shown to be an integral aspect of dealing with
unpredictable mechanical conditions, and is necessary to respond optimally to unexpected
perturbations (Milner TE, 2004). If for example, one is racing toward a finish line and a
brisk wind pushes the runner forward, one would not want to compensate this perturbation
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but rather exploit the passive assistance of the wind. On the other hand, a strong wind
directed perpendicular to the finish line direction may need to be compensated to maintain
running stability. Such selective modulation of feedback is consistent with evidence that
reflexes can be modulated based on task demands. Lacquaniti and Soechting, (1986)
demonstrated such modulation for a ball catching task, in which both the amplitude and
expression of the stretch reflex was modulated in a systematic way as the ball dropped
toward the hand. The result of this reflex modulation was to generate impedance to the
forces imposed by ball impact, thereby generating a smooth and effective catching response.
Franklin et al. (2007) demonstrated optimal impedance modulation during the course of
reaching movements made in unstable force fields that had components directed
perpendicular to the required movement. Subjects were able to adapt to the unstable forces
by selectively increasing stiffness only in the direction of the instability, but not along the
movement direction. The CNS was thus able to maintain stability through impedance control
while coordinating movements in a manner consistent with optimized energy expenditure. It
is likely that this selective impedance modulation occurred through reflex modulation. In a
direct test of this hypothesis Mutha et. al. demonstrated selective modification of limb
impedance through modulation of both short and long latency reflexes (Mutha et al., 2008).
Participants reached to a visual target that could occasionally jump to a new location during
movement initiation. Unpredictable and occasional mechanical perturbations could also be
applied, 100 milliseconds after the target jump. Reflex amplitudes in response to the
perturbations were selectively increased or decreased depending on the direction of the
target jump, which resulted in changes in the torque response to the perturbations. However,
under conditions in which the movements were not mechanically perturbed, no changes in
EMG or joint torque occurred. Taken together, this array of findings confirms that limb
impedance is controlled by selectively modulating the expression of short and long latency
reflex responses. In addition, this modulation occurs in accord with and does not interfere
with optimal coordination patterns.

Motor lateralization
Both predictive control, and impedance modulation appear to represent integral mechanisms
of human motor control. “Control strategies based purely on predictive mechanisms
generate motor commands to achieve a task goal quickly and require accurate
representations of environmental and body dynamics. However, such control schemes are
not suited well to variable and unpredictable environmental conditions. While control based
on purely impedance mechanisms can be robust to changes in environmental conditions,
these strategies will generally be energetically inefficient. We believe that the human
movement controller uses an intermittent strategy that intelligently combines these two
mechanisms to take advantage of the immediacy and efficiency of predictive mechanisms
and the stability and robustness of impedance mechanisms.

Our model of motor lateralization assigns specialization for these two aspects of control to
each hemisphere, and thus predicts behavioral advantages for each limb in the performance
of different aspects of movement. Specifically, the dominant hemisphere/limb system is
attributed with predicting limb and task dynamics, whereas the nondominant limb is
attributed with specialized control of steady state limb posture, presumably through
impedance control mechanisms. This model has successfully predicted advantages for each
limb in performing different tasks, in healthy young adults. For example, the dominant arm
adapts to altered task dynamics more readily than the nondominant arm (Duff and Sainburg,
2007; Schabowsky et al., 2007). However, the nondominant arm often shows greater
accuracy in final position, especially under conditions of unexpected perturbations
(Bagesteiro and Sainburg, 2003; Duff and Sainburg, 2007). We recently extended these
findings to left-handers and older adults, and showed that motor lateralization tends to be
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reduced in both populations (Przybyla et al., 2011). Our model has also predicted specific
motor deficits that result from left and right hemisphere damage in the ipsilesional arm of
stroke patients (Haaland et al., 2009; Schaefer et al., 2009). This suggests that these two
mechanisms might be independent and lateralized to the left and right brain hemispheres,
respectively. These studies have confirmed that right and left sensorimotor strokes produce
predictable deficits in impedance control or predictive control, respectively. For example,
Schaefer et al., (2005) compared reaching movements in the ipsilesional arm of hemisphere
damaged patients with those of healthy control subjects matched for age and other
demographic factors. Subjects performed targeted reaching movements in different
directions within a workspace to the same side of midline as their reaching arm. The left
hemisphere damaged group showed deficits in controlling the arm’s trajectory due to
impaired interjoint coordination, but showed no deficits in achieving accurate final positions
suggesting impaired predictive mechanisms. In contrast, the right hemisphere damaged
group showed deficits in final position accuracy but not in interjoint coordination which
implies impaired impedance mechanisms. This double dissociation between the type of error
(trajectory or final position) and the side of hemisphere damage (right or left) suggest that
predictive control and control of final limb position through impedance modulation are
lateralized. This is consistent with the findings that unilateral arm and hand movements
recruit both hemispheres (Kutas and Donchin, 1974; Tanji et al., 1988; Kawashima et al.,
1993).

In the current paper, we developed and tested a computational model that uses both
predictive and online-impedance control mechanisms, arranged in series to one another. The
weighting between these mechanisms was simply determined by a temporal switching
factor. By fitting our model to our data, we ask whether dominant and nondominant arm
movements predict differences in this switch time. Our findings supported our hypothesis of
hybrid control. Until now, findings from other researchers and our lab have reported only
the empirical differences between movement patterns of the dominant and nondominant
arm. For the first time, we explain them as differences in control mechanisms. Our controller
paradigm attributes differences between the dominant and nondominant arm to differences
in a single parameter which weighs the relative contributions of predictive and impedance
mechanisms. Not only does our model of lateralization attribute specific roles to the
different hemispheres, but it also explains the dynamic interactions between them (Serrien et
al., 2006).
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Research Highlights

1. First computational model of handedness

2. Dominant/nondominant arm movements explained using the same hybrid
controller

3. Predictive and impedance mechanisms for each arm are not different

4. Predictive and impedance mechanisms weighed differently for each arm

5. Dominant arm relies on predictive and nondominant arm on impedance
mechanisms
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Figure 1.
A- Air-sled system for data acquisition. B- Subject’s arm set up for the experimental task. C-
Target locations.
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Figure 2.
A) Hand paths for left and right arms, B) Velocity profiles for left and right arms, C)
Tangential acceleration profiles for left and right arms.
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Figure 3.
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Velocity and acceleration profiles for different control strategies; A) The same predictive
control mechanism for movement initiation, and then switch to impedance. B) Movement
executed using control signal that minimizes the same cost of movement.
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Figure 4.
Two sets of velocity profiles (tangential velocity vs. time) are shown. The dashed profiles
are those derived from our optimization algorithm, while the solid lines show the profiles
generated by switching to impedance control at different times (s=[time of switch]/[total
time of movement]) in the movement.
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Figure 5.
Elbow angle trajectory obtained by using our controller paradigm matches to the
experimental data to high accuracy, R2 > 0.99.
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Figure 6.
Goodness of fits (R2) indicate that hybrid controller is able to reproduce the joint angle
trajectories observed in the experiment (10% quantile > 0.99).
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Figure 7.
Switch instants for left arm movements are lower than the switch instants for right arm
movements. Higher values of s for the dominant right arm implies that the right arm
movements relied more on predictive mechanisms than the left arm.
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Figure 8.
Percentage of distance (θper) traveled using predictive control.
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Figure 9.
Time of switch relative to peak velocity normalized by movement time (srel,v) for left and
right arm.
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Figure 10.
Mean ± standard error plots of switch instant relative to instant of peak acceleration
normalized by movement time for left and right arm.
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Figure 11.
Mean ± standard error plots of cost on positional error for left and right arm.
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Figure 12.
Mean ± standard error plots of cost on velocity error for left and right arm.
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Figure 13.
Mean ± standard error plots of stiffness (K) for left and right arms.
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Figure 14.
Mean ± standard error plots of viscosity (B) for left and right arms.
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Table 1

ANOVA: s

Source F-ratio Prob>F

Hand 5.8765 0.0358*

Target 0.6190 0.6082

Target*Hand 0.6366 0.5973
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Table 2

ANOVA: θper

Source F-ratio Prob>F

Hand 5.2140 0.0455*

Target 2.0889 0.1227

Target*Hand 0.2165 0.8842
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Table 3

ANOVA: srel,v

Source F-ratio Prob>F

Hand 17.5242 0.0019*

Target 1.5363 0.2254

Target*Hand 0.2523 0.8590

Neuroscience. Author manuscript; available in PMC 2012 November 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yadav and Sainburg Page 40

Table 4

ANOVA: srel,a

Source F-ratio Prob>F

Hand 9.7709 0.0108*

Target 0.7582 0.5264

Target*Hand 0.2123 0.8871
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Table 5

ANOVA: Qθ

Source F-ratio Prob>F

Hand 0.1474 0.7090

Target 9.5399 0.0001*

Target*Hand 0.1916 0.9013
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Table 6

ANOVA: Qv

Source F-ratio Prob>F

Hand 0.1676 0.6909

Target 0.3963 0.7566

Target*Hand 1.3854 0.2663
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Table 7

ANOVA: K

Source F-ratio Prob>F

Hand 0.0345 0.8563

Target 0.7259 0.5445

Target*Hand 4.6982 0.0083*
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Table 8

ANOVA: B

Source F-ratio Prob>F

Hand 6.8866 0.0254*

Target 0.2111 0.8879

Target*Hand 0.0549 0.9827
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