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Abstract
Parameters in time series and other dynamic models often show complex range restrictions and
their distributions may deviate substantially from multivariate normal or other standard parametric
distributions. We use the truncated Dirichlet process (DP) as a non-parametric prior for such
dynamic parameters in a novel nonlinear Bayesian dynamic factor analysis model. This is
equivalent to specifying the prior distribution to be a mixture distribution composed of an
unknown number of discrete point masses (or clusters). The stick-breaking prior and the blocked
Gibbs sampler are used to enable efficient simulation of posterior samples. Using a series of
empirical and simulation examples, we illustrate the flexibility of the proposed approach in
approximating distributions of very diverse shapes.

1. Introduction
The last two decades have evidenced the emergence of a new class of structural equation
models (SEMs), termed latent variable models (LVMs). These models relax the traditional
linearity and Gaussian assumptions of the structural equation modelling framework
(Jöreskog, 1974) and offer new possibilities for fitting more complex models. Such timely
advances include recent developments in fitting dynamic LVMs, defined here as
longitudinal models for describing change processes that extend over substantially longer
time-spans (e.g., T > 35) than those implicated in conventional panel models (typically, T <
10).

Some of the seminal work on dynamic LVMs has been spearheaded in part by progress in
fitting dynamic factor analysis (DFA) models (Browne & Nesselroade, 2005; McArdle,
1982; Molenaar, 1985; Nesselroade, McArdle, Aggen, & Meyers, 2002; Zhang &
Nesselroade, 2007). A DFA model can be viewed as an extension to Cattell, Cattell, and,
Rhymer’s (1947) P-technique model1 in which a change model of choice is combined with
the standard factor analytic model to account for lagged relationships among factors and
manifest variables. The different variants of DFA models proposed in the past two decades
have, however, focused exclusively on linear changes (e.g., McArdle, 1982; Molenaar,
1985; Zhang & Browne, 2009; Zhang & Nesselroade, 2007). This is due largely to the many
methodological challenges involved in extending DFA models to a nonlinear framework.
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1The P-technique model is a common factor model for extracting systematic intra-person patterns from multivariate time series
measured on a single individual over time (Jones & Nesselroade, 1990).
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First, the difficulties associated with fitting cross-sectional LVMs with nonlinear
relationships among factors (as discussed e.g., by Kenny & Judd, 1984) have remained one
of most widely investigated research issues in the SEM literature for decades (e.g., Klein &
Moosbrugger, 2000; Schumacker, 2002). Generalization to nonlinear dynamic LVMs
requires methodological adaptations that can lead to further complication. Second, because
different measurement occasions for a single variable are typically treated as different
manifest variables in standard SEM practice, the input data covariance matrix for fitting
DFA models in SEM software is non-positive definite in cases were the number
measurement occasions, T, exceeds the number of participants, N. Even when T < N,
numerical problems may still arise due to the need to invert a high-dimensional model-
implied covariance matrix at each iteration (Hamaker, Dolan, & Molenaar, 2003).
Alternative approaches have been proposed to circumvent these issues, including using a
block-Toeplitz matrix to replace the data covariance or correlation matrix (Browne &
Nesselroade, 2005; Hershberger, Corneal, & Molenaar, 1994; Molenaar, 1985), and using
raw data maximum likelihood with special parameter constraints to ensure the positive
definiteness of the model-implied covariance matrix (Hamaker et al., 2003). Still, adapting
these alternative approaches for use with nonlinear dynamic LVMs is not a straightforward
endeavour.

Despite the challenges involved, nonlinear DFA models, as we will illustrate using an
empirical example, provide a valuable tool for evaluating substantive questions that are
otherwise difficult to test within the linear framework (e.g., Frederickson & Losada, 2005;
Gottman, Murray, Swanson, Tyson, & Swanson, 2002). Our aims in the present paper are
twofold. First, we seek to present a Bayesian approach to estimating nonlinear dynamic
LVMs and propose a novel nonlinear DFA model as a special case. Our second aim is to
allow parameters that are of substantive interest in the proposed dynamic model to vary over
persons and, more importantly, to conform to non-parametric distributional forms through
the use of a non-parametric Dirichlet process (DP) prior. We allow the dynamic but not
other modelling parameters (e.g., measurement parameters such as factor loadings) to vary
over persons because, in most applications of DFA models, individual differences in the
dynamic parameters (i.e., parameters that dictate the nature of the change processes) are
often the focus of substantive interest (e.g., Chow, Nesselroade, Shifren, & McArdle, 2004;
Ferrer & Nesselroade, 2003). Relaxing the parametric assumptions imposed on these
parameters is particularly important from a substantive as well as a practical standpoint. As
an example, in fitting DFA models where vector autoregressive (VAR) models or other
related variations are used to describe the dynamic relationships among factors, the dynamic
parameters (specifically, the auto- and cross-regression parameters) often show complex
restrictions of range. That is, moving beyond the stationary ranges may, in certain cases,
yield systems that show increasing variance over time2 (Hamilton, 1994; Wei, 1990) – an
unlikely scenario in many empirical applications. As a result, the distributions of the
dynamic parameters may be non-normal, and even asymmetric.

Prior selection is an important issue in Bayesian data analysis. In many cases, conjugate
priors are used for practical reasons to yield posterior distributions of known analytic forms
(see Lee, 2007). The multivariate normal distribution, for instance, is one such candidate.
Despite its appeal, using multivariate normal distributions as conjugate priors may lead to
incorrect posterior inferences in cases where the desired posterior distributions deviate
substantially from normality. More recently, there have been a few psychometric
applications that utilize non-parametric priors in fitting Bayesian models. Such applications
are restricted, however, to cases involving cross-sectional SEMs and item response models

2More generally, stationarity refers to the invariance of all statistical properties (e.g., means and covariance functions, in the case of
weak stationarity) of a system over time.
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(e.g., Duncan & MacEachern, 2008; Lee, Lu, & Song, 2007; Navarro, Griffiths, Steyvers, &
Lee, 2006), as well as linear dynamic LVMs (Ansari & Iyengar, 2006). Our proposed
approach thus extends previous work that utilizes the DP as a non-parametric prior in
Bayesian models to dynamic LVMs with nonlinear change processes at the factor level. Due
to the categorical nature of the data used in our empirical example, our approach also
generalizes previous approaches of fitting linear DFA models to categorical data (Zhang &
Browne, 2009; Zhang & Nesselroade, 2007) to cases involving nonlinear DFA models.

The rest of the present paper is organized as follows. We first summarize features of the
semiparametric Bayesian dynamic modelling framework adopted in the paper. We then
introduce a motivating empirical example and a novel nonlinear DFA model formulated to
test a specific theory of emotions. This is followed by an outline of the broader modelling
framework within which our illustrative model can be conceived as a special case. We then
present the Markov chain Monte Carlo procedures for fitting the broader model, and results
from empirical model fitting and a simulation study. We close with some concluding
comments.

2. The Dirichlet process as a non-parametric prior
Non-parametric and semiparametric Bayesian models provide a flexible platform for
evaluating the tenability of parametric assumptions in dynamic LVMs. Here, we use the
term ‘semiparametric models’ to refer to models with known modelling functions, but
unknown distributions for some of the modelling components. In particular, we allow the
distributions of the dynamic parameters in our model to conform to non-parametric forms.

When one or more of the distributions in a model of interest are of an unknown form, one
common approach is to approximate such distributions non-parametrically by using a finite
mixture of parametric distributions, such as a mixture of normal distributions (Lindsay,
1995; McLachlan & Peel, 2000; Sorensen & Alspach, 1971; Titterington, Smith, & Markov,
1985). In some instances, it is of substantive importance to interpret the mixture components
as different clusters or classes of individuals with similar characteristics. Unfortunately,
when the distributions of interest violate the normality assumption (e.g., in cases involving
skewed and heavy-tailed distributions), spurious classes are often detected even when there
are no systematic between-class differences (Bauer & Curran, 2003). Non-parametric
Bayesian models relax critical dependence on parametric assumptions and, in this way, they
help ‘robustify’ parametric models (Antoniak, 1974; Ferguson, 1973). They also serve as a
platform for assessing the appropriateness of the parametric assumptions in a model of
interest (Dunson, 2008; Karabotsos & Walker, 2009).

Suppose that in an application, an r × 1 vector of modelling components of interest, bi, for
person i, conforms to an unknown distribution such that bi ~ , where  is of an unknown
form. In practice, bi may correspond to a vector of modelling parameters, a vector of latent
trait components in an item response model, or a vector of non-Gaussian residuals. One
possible non-parametric approach in the Bayesian framework is to specify a DP prior for 
That is, we let bi ~ DP(αP0), where P0 is a base distribution that serves as a starting-point for
constructing the non-parametric distribution. For instance, the (multivariate) normal
distribution is a common choice for P0. The positive quantity α represents the weight a
researcher assigns a priori to the base distribution, and it reflects the researcher’s certainty
of P0 as the distribution of bi.

The practical consequences of specifying a DP prior can be better understood in terms of
Sethuraman’s (1994) stick-breaking representation. The stick-breaking representation
provides an alternative way of conceiving ~ DP(αP0) as
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(1)

where δZg(.) denotes a unit point mass at Zg, Zg is the gth matrix consisting of possible
values of bi and πg is a random probability weight between 0 and 1. Equation (1) thus posits
that consists of a series of point masses – or ‘sticks’ – of various lengths concentrated at
different values of Zg. For empirical estimation purposes, a truncated DP may be used to
approximate equation (1) as (Ishwaran & James, 2001; Ishwaran & Zarepour, 2000; Lee et
al., 2007)

(2)

where πg is obtained as

(3)

with

(4)

and νG = 1 so that .

To aid interpretation, consider the simple case where G = 2. In this case, ν2 = 1, ν1 is a
random weight between 0 and 1 drawn from the beta distribution; ν1, the proportion or
length of the first stick, is equal to ν1 and, by equation (3), ν2 = ν2(1 − ν1) = 1 − ν1. That is,
ν1 is the proportion of a unit probability stick that is broken off and assigned to Z1, and 1 −
ν1 is the remainder of the stick that is assigned to Z2. In practice, the value of G is either set
to a large, predetermined value (e.g., G ≥ 150) or chosen empirically. For instance, Ishwaran
and Zarepour (2000) suggested that the adequacy of the truncation level, G, can be assessed

by evaluating moments of the tail probability, , whose value depends only on G and
the hyperparameters that govern the prior distribution of α. A relatively small tail probability
is desired, as this indicates that including additional sticks beyond G does not lead to
substantial differences in the approximation. Our simulation results showed that a value of G
= 300 is more than adequate for the model considered in the present context.

A variety of different distributional forms can be approximated by the discrete probability
measure through different ways of allocating the weights, πg. The assignment of the
weights is, in turn, governed by the random weight, α. Typically, a gamma hyperprior is
specified for α and the associated hyperparameters for this gamma prior reflect a
researcher’s best guess as to how πg should be distributed, and consequently, how the point
masses in equation (2) should resemble the base distribution, P0. Such prior information is
then combined with information from the empirical data to shape the resultant posterior
distribution of interest.
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To provide a more concrete illustration of the functional role of α, we generated realizations
from the DP with different values of α, G = 300, r = 1 and a univariate N(0,1) base
distribution. The associated realizations from G(.) are plotted in Figure 1. The discrete-
valued nature of G(.) resulting from the use of the DP prior is portrayed in the plots. In
addition, as α increases, samples of ν change from conforming to a roughly uniform
distribution to skewed distributions of increasingly restricted ranges dominated by a few
weights. Consequently, the distributions of π are characterized by an increasing number of
non-zero values of πg. As a result, progressively more sticks are ‘broken off’ to form more
clusters, and subsequently more unique values of Zg are observed with non-zero
probabilities.

One important fact to note is that as α gets very large, realizations from G(.) show
increased resemblance to the standard normal base distribution (see Figure 1d). In fact, in
the extreme case where each individual in the sample is assigned to his/her own cluster (not
shown here), each individual has one unique set of values for bi and, consequently, bi would
be distributed as P0 (Dunson, 2008). In our simulations, we show how the DP can be used as
a non-parametric prior for representing a variety of different distributional forms for a set of
individual-specific dynamic parameters of interest.

On the technical front, sampling from posterior distributions involving a DP prior can be
computationally intensive. One standard approach to enable efficient sampling of bi within a
Markov chain Monte Carlo (MCMC) framework is to represent bi in terms of a latent
variable, Li, which records each bi’s cluster membership and conveys its values such that bi
= ZLi. In other words, the classification variable Li is essentially a set of ‘pointers’ for
indicating the values of Zg associated with person i so that bi is known when Li is known. Li
is conditionally independent of Zg, and it is distributed as

(5)

3. Motivating empirical example
Data used in our illustrative example have been previously published elsewhere (see Chow,
Ram, Boker, Fujita, & Clore, 2005; Diener, Fujita, & Smith, 1995; Ram et al., 2005). The
sample consisted of 179 college students (98 male and 81 female; average age = 20.24 years,
SD = 1.41) who were asked to provide self-report affect ratings daily for 52 days. After
excluding participants with excessive missingness and data anomalies, a total of 174
participants were retained in the final analysis. Four ordinal positive emotion (PE) items and
four ordinal negative emotion (NE) items measured on a scale from 1 ( = ‘none’) to 7 ( =
‘always’) were used for model fitting purposes. PE items include joy, contentment, love and
affection whereas NE items include unhappiness, anger, depression and anxiety. Individuals’
composite PE and NE scores derived from summing these items are plotted in Figure 2.

One linear DFA model that has been used in the past to describe day-to-day changes in PE
and NE processes is a process factor analysis model that combines a factor analytic model
with a VAR model for describing the relationships among factors (e.g., Chow et al., 2004;
Ferrer & Nesselroade, 2003). The dynamics among the latent factors are represented as
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(6)

In this model, PEit and NEit are continuous latent variables representing individual i’s
underlying PE and NE at time t; ζ1it and ζ2it are process noise terms assumed to follow a
multivariate normal distribution; b11 and b22 are the first-order (or lag-one) autoregressive
(AR(1)) parameters, and b12 and b21 are the lag-one cross-regression parameters. Note that
equation (6) only includes auto- and cross-regressive relationships up to the first order
because previous inspection of the partial auto- and cross-correlation plots of the PE and NE
sum scores from the current data set suggested that the shorter-term dynamics in the data are
captured primarily by the lag-one components.3 Higher lag orders and other linear/nonlinear
variations of equation (6) can, however, be readily implemented using the broader modelling
framework and the associated estimation procedures proposed in the present paper. Thus,
higher-order lags can be incorporated as needed in other applications.

Whereas the model shown in equation (6) is a common linear choice for capturing the kinds
of relatively rapid fluctuations seen in affect data, we constructed a nonlinear extension to
the VAR(1) model in equation (6) to test a theoretically driven model of emotions.
Specifically, in their study of affect, Zautra, Reich, Davis, Nicolson, and Potter (2000)
proposed a dynamic affect model which postulates that the relative separation between PE
and NE changes dynamically as a function of stress. That is, elevated stress is associated
with ‘shrinkages’ in the affective space and the coalescence of positive and negative
emotions into a unipolar dimension. Thus, the dynamic affect model suggests that the
linkage between PE and NE strengthens with stress but weakens at lower levels of stress.
Because we did not have a time-varying indicator of stress, the dynamic affect model will be
tested mathematically as

(7)

where b11,i and b22,i are the baseline AR(1) parameters of individual i at extremely low
values of PEi,t−1 and NEi,t−1, respectively. If an individual’s PE (or NE) was high at time t −
1, the high PE (NE) affects the subsequent dynamics of the individual’s NE (PE) by altering
the AR(1) parameter associated with the latter. The parameters b12,i and b21,i are the person-
specific deviations in AR(1) parameters for PEit and NEit respectively, when the two factors
were at extremely high values at time t − 1. That is, under high stress, it is natural for an
individual to experience a high level of NE. The high NE, in turn, changes the dynamics of
PE at the next time point by altering the value of PE’s AR(1) parameter by a magnitude of
b12,i. Whether a reciprocal effect from PE to NE also exists at very high values of PE is
reflected in the magnitude of b21,i.

In sum, the nonlinear VAR(1) model in equation (7) extends the VAR(1) model into a linear
DFA model (see equation (6)) in three ways. First, the AR(1) parameter of each factor is

3There was also evidence for weekly cycles in the data. This is beyond the focus of the present paper, but interested readers can refer
elsewhere (Chow et al., 2005; Chow, Hamaker, & Allaire, 2009; Ram et al., 2005) for modelling options that do account for cyclic
dynamics.
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now a time-varying function of the other factor from a previous time point, so that the
dynamic model becomes nonlinear. Second, we allow four of the dynamic parameters,
namely, bi = (b11,i, b22,i, b12,i, b21,i) to vary over persons. Third, we use a DP prior for bi to
allow these parameters to conform to non-parametric distributional forms.

4. Dynamic latent variable modelling framework
The nonlinear VAR(1) model in equation (7) can be formulated as a special case of a
nonlinear state-space model. The state-space representation provides a flexible framework
for representing different dynamic processes and subsumes many dynamic and time series
models as special cases. Because latent variables are still the focus of our formulation, we
refer to our modelling framework as the dynamic latent variable modelling framework. The
resultant modelling framework comprises a dynamic model and a measurement model,
which will be described next.

4.1. Dynamic model
The general dynamic model on which the proposed estimation procedures are based is
expressed as

(8)

where i is the person index and t is the time index; ηit is a w × 1 vector of latent variables of
interest, ζit is a vector of process noise components and ft(.) is a vector of time-varying,
differentiable linear or nonlinear functions describing the latent variables at time t in terms
of three components (1) their previous history at time t − 1, (2) bi, an r × 1 vector of person-
specific parameters, and (3) a vector of parameters that is held invariant over time and
persons, denoted as θη. In our motivating example, ηit = (PEit, NEit)′, bi = (b11,i, b22,i, b12,i,
b21,i)′ and θη = (Ψζ). We specify a DP prior for bi, and set the base distribution, P0, to be an
r-variate normal distribution with mean vector μZ and covariance matrix ΨZ.

Beyond our illustrative model, a variety of other dynamic functions can be readily specified
as special cases of equation (8). Some examples include unobserved components models
with cyclic, seasonal, and irregular components (Durbin & Koopman, 2001; Harvey, 2001),
non-parametric spline models (De Jong & Mazzi, 2001), and exact discrete time models
(Harvey, 2001). VAR models of higher lags and other related vector autoregressive moving
average (VARMA) extensions can also be formulated as special cases of equation (8) by
expanding the size of ηit to include higher-order lag components.

4.2. Measurement model
Motivated by our empirical data of interest, we now consider a measurement model for
ordinal data and elaborate briefly, where appropriate, on how the proposed framework can
be extended to include mixed responses. In the conventional state-space framework, the
measurement model is used to specify the relationships among a set of latent and manifest
variables. In cases involving ordinal manifest data, the same measurement model is defined
in terms of a vector of underlying, continuous latent variables as

(9)

where  is a p × 1 vector of unobserved continuous response variables underlying a p × 1
vector of manifest ordinal data, yi, and εit is a vector of uniquenesses. The vector of time-
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invariant parameters in the measurement model, denoted by θε, includes elements in the
vector of intercepts, μ, the p × w matrix of factor loadings, λ, and Ψε, the p × p covariance
matrix of εit.

The unobserved continuous latent vector, , is linked to the manifest ordinal data, yit by

(10)

where τk,h is a set of threshold values held invariant across persons and time, with

(11)

That is, for the kth ordinal variable, yit,k, with M categories, there are M − 1 threshold
parameters. The underlying variable approach summarized in equations (9) – (11) has been
shown to be equivalent to the generalized latent trait approach often adopted in the item
response theory framework (Bartholomew & Knott, 1999; Jöreskog & Moustaki, 2001).4
Since only ordinal information is used to identify , additional constraints need to be
imposed to identify the model. For instance, the lowest and highest threshold values of each
item can be fixed, as opposed to being freely estimated (Lee & Zhu, 2000). These are the
identification constraint adopted in the present study.

5. Bayesian estimation procedures
Throughout, we define θ = (θε, θη), π = (π1, …, πG), L = (L1, …, Ln), H = (η1, …, ηn) with ηi
= (ηi1, …, ηiT)′ as the array of latent variables, τ = (τ1,2, …, τ1,M −2, …, τp,M −2) as a vector
of threshold parameters and b = (b1, …, bn) as an array of all person-specific parameters. In
addition, we denote Y = (Y1, Y2, …, Yn) ≜ {Yobs, Ymis}, where Yobs is a data array with
complete ordinal observations from all persons and time points, Ymis is a data array that
includes all missing observations from all persons and time points, with Yi = (yi1, yi2, …, yiT)
′ ≜ {yi,obs, yi,mis} being a data matrix that includes person i’s complete and missing manifest
ordinal data up to time T. Their corresponding continuous counterparts are denoted by

. Assuming that the data
are missing at random with an ignorable missingness mechanism (Little & Rubin, 1987),
estimation of all parameters and latent variables will be based only on the observed data set,
Yobs.

The general model summarized in equations (7)–(11) can be rewritten as

where SB(.) denotes the stick-breaking process expressed in equation (3).

4The measurement framework adopted in the present paper can be readily generalized to applications involving data measured on
mixed scales. In this case, the measurement vector yit is further partitioned into portions with p1 continuous variables, p2 binary
variables and p − p1 − p2 ordinal variables. This yields yit = [yit,1, …, yit,p1, yit,p1+1, …, yit,p1 +p2, yit,p1 +p2+1, …, yit,p]′. The
appropriate density specification can then be defined for each portion of these data to yield a final measurement model (see Lee &
Zhu, 2000).
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We specified the prior distributions for our modelling components as

(12)

where c is a constant used to specify a diffuse prior for the threshold parameters and 
denotes the kth row of Λ (for k = 1, …, p). The components

 are all hyperparameters whose
values are assumed to be known. Thus, with the exception of the threshold parameters,
which were assigned a non-informative prior, standard conjugate priors were specified for
all other parametric components in the model. Such priors were thought to provide a
reasonable representation of the characteristics of these components, and the associated
hyperparameters can be determined in a relatively straightforward manner based on previous
applications. Details of our hyperparameter choices are discussed later as we present the
empirical results.

The Gibbs sampler will be used to simulate a sequence of random observations from the
joint posterior distribution p(π, Z, L, μZ, ΨZ, α, H, θ, τ, Y*, Ymis|Yobs), where Z = (Z1, …, ZG)
is a G × r matrix containing values of bi. At the first iteration, samples of Z are drawn from
the base distribution, P0. Then, starting from

, the Gibbs sampler involves sampling
sequentially, for the next iteration, q+1 (until the last iteration, Q), as follows:

a.
Generate .

b.
Generate .

c. Generate α(q+1) from p(α|π(q)).

d. Generate (π(q+1), Z(q+1)) from

.

e. Generate L(q+1) from p(L|π(q+1), Z(q+1), τ(q), Y*(q), θ(q), H(q), Yobs).

f. Generate H(q+1) from p(H|τ(q), Y*(q), θ(q), Yobs, b(q+1)).

g. Generate θ(q+1) from p(θ|τ(q), Y*(q), H(q+1), Yobs).

h.
Generate .

i.
Generate .

In sum, the Gibbs sampler essentially involves sampling from a series of conditional
distributions while each of the modelling components is updated in turn. The conditional
distributions needed to implement steps (a)–(i) are summarized in the Appendix. In cases
where the associated conditional distributions are of known analytic forms, sampling from
these distributions is straightforward (including steps (a)–(c), (e), (g) and (h)). In other cases,
Metropolis–Hasting (MH) algorithms are used within the Gibbs sampler (e.g., steps (d), (f)
and (i)) to allow sampling from the corresponding conditional distributions. Steps (a)–(e), in
particular, are all part of a blocked Gibbs sampling procedure for deriving posterior samples
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of bi. Furthermore, no additional step is included to sample the missing ordinal data, Ymis.
Because of the assumption of missingness at random, all that is needed are samples of the
missing latent continuous data array, , to yield posterior samples of ,
obtained respectively from steps (i) and (h) and subsequently utilized in other sampling
steps.

6. Empirical results
The nonlinear DFA model (see equations (7) and (9)–(11)) was fitted to the empirical data.
Four ordinal items were used to identify PEit, individual i’s latent positive emotion, and four
ordinal items were used to identify NEit, individual i’s latent negative emotion. We ran three
independent Markov chains with different starting values and yielded similar results. We
report here the results as aggregated across the three chains.

For identification purposes, we set τk,1 to Φ−1 (nk,1/n) and τk,6 to , where
Φ−1(.) denotes the inverse standard normal cumulative distribution function and nk,h
represents the number of responses endorsing category h on item k across all persons and
time points. The hyperparameter values of the prior distributions (see equation (12)) were
specified as follows. A diffuse prior was specified for all of the threshold parameters, so c
can be set to any arbitrary constant value without affecting the resultant posterior
distributions of the threshold parameters. We set μ0 to an 8 × 1 vector of ones, Σ0 to I8, w0 to

10, and  to

Further, letting k and j denote the row and column, respectively, of the factor loading matrix,
Λ, Λ0kj = 0.8 for each of the freed elements in the factor loading matrix (j = 1 for k = 2, 3,
and 4; j = 2 for k = 6, 7, and 8) and H0Λkj = 1 for each of the freed elements in the factor
loading matrix. For the conjugate priors of the measurement error variances, we set α0εk to 8
and β0εk to 10 to yield variance values that were relatively large and diffuse.

To ensure that the approximations obtained from posterior samples of the nonparametric
components were not biased by the choice of our hyperparameters, we allowed some of the
hyperparameters that governed the base distribution to vary randomly across the three
independent Markov chains. Specifically, based on previous results from fitting VAR(1)
models to sum scores from the present data set with parametric assumptions, we set μZ0j to
0.5 for j = 1 and 2 (i.e., corresponding to b11,i and b22,i) and to −0.1 for j = 3 and 4 (i.e.,
corresponding to b12,i and b21,i). Elements in ΨμZ were sampled randomly from a Unif (1,
10) distribution for b11,i and b22,i and a Unif (1, 12) distribution for b12,i and b21,i for each
independent Markov chain. Furthermore, we set c1 to 10, and allowed c2 to be sampled

randomly from a Unif (3, 7) distribution for elements in  that corresponded to b11,i and
b22,i, and from a Unif (0.5, 4) distribution for those that corresponded to b12,i and b21,i. Note
that the different hyperparameter choices for elements in bi were necessary because we
expected b12,i and b21,i to conform to much narrower ranges than the baseline auto
regression parameters in stable systems (namely, systems that do not show increasing
variance over time). With respect to hyperparameters for the prior distribution of α, we set
a1 to 250 and a2 to 1 to yield large values of α (and consequently, more unique bi values) to
capture some of the more subtle individual differences in these dynamic parameters.
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We computed the estimated potential scale reduction (EPSR; Gelman, 1996) values based
on the three independent Markov chains, each initialized with different starting values for
the person-invariant parameters, and different hyperparameter values as described above.
The EPSR values for all person-invariant parameters became less than 1.2 and the
corresponding parameter estimates from different chains stabilized in less than 200
iterations. To allow sufficient burn-in iterations to recover the shapes of the person-specific
parameters, we allowed for 18,000 burn-in iterations.

The posterior predictive probability (Gelman, Meng, & Stern, 1996; Lee & Zhu, 2000;
Meng, 1994) of the fitted model computed using posterior samples of the continuous data
array, Y*, averaged .67, indicating that the model provided a reasonable fit to the data.
Estimates of all person- and time-invariant parameters obtained using 4,000 additional
iterations after burn-in are summarized in Table 1. These estimates were averages taken over
the three independent chains.

Consistent with previously published results (Ram et al., 2005), all the PE and NE indicators
showed relatively little differentiation (i.e., distances between thresholds were small) among
the middle categories. High levels of NE were relatively rare, resulting in the threshold
values of the NE items clustering around relatively high magnitudes. The baseline levels (as
indicated by values of μ) were estimated to be close to zero, with the intercepts of the NE
continuous data being significantly greater than zero. At the factor level, PE and NE were
found to be weakly negatively correlated, as would be expected based on previous findings
concerning the structure of emotions.

We obtained estimates of each person’s parameters in bi, denoted below as b̂i, by averaging
posterior samples from the distribution p(ZLi |Li, μZ, ΨZ, τ, Y*, θ, H, Yobs) as

(13)

where q = 1 denotes the first iteration after burn-in and Q is the maximum number of
iterations. Distributions of these b̂i estimates across participants (for i = 1, …, n) were the
focus of our interest.5 These estimates were observed to show very similar distributional
forms across the three Markov chains even with different hyperparameter choices. Matrix
scatterplots of the b̂i estimates averaged across the three chains and the corresponding
histograms are shown in Figure 3. Based on the plots, distributions of the person-specific
autoregressive parameters, b̂11,i and b̂22,i, were both highly skewed. Most individuals’
estimated autoregressive parameters lay in the moderate to high range (from around 0.5 to
close to 1.0), with a small number of individuals showing near-zero autoregressive
estimates. That is, the latter subgroup of individuals tended to show very little stability or
continuity in their PE and NE from day to day.

The 90% credible interval6 associated with b̂12,i included zero but that for b̂21,i was barely
above zero. Thus, on average, the present sample showed unidirectional coupling from PE to
NE when PE is at high values, but no coupling in the reverse direction when NE was high.
This finding provided partial support for the dynamic affect model postulated by Zautra et

5Of course, there may be instances where researchers are also interested in obtaining other summary statistics (e.g., standard
deviation) from the person-specific distribution, namely, p(ZLi |Li, μZ, ΨZ, τ, Y*, θ, H, Yobs), to make inferences at the individual
level. This is, however, not the focus of the present empirical illustration.
6Note that our choice to report the 90%, as opposed to the 95%, credible intervals was largely arbitrary. The results did not differ,
however, when the 95% credible intervals were evaluated.
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al. (2000). That is, we found that there was an increased linkage between PE and NE at high
values of PE, but the association was driven more by the lagged influence of PE on NE.

Allowing the distributions of the person-specific parameters to deviate from normality also
helped reveal novel interrelationships among the auto- and cross-regression parameters.
First, although most individuals’ b̂12,i estimates clustered around zero, individuals who
showed strong continuity in PE (with b11,i estimates close to or above 1.0) tended to also
show negative lagged influence from NE to PE. That is, high values of NE served to dampen
the fluctuations in PE and bring it back towards its baseline.

A slightly different scenario was observed in the individuals’ NE regulation. Almost all
individuals showed a positive cross-regression weight from PE at t − 1 to NE at time t. The
positive cross-regression weights suggested that if an individual experienced extremely high
PE yesterday, the high PE tended to delay the individual’s NE from returning to its baseline.
This may, for instance, cause an individual’s NE to continue to wander around more
extreme (e.g., extremely low) values for a longer period of time. Compared with individuals
with high stability in NE, individuals who showed lower stability in NE (i.e., b̂22,i estimates
were low) showed greater tendency in this regard (i.e., showing higher positive b̂21,i
estimates).

To evaluate whether the non-parametric DP prior yielded any practical differences in the
estimation results, we replicated the analysis by using a multivariate normal distribution as a
parametric prior for the distribution of bi. Specifically, we specified the parametric prior as

with μZNorm ~ Nr([0.8,0.6, −0.03,0.26]′, ΨZNorm0), based on the semiparametric empirical
results. To allow for variability in the hyperparameter values across the MCMC chains,
ΨZNorm0 was specified to be a diagonal matrix with the first two elements sampled from a
Unif (0.3, 1) distribution and the last two elements sampled from a Unif (0.2, 0.8)
distribution for each of the three independent Markov chains. Furthermore, we let

 with d1 set to 2 and d2 sampled randomly from a Unif (0.1, 0.5)
distribution for k = 1 and 2, and a Unif (0.05, 0.3) distribution for k = 3 and 4 for each of the
independent Markov chains. As in the non-parametric case, these values were selected based
on a prior expectation of the ranges of the parameters in bi in stable systems. The resultant
conditional distribution p(b|μZNorm, ΨZNorm, τ, Y*, θ, H, Yobs) was also non-standard and we
used an MH step similar to that for deriving posterior samples of p(Z|L, μZ, ψZ, τ, Y*, θ, H,
Yobs) to obtain posterior samples from this conditional distribution (see equation (A7) in the
Appendix).

The b̂i estimates obtained from using the multivariate normal prior are plotted in Figure 4,
with density plots of the corresponding non-parametric posterior samples overlaid on the
histograms in the diagonal panels. It can be seen that, compared with the non-parametric
posterior samples, the parametric posterior samples of b̂i did not capture the full ranges of
the b̂i estimates – in particular, the heavy-tailed nature of b̂11,i and the platykurtic but
asymmetric nature of b̂22,i. Evaluation of the summary statistics of the posterior samples
further revealed that whereas the means of the posterior samples were generally close under
both prior specifications, the standard deviations of the estimates were about twice as large
in the non-parametric case as in the parametric case. This has some parallels to asymptotic
results within the linear frequentist framework, where violation of distributional assumptions
has been shown to affect the standard error estimates, but not so much the corresponding
point estimators (Ljung & Caines, 1979). Imposing the normality assumption also led to
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misleading conclusions concerning the interrelationships among the b̂i estimates. For
instance, whereas b̂12,i was found to show a negative relationship with b̂11,i and a quadratic
relationship with b̂22,i with the use of the DP prior (see Figure 3, third panels in rows 1 and
2), no such relationships were observed when the multivariate normal prior was used (see
Figure 4, third panels in rows 1 and 2).

Only minor differences were observed in the person- and time-invariant parameter estimates
when the multivariate normal prior was used (see Table 2). All the estimates and their
associated statistics were largely similar, with the exception of the parameters in μ, the
intercepts of the continuous data array. Most of the elements in μ were greatly reduced in
magnitude and included zero in most of their 90% credible intervals. Such differences likely
reflected the discrepancies in the predicted trends of the individuals, due presumably to the
greater restrictions of range in the b̂i estimates in the parametric than in the non-parametric
case.

To summarize, by using the DP as a non-parametric prior for parameters in a nonlinear DFA
model, we found that the distributions of the two autoregressive parameters, b11,i and b22,i,
did deviate substantially from normality. Using other parametric (e.g., normal) distributions
to approximate these skewed distributions did not reveal the full range of individual
differences in these parameters and led to misleading conclusions concerning some of the
more complex, and often nonlinear, interrelationships among the b̂i estimates.

7. Simulation study
To better understand the performance of the proposed procedures under known population
conditions, we generated data using the nonlinear DFA model with different distributions for
bi but with approximately the same complete sample size and number of time points as our
empirical example, with n = 170 and T = 50. The true parameters in our simulations were
chosen to mirror (though not completely identical to) the estimates obtained from our
empirical example. A total of 100 Monte Carlo replications was conducted for each of the
simulation conditions described below.

Parameters in the measurement model (see equations (9)–(11)) were identical in all our
simulation models and they were set to the values of

(14)

For identification purposes, each factor’s loading on the first indicator was set to the true
value of 1.0 in model fitting. In all conditions, the true process noise covariance matrix was
set to

We tested the effectiveness of using the DP prior to approximate three sets of distributional
conditions.

Condition 1. Here, we defined the distributions of bi as
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(15)

where b11,i, b22,i, b12,i, and b21,i are as defined in equation (7). This condition was designed
to generate positively skewed distributions for the baseline autoregressive parameters, b11,i
and b22,i.

Condition 2. Here, we specified some of the distributions to be bimodal:

(16)

Condition 3. Here, we specified the distributions of bi to be

(17)

This condition was used to illustrate that even when the normality assumption holds, the DP
prior is still general enough to capture characteristics of the multivariate normal distribution
as a special case.

The same starting values were used in all conditions. All freed elements in Λ were set to 0.5.
Initial Ψε was set to I8 and μ was set to (0.5, 0.5, …, 0.5). Initial values for τk were set to
(−3.0, −1.5, −0.5, 0.5, 1.0, 2.0) for k = 1, …, 4 and (−1.0, 0.0, 0.5, 0.8, 1.3, 2.0) for k = 5,
…, 8. Starting values for the process noise covariance matrix were set to

In addition, all values in the latent variable vector, ηit, were set to 0 for all persons and time
points, and initial values of bi were sampled randomly from Nr(μZ0, Ir).

The same prior distributions and hyperparameters used in the empirical application were
adopted in the simulation study with some minor adaptations. Specifically, based on
characteristics of the distributions of bi in each simulation condition (see equations (15)–
(17)) and the acceptance rates for the MH step for drawing posterior samples from p(Z|L, μZ,
ΨZ, τ, Y*, θ, H, Yobs), we specified ΨμZ to be 1.0 and 15.0 and c2 to be 14.0 and 0.4,
respectively, for the first two and last two elements of bi in the first condition. In the second
condition, we changed c2 to 4.0 and 0.4, respectively, for the first two and last two elements
of bi while keeping other hyperparameters to be the same as those in condition 1. Finally, in
condition 3, we changed c2 to 1.0 and 0.3 and ΨμZ to 1.0 and 20.0, respectively, for the first
two and last two elements of bi. In the first two conditions, the tails of the distributions of
the bi parameters extended relatively far away from the modes of the distributions compared
with condition 3. Thus, the hyperparameters were modified accordingly to yield better
approximation in the tail areas. In the empirical application, these hyperparameters were
drawn randomly from ranges that were broad enough to encompass all the hyperparameter
values noted here.
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We organized our simulation results into three sections to summarize results pertaining to
factor score (i.e., state) estimation; estimation of all time- and person-invariant parameters;
and estimation of all person-specific parameters. A total of 20,000 burn-in iterations was
used in each Monte Carlo replication. We used a relatively high number of burn-in iterations
due to the greater difficulties involved in recovering the person-specific distributions for
b12,i and b21,i, whose impact on the system’s dynamics was only evident at high values of
the latent variables. It is thus harder to recover the shapes of these parameters’ distributions
given the moderate sample sizes of n = 170 and T = 50.

7.1. Factor score or state estimation
For illustration purposes, the estimated and true values of factor 1 from one randomly
selected case during one particular Monte Carlo run are plotted in Figure 5. The estimates
plotted in Figure 5 were the means of the posterior samples drawn from the posterior density
of the selected individual, p(Hi|τ, Y*, θ, Yobs), for each time point after the burn-in iterations.

It can be seen that the proposed algorithm was able to recover the true factor scores
accurately across all the conditions. Although factor score estimation is not an issue of
primary interest in our simulation or empirical examples, it is an important component in
studies where the primary interest is to obtain longitudinal factor score estimates or
estimates of time-varying parameters that are represented as latent variables (see Young,
Pedregal, & Tych, 1999).

7.2. Time- and person-invariant parameters
All time- and person-invariant parameter estimates are summarized in Tables 3–5 for
conditions 1, 2, and 3, respectively. Included in the tables are the biases (for parameter l,

 where θl is the true value for parameter l and θ̄l,r is the average of the
Gibbs samples of parameter l during the rth Monte Carlo run after burn-in), root mean

squared errors (RMSE, given by , empirical standard deviations of
each parameter across the 100 Monte Carlo runs (denoted by SD), standard deviations of the
Gibbs samples of each parameter averaged across Monte Carlo runs (denoted by Est SD)
and the 90% coverage rates (percentage of Monte Carlo runs for which the 90% credible
intervals for parameter l contained the corresponding true value, θl).

All the parameters were recovered accurately across all three conditions (see biases and
RMSEs in Tables 3–5). The average standard deviations (Est SD) of the Gibbs samples were
also close to the empirical standard deviations of the parameters. The coverage rates
computed using the 5th and 95th percentiles of the Gibbs samples were on average close to
but slightly below the 90% nominal rate. Average coverage rates were 85.82, 88.26, and
86.86, respectively, for the three conditions.

Condition 1, which was characterized by positively skewed autoregressive parameter
distributions, showed comparable biases and RMSEs to other conditions. Slightly greater
discrepancies arose in the tail percentiles, thus yielding slightly lower coverage rates for this
condition than for the other two conditions. As will be discussed in Section 7.3, this is
directly attributable to the biases in estimating the tail areas of the person-specific parameter
distributions in condition 1. Such biases in the person-specific parameters also affected the
coverage rates of other person-invariant parameters.

The relatively low average coverage rates in the normal condition were contributed largely
by the low coverage rates of the parameters in μ. The coverage rates for the parameters in μ
were notably lower in condition 3 than in conditions 1 and 2. This may be related to the fact
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that a small number of the bi parameters actually lay near the boundary of or within the non-
stationary region. By ‘non-stationary region’, we mean ranges of parameters that would
propel a system to show trends or, specifically, continual deviations from its baseline levels,
as defined by μ (as in Figure 5c, for example). As a result, the system also shows increasing
variance over time. Larger biases are typically observed in such cases irrespective of other
features of the simulations. Even though we used normal distributions of relatively restricted
ranges for this condition to confine most cases to the stationary region, some of the
parameters in bi still crossed or lay near the boundary of the non-stationary region. These
cases led to more extreme μ estimates that affected the coverage rates for μ in condition 3
directly.

7.3. Estimation of person-specific parameters, bi
Our main focus of interest was to compare the distribution of true bi (for i = 1, …, n) to the
distribution of b̂i obtained from Gibbs sampling. The means and standard deviations of b̂i
(derived using equation (13)) computed across persons are summarized in Table 6. Further
details are summarized in Figure 6. Included in the figure are plots of b̂11,i and b̂12,i during
one particular Monte Carlo run in comparison to the densities of the true person-specific
parameters generated using equations (15)–(17) (see panels (a) and (b), respectively), and
quantile–quantile plots of the true b11,i and b12,i values against the b̂11,i and b̂12,i estimates
pooled across all Monte Carlo runs.

Generally, the means and standard deviations of the true bi distributions were recovered very
accurately across all conditions (see Table 6). Several additional observations can be noted
based on Figure 6. First, the conditional distributions derived from using the DP prior were
flexible enough to recover the general shapes of the different distributions of bi used in all
three conditions. Second, the shapes of the distributions were more accurately recovered in
condition 3 than in the other two conditions because the associated true densities (i.e.,
multivariate normal) were of the same form as the base distribution.

Third, in condition 1, discrepancies in the estimation of b11,i arose primarily in the lower tail
region. That is, the lower tail extended too far into the negative region, but the densities in
the immediately adjacent regions did not rise rapidly enough to capture some of the more
subtle changes in the lower quantiles of the positively skewed true distribution. Fourth, in
condition 2, the approximation density generally resembled the bimodal density of the true
distribution of b11,i, but slight discrepancies were observed near the tail areas of the two
modes. In particular, the upper tails of the two modes were assigned too much weight
whereas the lower tails were too sparsely represented.

Finally, greater biases were observed in the estimates of b̂12,i and b̂21,i than those of b̂11,i and
b̂22,i across all conditions (see Table 6 and Figures 6d, 6h, and 6l). This is not surprising,
since the nonlinear model posited that the impacts due to b12,i and b12,i would only be fully
manifested at extremely high values of the latent variables. Such instances were relatively
rare in the simulated data, with only 50 time points and n = 170. Thus, even though the
distributions constituted by b̂12,i andb̂21,i generally provided reasonable approximations to
the shapes of the distributions of b12,i and b21,i, the means of the distributions were slightly
offset (i.e., biased).

In sum, the proposed estimation procedures were able to recover all the components in the
nonlinear DFA model accurately under diverse distributional assumptions for the parameters
in bi. The sample size considered in the present simulation (with n = 170 and T = 50) yielded
reasonable estimates, although larger sample sizes might be needed to improve the accuracy
of the b̂12,i and b̂21,i estimates. In addition, although one particular nonlinear DFA model
was considered in all the analyses, the proposed procedures are general enough to be used
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with any dynamic model with differentiable linear and nonlinear functions and normally
distributed process noises (i.e., in the form of equation (8)). To illustrate the performance of
the proposed estimation procedures within a linear modelling framework, we conducted a
supplementary simulation study using a variation of the linear DFA model in equation (6).
In particular, we allowed the parameters b11, b12, b21, and b22 in equation (6) to vary over
persons and used the DP to approximate their corresponding distributions (generated in the
same way as in conditions 1, 2, and 3 in the present simulation). Results based on the linear
model are comparable to those obtained from the nonlinear model. Further details are not
reported here due to space constraints, but they are available as supplementary materials on
the first author’s website at http://www.unc.edu/~symiin/Sy-Miin%27s%20website/pub.htm

8. Discussion
In the present paper, we used the DP as a non-parametric prior distribution for selected
parameters in a nonlinear DFA model. Using the DP as a prior is equivalent to specifying
the prior distribution as a mixture distribution composed of an unknown number of discrete
point masses. This approach thus provides the flexibility of a non-parametric mixture
approach without the need to define the precise number of (or the range of possible numbers
of) mixture components required to approximate an unknown distribution. In addition, we
also incorporated several MH procedures within a Gibbs-sampling framework to handle
some of the non-standard conditional distributions implicated in the proposed nonlinear
DFA model.

A series of empirical and simulation examples was used to illustrate the flexibility of the
proposed approach in approximating distributions of various shapes (e.g., normal, bimodal,
and skewed). Our empirical example revealed that the baseline autoregressive parameters in
our proposed DFA model did in fact show substantial deviations from normality. Using a
multivariate normal prior did not reveal the full ranges of the associated parameters and their
complex interrelationships. Researchers may thus risk bypassing the true nature of the
emotional processes being modelled if parametric assumptions are imposed without any
evaluation of their tenability.

Our empirical example provided several new insights into Zautra and colleagues’ dynamic
affect model. Using one particular non-linear model, we validated that the linkage between
PE and NE did indeed intensify on the more emotional days. A unidirectional relation was
found in the direction from PE to NE for most individuals when their PE was at high
extreme values. The lack of coupling in the direction from NE to PE might be attributable to
the participants’ generally low NE levels. Thus, very few participants actually manifested a
similar change in the direction from NE to PE. By allowing the dynamic parameters in the
model to assume non-parametric forms, we were able to evaluate such individual differences
more thoroughly.

Some comments can be noted concerning the selection of hyperparameters for the base
weight, α. In all our examples, we used hyperparameter choices (i.e., α1 and α2 in equation
(12)) that yielded relatively high values of α to capture clusters or ‘sticks’ that were
relatively far away from the means or modes of the distributions. Higher values of α are
typically needed to approximate distributions that are of high dimensions. Generally, given
the moderate sample size in the present study, recovering higher-order moments of the
distributions of interest can be difficult. We were able to recover the first and second
moments reasonably accurately, however.

The present paper is one of the first applications of semiparametric nonlinear dynamic
LVMs to studying change in psychology using the DP prior. Many other extensions are, of
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course, possible. For instance, we did not pursue the issue of model comparison in the
present paper. When different prior densities are assumed across two models, some of the
common model fit indices within the Bayesian framework cannot be utilized directly
without some modifications. In particular, computing the Bayes factor via path sampling
(Gelman & Meng, 1998) is not a straightforward matter in this case because of the
complexity involved in linking the discrepant prior densities from the different models.
Other test statistics, such as those developed by Zhu and Zhang (2004) for assessing finite
mixture regression models, can potentially be extended to a dynamic LVM framework to
provide a more formal assessment of the need to use infinite-order mixture distributions.
Another relatively recent model assessment index, termed the L measure (Chen, Dey, &
Ibrahim, 2004; Ibrahim, Chen, & Sinha, 2001), has also been advocated as an alternative
goodness-of-fit index that works well in situations where proper prior distributions cannot
be explicitly derived.

With regard to state (or latent variable score) estimation, we only used first-order
linearization to derive the proposal distribution in the MH step. The potential utility of using
higher-order linearization schemes or other proposal functions (e.g., Geweke & Tanizaki,
2001) in the state density sampling step could be evaluated in future studies. Hybrid
algorithms that combine more computationally efficient particle filtering techniques with
MCMC algorithms (Doucet, de Freitas, & Gordon, 2001) could also be developed to aid
computation speed. In addition, specification of the person-specific parameters could be
reformulated within a mixed effects framework to include both fixed and random effects
components. Further investigation of the tenability of assuming a missing at random
mechanism for the present data set is also warranted.

Using the DP as a non-parametric prior is not without its limitations. The biggest limitation
resides perhaps in the discrete nature of the DP, which dictates that different individuals who
are assigned to the same ‘cluster’ (where the number of clusters is less than n) would have
exactly the same parameter values. One way to circumvent this issue is to use the mixture
DP (Caron, Davy, Doucet, Duflos, & Vanheeghe, 2008; Escobar & West, 1995) as an
alternative choice. In this case, the prior distribution essentially consists of a mixture of
different DP priors. In doing so, different individuals may be assigned similar but not
identical values on the parameters or constructs of interest. A second limitation is that the
accuracy of the DP approximation is still constrained by the choice of the base distribution.
In cases where the true distribution of interest deviates too much from the base distribution,
the accuracy of the approximation would also deteriorate accordingly.

The nonlinear DFA model proposed in the present paper is but one example of the many
dynamic models that can be used to described change processes. A wide array of modelling
examples along these lines can be found in the literature on dynamic linear models (West &
Harrison, 1997), dynamic generalized linear models (Fahrmeir & Tutz, 1994), regime-
switching state-space models (Kim & Nelson, 1999), differential equation models (Molenaar
& Newell, 2003; Singer, 2007), and other nonlinear and non-Gaussian dynamic models
(Chow, Ferrer, & Hsieh, 2009; Durbin & Koopman, 2001). Whereas formulating dynamic
models within a Bayesian framework opens up countless new possibilities for evaluating
more complex models, many of the issues inherent to the Bayesian framework also have to
be handled with caution. Sensitivity of the modelling results to prior choices and
misspecification of other parametric/nonparametric assumptions remains an important issue
that deserves more attention from researchers. Parallel to the increase in model complexity
are, of course, new challenges for deriving appropriate model fit indices and convergence
diagnostics.
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To conclude, the DP prior can be used as a flexible non-parametric prior for distributions
whose functional forms are unknown. In time series modelling, it is not unusual to encounter
parameter distributions that show complex restrictions in range. Very often, the associated
distributions are not only non-normal, but also asymmetric. Taking a non-parametric or
semiparametric approach allows the assumption of normality to be treated as a testable
hypothesis, as opposed to a ‘gold standard’ by which modellers have to abide. We hope to
have illustrated the need to relax some of these parametric assumptions in fitting dynamic
LVMs.
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Appendix

Conditional distributions used in the Gibbs sampling procedures
To estimate the proposed nonlinear LVM, the Gibbs sampler is implemented in which a
sequence of sampling steps [steps (a)–(i)] is carried out iteratively. The conditional
distributions from which Gibbs samples are obtained are summarized below.

Steps (a)–(e): Conditional distributions related to the non-parametric components
The main idea behind efficient sampling of the non-parametric components is to recast the
definition of bi in terms of the latent variable Li, i = 1, …, n, which records the cluster
membership of bi such that bi = ZLi. The base distribution in the present context was defined
to be an r-variate normal distribution with mean vector μZ and covariance matrix ΨZ.
Conjugate prior distributions were specified for μZ, ΨZ, and α as in equation (12). To
explore the posterior in relation to the non-parametric components, we sample (π, Z, L, μZ,
ψZ, α) by means of the blocked Gibbs sampler to encourage mixing of the Markov chain.
That is, Gibbs sampling of the non-parametric components was regrouped into five
subsidiary steps (or blocks), involving sampling from the conditional distributions p(π, Z|L,
μZ, ψZ, α, τ, Y*, θ, H, Yobs), p(L|π, Z, τ, Y*, θ, H, Yobs), p(μZ|Z, ψZ), p(ψZ|Z, μZ), and p(α|π).
These five conditional distributions are summarized below.

Block 1. Posterior samples of [μZ|Z, ΨZ] can be obtained by sampling from

(A1)

where .

Block 2. For j = 1, …, r, each of the diagonal elements of ΨZ given Z and μZ is distributed as

(A2)

where Zgj is the jth element of the values in Z associated with point mass (or cluster) g and
μZj is the jth element of μZ.

Block 3. Following the derivations detailed elsewhere (Ishwaran & James, 2001; Ishwaran
& Zarepour, 2000; Lee et al., 2007), the conditional distribution (α|π) can be shown to be

Chow et al. Page 22

Br J Math Stat Psychol. Author manuscript; available in PMC 2011 October 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A3)

where  is a random weight sampled from the beta distribution and it is sampled within
Block 4.

Block 4. As π and α are independent given (Z, τ, Y*, θ, H, Yobs), the distribution (π, Z|L, μZ,
ψZ, α, τ, Y*, θ, H, Yobs) is proportional to p(π|L, α)p(Z|L, μZ, ψZ, τ, Y*, θ, H, Yobs). Thus, the
conditional distribution can be decomposed into two independent components to be derived
separately.

Conditional distribution p(π|L, α)—It can be shown that the conditional distribution (π|
L, α) conforms to a generalized Dirichlet distribution,

(A4)

where , for g = 1, …, G − 1, and dg is the number of Lis (and thus
individuals) whose value equals g. Sampling from the conditional distribution (π|L, α) can be
accomplished as follows. First,  is first drawn from a Beta  distribution.
Subsequently, πg is obtained for g = 1, …, G as

(A5)

Conditional distribution p(Z|L, μZ, ψZ, τ, Y*, θ, H, Yobs)—Let  be the d

unique Li values (i.e., unique number of ‘clusters’), , and let Z[L] be
components in Z = (Z1, …, ZG) other than ZL. Then

where p(Z[L]| μZ, ψZ) is simply the r-variate normal distribution, Nr(μZ, ψZ) and

It can be shown that the conditional distribution  is non-
standard and cannot be derived directly via Gibbs sampling. Specifically,
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in which  is given by

(A6)

From equation (A6), it can be noted that multiplication involving the density p(ηit|ηi,t−1, bi,
θη) results in a conditional density that is non-normal and non-standard due to the

nonlinearity of ft(.) and the fact that  is random, as opposed to fixed within this sampling

step. Instead, we adopt an MH step as follows. At the qth iteration with a current value ,

a new candidate  is generated from the normal distribution , where

. The latter is derived by

means of the implicit function theorem, namely, . The new

 is accepted with probability

(A7)

The variance  can be chosen such that the average acceptance rate is approximately 0.25
or more.

Block 5. The conditional distribution (Li|π, Z, τ, Y*, θ, H, Yobs) is given by

(A8)

where  is proportional to  and πg(g = 1, …, G) are available from
step (i.e., block) 4 summarized in equation (A5). Note that because  is fixed
conditional on ηi, this component can thus be omitted from the computation.

Step (f): Conditional distribution for latent variable estimates, p(H|τ, Y*, θ, Yobs)
The conditional distribution from which posterior samples of the latent variable estimates
are obtained can be derived as
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where Hit = (ηi1, …, ηit) and . According to the Gibbs sampler, random
draws of ηi from  are based on those of ηit from  for
each time point. That is, for t = 1, …, T:

Note that we could obtain a standard conditional distribution for t = T but not for t < T.
Specifically, at t = T, the conditional distribution  is given by

, where .
However, when t < T, multiplication involving the density p(ηi,t+1|ηit, bi, θη) would result in
a conditional density that is non-normal and non-standard. This is due directly to the
nonlinearity of ft(.) and the fact that ηit is random, as opposed to fixed, at each t. We adopted
the following MH algorithm to sample observations from the posterior density

. At the qth iteration with a current value , a new candidate ηit

is generated from the normal distribution , where

, and it is accepted with probability

The variance  can be chosen such that the average acceptance rate is approximately 0.25
or more.

Step (g): Conditional distributions for parameters in θ
Assuming that the parameters in b are independent of those contained in θ, and that
parameters in θη are conditionally independent of those in θε, the conditional distribution
p(θ|τ, Y*, H, Yobs, b) = p(θη|H, b)p(θε|τ, Y*, H, Yobs, b) is derived by computing the latter two
densities separately for all the person-invariant parameters in the dynamic and measurement
models.

Parameters in the dynamic model—At the dynamic level, the only parametric
posterior distribution associated with p(θη|H, b) is that of . We used a w-
dimensional inverse Wishart distribution as the conjugate prior for the process noise

covariance matrix, Ψζ, i.e.,  thus yielding

where .

Parameters in the measurement model—Following the work of many others (e.g.,
Lindley & Smith, 1972; Shi & Lee, 1998; Lee & Zhu, 2000), we specified conjugate priors

for the distributions of p(μ),  and p(Λk|Ψεk) as in equation (12) for k = 1, …, p.
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To cope with the case of fixed known elements in Λ, let C = (ckj) be the index matrix such

that ckj = 0 if λkj is known and ckj = 1 if λkj is unknown, and , where rεk denotes
the number of freed factor loadings in the kth row of Λ. Further, let Hk (rεkT × n) be a
submatrix of H such that its jth row, for which ckj = 0, has been deleted, and an n × 1 vector

 such that  has elements

(A9)

where  and μk denote the kth element of  and μ, respectively. Then it can be shown that

where

Step (h): Conditional distribution 

Since the  are mutually independent for i = 1, …, n and t = 1, …, T, the yit,mis are also
independent of each other for i = 1, …, n and t = 1, …, T. In addition, Ψε is assumed to be a
diagonal matrix. Thus, yit,mis is also independent of yit,obs. Because Y* are missing at

random, we have , where μit,mis is a subvector
of μ with components corresponding to the missing components in yit,mis, Λit,mis is a
submatrix of Λ with rows corresponding to the missing components in yit,mis, and Ψεit,mis is
a submatrix of Ψε with rows and columns corresponding to the missing components in .

Step (i): Conditional distribution 

To sample τ and , we first note that

where

(A10)

(A11)
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To generate observations from the non-standard and complex joint conditional density of τk

and , the following MH step is embedded within the Gibbs sampler. Specifically, a
vector of thresholds (τk,2, …, τk,M −2) is first generated from the truncated normal
distribution

(A12)

where  denotes the value of τk,s at the qth iteration of the Gibbs sampler and  is a
preassigned constant. As mentioned earlier, the values of the first (s = 1) and last (s = M − 1)
thresholds are fixed for identification purposes. Each new draw of τk,s is then retained with
acceptance probability min(1, Rk), where

(A13)

Once the threshold values have been determined, they are then used to generate new draws
of  using equation (A11).
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Figure 1.
Plots of realizations from the DP with different values of α and a N(0,1) base distribution.
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Figure 2.
(a) PE and (b) NE ratings of the participants over 52 days. To avoid cluttering the figure, we
have only plotted the trajectories of 50 randomly sampled individuals.
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Figure 3.
Matrix scatterplots of the b̂i estimates using the DP prior, as averaged across three Markov
chains. A loess line is imposed on each of the scatterplots. The diagonal plots are histograms
of these estimates. For b11,i, M = 0.83, SD = 0.20, 90% CI [0.44, 1.05]; for b22,i, M = 0.64,
SD = 0.21, 90% CI [0.26, 0.91]; for b12,i, M = −0.03, SD = 0.14, 90% CI [−0.28, 0.20]; and
for b21,i, M = 0.26, SD = 0.12, 90% CI [0.06, 0.46].
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Figure 4.
Matrix scatterplots of the person-specific parameter estimates with a multivariate normal
prior, as averaged across three Markov chains. A loess line is imposed on each of the
scatterplots. The diagonal plots are histograms of these estimates. For b11,i, M = 0.86, SD =
0.10, 90% CI [0.69, 1.00]; for b22,i, M = 0.63, SD = 0.14, 90% CI [0.36, 0.82]; for b12,i, M =
−0.07, SD = 0.08, 90% CI [−0.19, 0.06]; and for b21,i, M = 0.26, SD = 0.13, 90% CI [0.03,
0.47].
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Figure 5.
True factor scores, estimated factor scores and intervals constructed from twice the standard
deviation of the posterior samples of the first latent variable from for one randomly selected
hypothetical subject in (a) condition 1, (b) condition 2, and (c) condition 3.
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Figure 6.
(a), (e), (i) True density of b11,i, the approximation density constituted by b̂i for conditions 1,
2, and 3, respectively. (b), (f), (j) The corresponding plots associated with b12,i. (c), (g), (k)
Quantile–quantile plots comparing the true and estimated b11,i pooled across all Monte
Carlo runs; the straight line provides the reference for y = x. (d), (h), (l) Quantile–quantile
plot comparing the true and estimated b12,i; the straight line provides the reference for y = x.
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Table 1

Bayesian estimates of time- and person-invariant parameters from fitting the nonlinear DFA model to
empirical data using the DP prior

Parameters Mean SD 5th percentile 95th percentile

[λ21, λ31, λ41] [1.08, 1.03, 0.86] [0.02, 0.02, 0.02] [1.05, 1.00, 0.84] [1.11, 1.06, 0.89]

[λ62, λ72, λ82] [1.03, 0.77, 0.69] [0.04, 0.03, 0.02] [0.97, 0.72, 0.65] [1.09, 0.83, 0.73]

ψε1 0.41 0.01 0.39 0.43

ψε2 0.35 0.01 0.34 0.37

ψε3 0.40 0.01 0.38 0.41

ψε4 0.55 0.01 0.53 0.57

ψε5 0.43 0.02 0.39 0.47

ψε6 0.29 0.01 0.26 0.31

ψε7 0.54 0.03 0.48 0.60

ψε8 0.63 0.02 0.60 0.66

μ1 0.05 0.03 0.01 0.09

μ2 0.03 0.03 −0.02 0.08

μ3 0.03 0.03 −0.01 0.08

μ4 0.01 0.03 −0.03 0.05

μ5 0.12 0.03 0.08 0.17

μ6 0.13 0.03 0.09 0.19

μ7 0.10 0.02 0.06 0.14

μ8 0.10 0.02 0.05 0.13

[τ12, τ13, τ14, τ15] [−0.21, 0.39, 0.80, 1.39] [0.01, 0.02, 0.02, 0.02] [−0.23, 0.36, 0.77, 1.35] [−0.19, 0.42, 0.83, 1.42]

[τ22, τ23, τ24, τ25] [−1.16, −0.47, 0.12, 0.75] [0.02, 0.02, 0.02, 0.02] [−1.19, −0.49, 0.09, 0.72] [−1.13, −0.44, 0.15, 0.78]

[τ32, τ33, τ34, τ35] [−0.88, −0.31, 0.21, 0.88] [0.01, 0.01, 0.02, 0.02] [−0.90, −0.34, 0.18, 0.85] [−0.86, −0.29, 0.23, 0.91]

[τ42, τ43, τ44, τ45] [−0.60, 0.20, 0.66, 1.22] [0.01, 0.02, 0.02, 0.02] [−0.62, 0.17, 0.62, 1.18] [−0.58, 0.22, 0.69, 1.25]

[τ52, τ53, τ54, τ55] [0.91, 1.73, 2.24, 2.71] [0.03, 0.05, 0.06, 0.06] [0.86, 1.65, 2.15, 2.61] [0.95, 1.81, 2.33, 2.80]

[τ62, τ63, τ64, τ65] [0.68, 1.48, 1.95, 2.45] [0.02, 0.04, 0.05, 0.05] [0.64, 1.42, 1.87, 2.35] [0.72, 1.55, 2.04, 2.54]

[τ72, τ73, τ74, τ75] [0.80, 1.65, 2.14, 2.66] [0.03, 0.06, 0.07, 0.08] [0.74, 1.55, 2.01, 2.52] [0.85, 1.74, 2.25, 2.79]

[τ82, τ83, τ84, τ85] [0.20, 0.98, 1.48, 1.95] [0.02, 0.02, 0.03, 0.03] [0.18, 0.94, 1.43, 1.90] [0.23, 1.02, 1.53, 2.00]

ϕ11 0.11 0.00 0.10 0.11

ϕ12 −0.10 0.01 −0.11 −0.09

ϕ22 0.23 0.01 0.21 0.25

Note. The values of the lowest thresholds of the ordinal items, τ11, τ21, τ31, τ41, τ51, τ61, τ71, τ81, were set to −0.71, −1.88, −1.44, −1.34,
−0.33, −0.26, −0.13, and −0.67, respectively. The values of the highest thresholds of the ordinal items, τ16, τ26, τ36, τ46, τ56, τ66, τ76, τ86,
were set to 2.16, 1.71, 1.72, 1.91, 3.09, 2.95, 3.12, and 2.44, respectively.
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Table 2

Bayesian estimates of time- and person-invariant parameters from fitting the nonlinear DFA model to
empirical data using the multivariate normal prior

Parameters Mean SD 5th percentile 95th percentile

[λ21, λ31, λ41] [1.08, 1.02, 0.86] [0.02, 0.02, 0.02] [1.05, 1.00, 0.83] [1.11, 1.06, 0.89]

[λ62, λ72, λ82] [1.03, 0.77, 0.69] [0.03, 0.03, 0.02] [0.99, 0.73, 0.66] [1.08, 0.81, 0.72]

ψε1 0.41 0.01 0.39 0.43

ψε2 0.35 0.01 0.33 0.36

ψε3 0.40 0.01 0.38 0.42

ψε4 0.55 0.01 0.53 0.57

ψε5 0.43 0.02 0.40 0.46

ψε6 0.29 0.01 0.27 0.31

ψε7 0.54 0.03 0.49 0.59

ψε8 0.63 0.02 0.60 0.66

μ1 0.04 0.02 0.01 0.07

μ2 0.01 0.02 −0.03 0.05

μ3 0.02 0.02 −0.01 0.05

μ4 0.00 0.02 −0.03 0.04

μ5 0.00 0.02 −0.03 0.03

μ6 0.01 0.02 −0.02 0.04

μ7 0.00 0.02 −0.03 0.03

μ8 0.00 0.02 −0.02 0.03

[τ12, τ13, τ14, τ15] [−0.21, 0.39, 0.80, 1.39] [0.01, 0.02, 0.02, 0.02] [−0.23, 0.36, 0.77, 1.35] [−0.19, 0.41, 0.83, 1.42]

[τ22, τ23, τ24, τ25] [−1.16, −0.47, 0.12, 0.75] [0.02, 0.02, 0.02, 0.02] [−1.19, −0.50, 0.09, 0.72] [−1.13, −0.44, 0.15, 0.78]

[τ32, τ33, τ34, τ35] [−0.88, −0.31, 0.21, 0.88] [0.01, 0.02, 0.02, 0.02] [−0.90, −0.34, 0.18, 0.85] [−0.86, −0.29, 0.23, 0.91]

[τ42, τ43, τ44, τ45] [−0.60, 0.19, 0.65, 1.21] [0.01, 0.02, 0.02, 0.02] [−0.63, 0.17, 0.62, 1.18] [−0.58, 0.22, 0.69, 1.25]

[τ52, τ53, τ54, τ55] [0.91, 1.74, 2.24, 2.72] [0.02, 0.04, 0.04, 0.05] [0.88, 1.68, 2.17, 2.63] [0.95, 1.80, 2.32, 2.79]

[τ62, τ63, τ64, τ65] [0.69, 1.50, 1.98, 2.48] [0.02, 0.03, 0.04, 0.05] [0.65, 1.45, 1.91, 2.39] [0.72, 1.56, 2.05, 2.55]

[τ72, τ73, τ74, τ75] [0.79, 1.64, 2.13, 2.66] [0.03, 0.05, 0.06, 0.06] [0.75, 1.57, 2.04, 2.56] [0.84, 1.73, 2.23, 2.77]

[τ82, τ83, τ84, τ85] [0.20, 0.98, 1.48, 1.95] [0.02, 0.02, 0.03, 0.03] [0.18, 0.94, 1.43, 1.90] [0.23, 1.02, 1.53, 2.00]

ϕ11 0.11 0.00 0.10 0.12

ϕ12 −0.10 0.00 −0.11 −0.09

ϕ22 0.23 0.01 0.22 0.25

Note. The values of the lowest thresholds of the ordinal items, τ11, τ21, τ31, τ41, τ51, τ61, τ71, τ81, were set to −0.71, −1.88, −1.44, −1.34,
−0.33, −0.26, −0.13, and −0.67, respectively. The values of the highest thresholds of the ordinal items, τ16, τ26, τ36, τ46, τ56, τ66, τ76, τ86,
were set to 2.16, 1.71, 1.72, 1.91, 3.09, 2.95, 3.12, and 2.44, respectively.
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