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Cancer stem cells or cancer initiating cells are believed to

contribute to cancer recurrence after therapy. MicroRNAs

(miRNAs) are short RNA molecules with fundamental

roles in gene regulation. The role of miRNAs in cancer

stem cells is only poorly understood. Here, we report

miRNA expression profiles of glioblastoma stem cell-

containing CD133þ cell populations. We find that miR-9,

miR-9* (referred to as miR-9/9*), miR-17 and miR-106b

are highly abundant in CD133þ cells. Furthermore, inhi-

bition of miR-9/9* or miR-17 leads to reduced neurosphere

formation and stimulates cell differentiation. Calmodulin-

binding transcription activator 1 (CAMTA1) is a putative

transcription factor, which induces the expression of

the anti-proliferative cardiac hormone natriuretic peptide

A (NPPA). We identify CAMTA1 as an miR-9/9* and miR-

17 target. CAMTA1 expression leads to reduced neuro-

sphere formation and tumour growth in nude mice,

suggesting that CAMTA1 can function as tumour suppres-

sor. Consistently, CAMTA1 and NPPA expression correlate

with patient survival. Our findings could provide a basis

for novel strategies of glioblastoma therapy.
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Introduction

MicroRNAs (miRNAs) are fundamental regulators of gene

expression that direct processes as diverse as cell metabo-

lism, lineage specification or cell differentiation (Bushati and

Cohen, 2007; Bartel, 2009). MiRNAs are small RNA mole-

cules with a size of about 18–25 nucleotides (nt). MiRNA

genes are transcribed to primary miRNA transcripts, which

are processed to miRNA precursors (pre-miRNAs) by the

microprocessor complex in the nucleus. Pre-miRNAs fold

into characteristic hairpin structures and are transported

into the cytoplasm, where Dicer processes pre-miRNAs

and generates a short double-stranded RNA. In further

steps, one strand directly interacts with a member of the

Argonaute (Ago) protein family (Peters and Meister, 2007;

Hutvagner and Simard, 2008) and is incorporated into a

miRNA–protein complex referred to as miRNP (Carthew

and Sontheimer, 2009; Kim et al, 2009; Krol et al, 2010).

The other strand, referred to as miRNA* (miRNA star), is

degraded. In rare cases, however, both strands can give rise to

functional miRNAs. One example for such a bifunctional

miRNA is the miR-9/9* pair (Packer et al, 2008). MiRNAs

guide miRNPs to partially complementary target sites on

mRNAs and the miRNP–mRNA interaction leads to inhibition

of translation or mRNA degradation (Huntzinger and

Izaurralde, 2011).

MiRNAs are fundamental regulators of basic cellular

processes and are frequently deregulated in tumours (Calin

and Croce, 2006; Esquela-Kerscher and Slack, 2006; Croce,

2009; Garzon et al, 2009). Numerous miRNA-profiling studies

revealed that miRNA expression is altered in almost all types

of cancer. Depending on the target mRNAs they regulate,

miRNAs can be classified as tumour suppressors or onco-

genes. The miRNAs miR-15 and miR-16 (chronic lymphocytic

leukaemia), the let-7 family (lung and breast cancer) as well

as miR-34 (pancreatic, colon and breast cancer) are well-

characterized tumour suppressors (Calin et al, 2002; Johnson

et al, 2005; He et al, 2007; Tarasov et al, 2007). On the other

hand, miRNAs such as miR-155 (lymphomas), the miR-17-92

(lymphomas) cluster or miR-21 (variety of different

cancers including glioblastomas) have been characterized

as oncogenes (Chan et al, 2005; He et al, 2005; Costinean

et al, 2006).

Cell populations with stem cell-like properties including

self-renewal and differentiation have been identified in a

variety of tumours (Lobo et al, 2007). These cancer stem

cells (also referred to as tumour initiating cells) can initiate

tumour growth, whereas other tumour cells fail to form new

tumours when injected into nude mice. Cancer stem cells can

be enriched in cell fractions that express specific surface

proteins, such as CD44 in breast cancer or CD133 in colo-

rectal cancer and a subgroup of primary astrocytic glioblas-

toma (Gilbertson and Rich, 2007; Lobo et al, 2007; Visvader

and Lindeman, 2008; Tabatabai and Weller, 2011). According

to the cancer stem cell hypothesis, cancer stem cells are
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believed to be the cause of relapse after therapy and con-

tribute to treatment resistance (Reya et al, 2001). MiRNA

expression profiling has been performed in several different

tumour stem cell populations. In breast cancer cells, for

example, it has been shown that let-7 regulates self-renewal

and tumourigenicity of cancer initiating cells (Yu et al, 2007).

Moreover, miR-34a is required for prostate cancer stem cell

function and inhibition of miR-34a leads to reduced tumour

growth (Liu et al, 2011). A detailed characterization of miRNA

expression in glioblastoma stem cells has not yet been

performed.

Here, we report the miRNA expression profile of CD133þ

glioblastoma cell populations. We find that miR-9, miR-9*,

miR-106b and miR-17 are highly abundant in glioblastoma

stem cells. We further find that inhibition of miR-9/9*

promotes neuronal differentiation, suggesting that miR-9/9*

inhibit differentiation of glioblastoma stem cells and maintain

their stemness. We identify the calmodulin-binding transcrip-

tion activator 1 (CAMTA1) as miR-9/9* target. CAMTA1

overexpression substantially reduces colony formation, de-

monstrating that CAMTA1 is a novel tumour suppressor in

glioblastoma. Consistently, we find that CAMTA1 expression

correlates with glioblastoma patient survival. CAMTA1 is a

putative transcription factor and we show that CAMTA1

regulates the expression of the natriuretic peptide A (NPPA,

also referred to as atrial natriuretic factor (ANF)),

which gives rise to peptide hormones with anti-proliferative

effects.

Results

miRNA expression profiling of CD133þ glioblastoma

stem cells

In order to analyse the contribution of miRNAs to the biology

of glioblastoma stem cells, we isolated stem cell-containing

CD133þ cells from the primary glioblastoma cell line R11

(Beier et al, 2007, 2008) by fluorescence-activated cell sorting

(FACS, Figure 1A and B). Total RNA was extracted from

CD133þ and CD133� cells and small RNA libraries were

generated and sequenced (Figure 1C; Supplementary Tables 1

and 2). A detailed analysis of the individual miRNAs revealed

that miR-9*, miR-17-5p, miR-106b and miR-15b were highly

abundant in CD133þ cells, whereas miR-221, miR-222,

miR-27a and miR-21 were more specific to CD133� cells

(Figure 1D). The sequencing data were further validated by

northern blotting. Signals for miR-17-5p, miR-9*, miR-106b

and also miR-9 were much stronger in CD133þ cells

(Figure 1E), demonstrating that these miRNAs are indeed

differentially expressed between CD133þ and CD133� cells.

Since the miR-9/9* pair was highly abundant in CD133þ R11

cells, we next confirmed the differential miR-9/9* expression

in CD133þ cells in additional primary glioblastoma cell lines

by qPCR (Beier et al, 2007; Figure 1F). Consistent with

the data obtained from R11 cells, miR-9/9* expression is

increased in CD133þ cell populations of many glioblastoma

cell lines, whereas miR-34a was either not changed or less

abundant in CD133þ cells. Although miR-9/9* expression is

always stronger in CD133þ cells (with the exception of

miR-9* in R54 cells, middle panel), some cell lines show

only mild differences in miR-9/9* expression in CD133þ cells

compared with CD133� cells. This might be due to the

different tumour origin of the cell lines.

miR-9/9* are required for neurosphere formation

and glioblastoma stem cell maintenance

CD133þ glioblastoma cell populations show a neurosphere-

like growth in tissue culture-based colony formation assays.

Therefore, we analysed the impact of CD133þ -specific

miRNAs on neurosphere formation. Primary glioblastoma

cells were transfected with 20-O-methylated antisense

inhibitors against miR-9, miR-9*, miR-17-5p or miR-106b

and neurosphere growth was analysed (Figure 2A and

Supplementary Figure S1 for validation of miRNA inhibition).

Inhibition of miR-9 as well as miR-9* led to strongly reduced

neurosphere formation. Inhibition of miR-17-5p reduced

colony formation significantly whereas miR-106b inhibition

had no effect (Figure 2A). Conversely, transfection of a

miR-9/9* mimic increased neurosphere formation of primary

glioblastoma cells (Figure 2B).

Since inhibition of both miR-9/9* and miR-17-5p affected

neurosphere formation, we analysed whether the simulta-

neous inhibition of two miRNAs caused additive effects

(Figure 2C). Indeed, the effects of miR-9 or miR-9* inhibition

were significantly stronger, when miR-17-5p was co-

inhibited, suggesting that both miRNAs function indepen-

dently of each other and contribute to neurosphere forma-

tion. Of note, much lower inhibitor concentrations were used

for the double-inhibition experiments; and therefore, the

overall numbers differ from the experiments shown in

Figure 1A.

Because miR-9/9* are highly abundant in CD133þ cells,

we asked if inhibition of these miRNAs may influence the

CD133þ cell population. Primary glioblastoma cells were

transfected with inhibitors against miR-9 or miR-9* and

CD133þ cells were sorted (Figure 2D). Indeed, inhibition of

miR-9 or miR-9* led to a reduction of the CD133þ cell

population, suggesting that both miRNAs are required for

CD133þ glioblastoma stem cell maintenance. Reduced stem

cell maintenance might lead to increased cell differentiation

of primary glioblastoma cells. Thus, miR-9 or miR-9* was

blocked and the neuronal differentiation marker Tuj1 or the

glial marker GFAP were analysed by western blotting.

Strikingly, CD133þ cell-depleted populations exhibited

induced neuronal differentiation as evident from increased

Tuj1 expression, whereas glial differentiation appeared not to

be affected by miR-9/9* inhibition (Figure 2E). In summary,

our data suggest that miR-9/9* help maintaining CD133þ

cells probably by preventing differentiation.

CD133þ cancer stem cell miRNAs regulate the

putative transcription factor CAMTA1

In order to understand the role of miR-9/9* in glioblastoma

stem cells, it is important to know the identity of their

individual target mRNAs. To find miR-9* targets in primary

glioblastoma cells, we transfected inhibitors against miR-9*

or control inhibitors and immunoprecipitated Ago2-bound

mRNAs (Figure 3A; Beitzinger et al, 2007; Easow et al, 2007;

Karginov et al, 2007). The miRNA inhibitor prevents mRNA

binding and therefore miR-9* targets are selectively lost in the

immunoprecipitates compared with control transfections.

Using this approach, we identified a number of mRNAs that

are strongly reduced in anti-Ago2 immunoprecipitates when

miR-9* was inhibited (Figure 3B). We focused on CAMTA1,

because it is expressed from the 1p36 locus that is frequently

deleted in a subset of gliomas (Finkler et al, 2007). Strikingly,
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a minimal deletion comprising only the CAMTA1 gene has

been identified, suggesting that CAMTA1 is indeed important

for glioma formation (Barbashina et al, 2005).

We found that the CAMTA1 30-untranslated region (UTR)

not only contains binding sites for miR-9* but also for miR-9,

miR-106b and miR-17-5p, which are also highly abundant in

CD133þ cell populations (Figure 4A). The CAMTA1 30-UTR

was fused to firefly luciferase and co-transfected together

with inhibitors against miR-9/9* (Figure 4B, panels 1 and 2),

miR-106b (panel 3) or miR-17-5p (panel 3) into primary

glioblastoma cells. In all cases, firefly expression was

elevated upon miRNA inhibition. Increased firefly activity

was not observed, when reporters with mutated miR-9 or

miR-9* binding sites were transfected. Furthermore, endo-

genous CAMTA1 mRNA as well as protein levels were

elevated, when miR-9 or miR-9* was inhibited (Figure 4C

and D). Of note, protein levels were much stronger increased

than mRNA levels, suggesting that miR-9/9* may preferen-

tially inhibit CAMTA1 translation. Since miR-9 and miR-9*

inhibition blocked neurosphere formation, we hypothesized

that this effect could be mediated through the induction

of CAMTA1. Therefore, CAMTA1 was depleted by RNAi in

primary glioblastoma cells (Supplementary Figure S2) and

after 2 days, miR-9 or miR-9* was inactivated with antisense

oligonucleotides (Figure 4E). Indeed, miR-9 inhibition effects

on colony formation were rescued by CAMTA1 depletion.

We also observed a significant rescue of miR-9* inhibition,

although not as strong as observed for miR-9.
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CAMTA1 functions as tumour suppressor

in glioblastoma cells

It has been suggested that CAMTA1 functions as tumour

suppressor in neuroblastoma (Finkler et al, 2007; Henrich

et al, 2011). However, a link between CAMTA1 function and

glioblastoma has not been reported so far. To address this

question, we cloned the CAMTA1 cDNA and transfected it

into primary glioblastoma cells (Figure 5A–C). Strikingly,

overexpression of CAMTA1 led to strongly reduced neuro-

sphere formation in both R11 and R28 cells. CAMTA1 is a

putative transcription factor that contains an N-terminal DNA

binding domain (Figure 5A). We deleted the DNA binding

domain (Figure 5D), transfected the mutated CAMTA1 into

primary glioblastoma cells and again analysed neurosphere

formation. Interestingly, the DN mutant that cannot bind

DNA has no inhibitory effect on colony formation, indicating

that overexpression of functional CAMTA1 inhibits neuro-

sphere formation. Since miR-9/9* negatively regulate

CAMTA1 expression, we hypothesized that CAMTA1 over-

expression should have a similar effect on the CD133þ cell

compartment as miR-9/9* inhibition (see Figure 2D). Indeed,

overexpression of CAMTA1 reduced the number of CD133þ

cells, suggesting that the miR-9/9* effect is at least in part due

to CAMTA1 inhibition (Figure 5E).

To further analyse the observed tumour suppressor activity

of CAMTA1 in vivo, an R28 cell line stably expressing

luciferase was transfected either with an empty plasmid or

with a plasmid containing wild-type (wt) CAMTA1 (Figure 6).

After transfection, cells were injected into nude mice brains

and tumour growth was analysed 15 days after transfection

by measuring luciferase activity. In agreement with the in

vitro data, cells transfected with wt CAMTA1 showed strongly

decreased tumour growth, whereas control cells formed

tumours rapidly (Figure 6A and B). In summary, we have

shown that CAMTA1 functions as tumour suppressor both

in vitro and in vivo.

The striking effect of CAMTA1 overexpression on colony

formation and tumour growth prompted us to ask whether

CAMTA1 expression also correlates with survival of patients

suffering from astrocytoma or glioblastoma. We analysed

mRNA expression data sets from large patient cohorts

using the Repository of Molecular Brain Neoplasia Data

(REMBRANDT) and The Cancer Genome Atlas (TCGA)

(Figure 7A and B). CAMTA1 mRNA expression was strongly

decreased in astrocytoma as well as in glioblastoma patients

compared with healthy individuals. Notably, grade IV glio-

blastomas show lower CAMTA1 expression than the less

malignant astrocytomas. These results are in line with our

previous results indicating a significant downregulation of

CAMTA1 mRNA in cancer stem cells compared with neural

stem cells (Lottaz et al, 2010). Finally, we correlated glioblas-

toma patient survival with low or intermediate (blue) and
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high (red) CAMTA1 expression (Figure 7C). Strikingly, glio-

blastoma patients with high CAMTA1 levels survived much

longer than patients with lower or intermediate CAMTA1

expression, indicating that CAMTA1 is a tumour suppressor

with a high prognostic value.

CAMTA1 stimulates the expression of the

anti-proliferative peptide NPPA

It has been shown that CAMTA2, which is highly homologous

to CAMTA1, activates transcription of NPPA in the heart

(Song et al, 2006). Interestingly, it has been demonstrated

that NPPA has an anti-proliferative effect on glioblastoma

cells in vitro (Vesely et al, 2007). We analysed whether

CAMTA1 also activates the expression of NPPA in glioblasto-

ma cells. A plasmid expressing wt CAMTA1 or a mutant

lacking the DNA-binding domain was transfected into LNT-

229 cells and NPPA expression was analysed by qPCR

(Figure 8A). Wild-type CAMTA1 expression led to an increase

of NPPA expression, while transfection of the mutated

CAMTA1 had a much weaker effect. NPPA is a short secreted

peptide, which is taken up by the natriuretic peptide receptor

A (NPR-A). Therefore, we tested NPR-A expression and found

that the receptor for NPPA is upregulated by CAMTA1 ex-

pression as well (Figure 8B). Finally, since miR-9, miR-9* and

miR-17 regulate CAMTA1 expression in CD133þ cells, we

tested whether inhibition of these miRNAs induces NPPA or

NPR-A expression. MiRNAs were inhibited using 20-O-methy-

lated inhibitors and NPPA or NPR-A expression was subse-

quently analysed by qPCR (Figure 8C). Strikingly, inhibition

of miR-9/9* or miR-17 increased NPPA and NPR-A expression

presumably by inducing CAMTA1 expression.

NPPA has a strong anti-proliferative effect on glioblastoma

cells in vitro; and therefore, we analysed whether NPPA

expression correlates with patient survival (Figure 8D). We

used the REMBRANDT database for our investigations.

Consistent with our experimental data, we found that expres-

sion of NPPA correlates with patient survival. Patients with

high NPPA levels (red) survived much longer than patients

with intermediate (blue) and low (green) NPPA levels.

Taken together, we have found that miR-9/9* and miR-17

regulate the expression of the novel tumour suppressor

CAMTA1 in CD133þ glioblastoma cells and CAMTA1 itself

stimulates the expression of the anti-proliferative peptide

NPPA.

Discussion

MiRNAs have been implicated in almost all types of cancer

(Calin and Croce, 2006; Esquela-Kerscher and Slack, 2006;

Garzon et al, 2009). However, only a few studies have

analysed the function of miRNAs in cancer stem cells

(Yu et al, 2007; Ji et al, 2009; Shimono et al, 2009;

Agilent probe ID Fold mRNA enrichment, miR-
122 inhibitor sample

Fold mRNA enrichment, 
miR-9* inhibitor sample

NCBI accession Gene name Fold change

A_23_P334777 41.41 3.70 NM_170725 PGBD2 37.71

A_24_P264832 27.81 0.85 NM_005382 NEFM 26.96

A_32_P46154 33.19 8.28 NM_021269 ZNF708 24.91

A_23_P91943 28.95 5.16 NM_000882 IL12A 23.79

A_23_P96008 23.33 0.55 NM_006785 MALT1 22.78

A_24_P220921 19.98 0.40 NM_015215 CAMTA1 19.58

A_23_P83007 22.57 5.50 NM_203403 C9orf150 17.07

A_23_P139786 16.30 0.16 NM_003733 OASL 16.14

A_23_P205818 16.49 0.36 NM_014659 HISPPD2A 16.13

A_23_P152330 17.32 1.79 NM_003586 DOC2A 15.53

A_24_P626470 15.95 0.72 AA918648 15.23

A_24_P177553 15.33 2.21 NR_003125 LOC85391 13.12

A_32_P164246 16.51 5.11 NM_033260 FOXQ1 11.40

A_24_P42446 16.72 7.13 NM_001015508 PURG 9.59

A_23_P2307 23.63 15.54 NM_144593 RHEBL1 8.09

A_23_P501080 15.73 8.07 NM_007139 ZNF92 7.66

A_24_P37409 16.49 9.60 NM_004418 DUSP2 6.90

A_23_P95930 19.96 13.91 NM_003483 HMGA2 6.05

A_23_P62901 15.63 10.99 NM_006763 BTG2 4.64

A_23_P383132 18.34 15.58 NM_015094 HIC2 2.76

B

A
Transfection of

ctrl. or miR-9* inhibitor

Cell lysis

Anti-Ago2 IP
Ago2

m7G

m7G

m7G

AAAA

AAAA

AAAA

RNA
isolation

Isolation of total (‘input’) RNA

Microarray
hybridization

Calculation
of specific
transcript

enrichment

Identification of
transcripts

enriched in a
miR-9*-

dependent
manner

Microarray
hybridization

R11 cells

Figure 3 Identification of miR-9* target mRNAs. (A) Strategy to identify miR-9* target mRNAs. (B) List of most strongly Ago2-associated
transcripts in primary glioblastoma cell line R11 in the presence of a miR-9* or miR-122 control inhibitor. miR-9* target mRNA candidates
that were 410-fold depleted in the miR-9* inhibitor sample compared with the control are displayed in bold letters.

Tumour suppressor function of CAMTA1 in glioblastoma stem cells
D Schraivogel et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 20 | 2011 4313



Wong et al, 2010). We found that miR-9 and its corresponding

miR-9* are highly expressed in cancer stem cell populations

obtained from a subgroup of primary astrocytic glioblasto-

mas. Both miRNAs function as oncogenes by repressing the

novel tumour suppressor CAMTA1. Consistently, it has been

shown that miR-9/9* are highly expressed in primary brain

tumours (Huse et al, 2009; Nass et al, 2009). A recent study

has analysed miRNA expression in 261 glioblastoma samples

(Kim et al, 2011). According to their miRNA and mRNA

expression profiles, glioblastomas were separated into five

classes: glioblastomas with neural precursors, with oligo-

neural precursors, with multipotent precursors, with astro-

cytic precursors and with neuromesenchymal precursors.

Interestingly, miR-9/9*, miR-17 or miR-106b were only

found in glioblastomas with oligoneural precursors (Kim

et al, 2011). It is thus unlikely that miR-9/9* or miR-17
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inhibition would affect all glioblastomas. It is more likely that

only those tumours with oligoneural precursors are affected.

These findings have also impact on possible therapeutic

approaches. Glioblastomas need to be classified by miRNA

expression profiling first before miRNA inhibition could be

used as potential treatment. However, it is important to note

that glioblastomas have been classified using various ap-

proaches and the obtained classes very often differ signifi-

cantly (Phillips et al, 2006; Lottaz et al, 2010; Verhaak et al,

2010; Huse et al, 2011).

MiR-9 has been implicated in cancer before. It is involved

in cancer metastasis in breast cancer cells (Ma et al, 2010) or

in colorectal cancer (Zhu et al, 2011). Interestingly, miR-9

expression is stimulated by MYCN in breast cancer

and MYCN is closely related to the frequent 1p36 deletion

(Ma et al, 2010; Mestdagh et al, 2010). It is tempting to

speculate that MYCN might contribute to miR-9/9* expres-

sion in glioblastoma as well. Very recently, it has been

demonstrated that among others, expression levels of miR-9

and miR-17 are correlated with malignant progression of

gliomas (Malzkorn et al, 2010). In addition, miR-9 has

been implicated in oligodendroglioma (Nelson et al, 2006).

This supports our finding that these miRNAs are important

for glioma pathogenesis. Furthermore, miR-9 is also impor-

tant for neural development, for neuronal stem cell fate

determination and for proliferation and migration of neural

progenitors (Yoo et al, 2009; Zhao et al, 2009; Delaloy et al,

2010), supporting our model that miR-9 is important for

glioblastoma stem cell function. Our data provide evidence

that the bifunctional miR-9/9* inhibit CAMTA1 expression in

glioblastoma stem cells and thereby contribute to robust

cancer stem cell survival. We have demonstrated that expres-

sion of CAMTA1 in glioblastoma cells causes a strong reduc-

tion of colony formation both in vitro and in a xenograft

model system. Therefore, we suggest that CAMTA1 is a novel

tumour suppressor gene functioning in glioblastoma.

Strikingly, it has been shown very recently that CAMTA1

has tumour suppressor activity in neuroblastoma cells

supporting the idea that CAMTA1 is a tumour suppressor in

a larger variety of neural tumours (Henrich et al, 2011).

The molecular functions of CAMTA1 have not been studied

in detail yet. It has been shown in flies that CAMTA functions

as transcription activator and is involved in the function of

Rhodopsin, a G protein coupled light receptor (Han et al,
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2006). In mammals, at least two CAMTA genes exist. The loss

of CAMTA2 promotes cardiomyocyte hypertrophy (Song et al,

2006). Since CAMTA proteins can activate the expression of

NPPA in the heart, we asked whether NPPA might also play a

role in glioblastoma. Indeed, it has been demonstrated that

NPPA, when incubated with glioblastoma and also other

cancer cells, has a strong anti-proliferative effect in vitro

(Vesely et al, 2005, 2007). Strikingly, CAMTA1 activates

NPPA expression in glioblastoma cells as well. Moreover,

CAMTA1 also stimulates the expression of the NPPA receptor,

which might explain the tumour suppressor function of

CAMTA1. Additionally, the NPPA gene is located in the

1p36 locus, and it is indeed deleted in a number of gliomas

(Ichimura et al, 2008).

Based on our data, we propose the following model. In

CD133þ cells, miR-9/9* and miR-17 expression is high

compared with CD133� cells, which results in low CAMTA1

expression. Of note, it is likely that these miRNAs regulate

several other target mRNAs, which might contribute to the

observed phenotype as well. CAMTA1 inhibition also re-

presses the expression of the secreted peptide NPPA. Upon

CAMTA1 activation, NPPA expression is induced and the

peptide is secreted. In parallel, CAMTA1 also stimulates the

expression of the NPPA receptor NPR-A in order to allow cells

to respond to NPPA. Since CAMTA1 expression is particularly

low in the CD133þ fraction of many of our analysed

glioblastoma cell lines (Supplementary Figure S3), it is

tempting to speculate that the expression and also the

sensitivity to the anti-proliferative peptide NPPA is repressed

by miR-9/9* and miR-17 regulation of CAMTA1.

Further analysis of the cellular functions of the tumour

suppressor CAMTA1 as well as its regulators miR-9/9* may

finally lead to a better understanding of glioblastoma patho-

genesis and ultimately to more efficient therapies that might

be based on miR-9 and miR-9* inhibitors.

Materials and methods

Isolation of Ago2-associated RNAs
R11 cells were reverse transfected in four 10 cm plates per sample
with miR-122 (control) or miR-9* 20-O-methylated antisense
oligonucleotide inhibitors for 2 days. Cells were lysed in 500 ml
lysis buffer (150 mM KCl/25 mM Tris–HCl pH 7.5/2 mM EDTA/
1 mM NaF/0.5% NP-40/0.5 mM DTT/0.5 mM AEBSF) per plate.
Ribolock (Fermentas, 1 ml/ml of lysis buffer) was added before lysis.
Lysates were cleared by centrifugation at 16 000 g for 10 min. For
immunoprecipitation (IP) of endogenous Ago2, 3 ml of monoclonal
anti-Ago2 11A9 hybridoma supernatant was coupled to 100 ml
protein G-Sepharose (GE Healthcare) for 10 h at 41C. Coupled beads
were washed twice with PBS and subsequently incubated with cell
lysate for 4 h at 41C. All IP samples were washed three times with IP
wash buffer (300 mM NaCl/50 mM Tris pH 7.5/1 mM NaF, 0.01%
NP-40/5 mM MgCl2) and once with PBS. IP samples and corre-
sponding samples containing 10% of input lysate were proteinase
K digested, followed by phenol/chloroform/isopropyl alcohol
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extraction and precipitation of RNA in 80% ethanol at �201C. RNA
was pelleted, dried and treated with DNaseI (Fermentas) for 45 min
at 371C, followed by thermal inactivation of DNaseI. RNA integrity
was assessed via Agilent 2100 Bioanalyzer (Agilent Technologies)
prior to microarray hybridization.

Microarray experiments and data analysis
RNA from anti-Ago2 IP and input samples was processed using the
SuperAmp RNA amplification protocol (Miltenyi Biotec). cDNA
integrity was checked via Bioanalyzer platform. In all, 250 ng of
each cDNA was labelled with Cy3 dye (Miltenyi Biotec) according to
the manufacturer’s protocol. Samples were hybridized to Agilent
Whole Human Genome 4� 44 K Oligo Microarrays. Fluorescence
signals of the hybridized Agilent Microarrays were detected using
Microarray Scanner System (Agilent Technologies).

Microarray data were analysed using Agilent Genespring
software. Expression values below 0.01 were set to 0.01. Each
measurement was divided by the 50th percentile of all measure-
ments in that sample. All IP samples were normalized to the
corresponding input RNA samples. The IP sample from control
antagomir-transfected cells was normalized against the median of
the corresponding input RNA sample and the IP sample from miR-
9* antagomir-transfected cells was normalized against the median
of the corresponding input RNA sample. For normalization, each
measurement for each gene in the IP samples was divided by the
median of that gene’s measurements in the corresponding input
RNA samples. IP to input ratios from miR-9*-transfected samples
were then divided by the IP to input ratios from control-transfected
sample.

Using this normalization procedure, the normalized expression
value of each transcript in IP samples directly reflects its fold

enrichment in the immunoprecipitated transcript pool relative to
the input RNA pool. To filter for potential miRNA target mRNAs
bound by Ago2, all transcripts that were 45-fold enriched in IPs
from control antagomir-transfected cells were identified. Transcripts
where the enrichment in miR-9* antagomir-transfected cells was
410-fold lower than in control-transfected cells were considered
to be potential targets of miR-9*.

Cell culture and transfection
R11, R20, R28, R40, R44 and R52 cells were cultured at 371C in
DMEM-F12 medium supplemented with 20 ng/ml of each human
recombinant epidermal growth factor, human recombinant basic
fibroblast growth factor (both from R&D Systems), and human
leukaemia inhibitory factor (Millipore), 2% B27 supplement
(Invitrogen), 1% penicillin/streptomycin solution (PAA), and 1%
MEM vitamins solution (Invitrogen). Cells were passaged every 7–
10 days by trypsinization or by detaching with a pipette. In all, 50%
of the medium was substituted twice weekly. HEK 293T, T98G and
LNT-229 cells were cultured in DMEM supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin solution. Typically,
cells were passaged every 3 days by trypsinization in a 1:10 ratio.

R11 cells (1�105 cells/well) were reverse transfected with
100 nM 20-O-methyl oligonucleotides or 40 nM siRNAs in 6-well
plates with 5ml/well Lipofectamine 2000 (Invitrogen). For co-
transfection of two 20-O-methyl antisense oligonucleotides, each
oligo was added to 50 nM final concentration, to give an overall
concentration of 100 nM. The transfection mix was removed 24 h
post transfection and fresh medium was added. T98G cells were
transfected with Lipofectamine 2000 12 h after seeding according
to the manufacturer’s instructions, using 40 nM siRNAs or 80 nM
20-O-methyl oligonucleotides.
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Figure 7 CAMTA1 expression correlates with patient survival. (A, B) CAMTA1 mRNA expression was analysed in non-tumour brain tissue,
WHO grade I–III astrocytoma and glioblastoma using the indicated affymetrix probes on a U-133A microarray. (C) Kaplan–Meier survival plot
for glioblastoma patients with high, low and intermediate CAMTA1 mRNA expression, as determined by affymetrix probe 213268 on a U-133A
microarray. Data were obtained from the REMBRANDT and the TCGA databases (see Materials and methods).

Tumour suppressor function of CAMTA1 in glioblastoma stem cells
D Schraivogel et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 20 | 2011 4317



For plasmid transfections, R11, R28 and R28-luc cells were
electroporated using the Nucleofector Kit for mouse neural stem
cells (Lonza), according to the manufacturer’s instructions and the
Nucleofector Device II (Lonza). In short, cells were detached by
pipetting, washed once with DMEM/F12 and 3�106 cells were
transfected with 5 mg of plasmid DNA using Program A-033. Directly
after electroporation, cells were transferred into one well of a 6-well
plate. Medium was replaced 24 h post transfection. For electropora-
tion of LNT-229, the cell line nucleofector Kit R (Lonza) was used as
described above.

Western blotting and northern blotting
To analyse levels of proteins other than CAMTA1, cells were lysed
as previously described (Weinmann et al, 2009). For the analysis of
CAMTA1 protein levels or corresponding loading controls, cells
were lysed in nuclear lysis buffer (1% SDS, 10 mM EDTA, 50 mM
Tris pH 8, 0.1% sodium deoxycholate, 2 mM 4-(2-Aminoethyl)
benzenesulphonyl fluoride hydrochloride, 5 units/ml DNAaseI
(Fermentas)) for 20 min and sonicated for 10 s on a Bandelin

Sonopuls HD2070 sonifier. Lysates were cleared by centrifugation.
Western blotting was performed as previously described
(Hock et al, 2007). The following antibodies (dilutions) were used:
Anti-mouse-HRP (1:5000), anti-rabbit-HRP (1:5000), mouse-anti-b-
Actin AC15 (1:10 000), mouse-anti-Tuj1 (1:1000), rabbit-anti-GFAP
(1:2000) and rabbit-anti-CAMTA1 (1:200). Northern blotting was
performed as previously described (Lagos-Quintana et al, 2001)
using either 20-O-methyl oligonucleotide or DNA probes antisense
to the miRNA of interest. The sequence of Ile tRNA probe was
50-TGCTCCAGGTGAGGATCGAAC-30.

Clonogenicity assays
1�105 R11 cells were transfected in 6-well plates as indicated. 20-O-
methylated antisense oligonucleotides and synthetic miRNAs were
transfected twice with an interval of 7 days. Seven days after second
transfection, cells were counted and B1000 cells were transferred
into each well of a 48-well plate. Neurosphere-like clones were
counted 4 weeks after plating. The number of clones per well were
summed up for each sample and normalized to the number of
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clones obtained for control-transfected samples. Results of the
described clonogenicity assays were reproduced by limited dilution
assays with one cell per well. Therefore, 1�105 cells were
transfected as indicated above. Seven days after second transfec-
tion, one cell was seeded into each well of a 96-well plate and
neurosphere-like clones were counted 4 weeks after plating. Data
for limited dilution assays are not shown.

In vivo tumour model and bioluminescence imaging
Intracranial glioblastoma xenografts were established in 10-week-
old male NMRI:nu/nu mice (Charles River) as described previously
(Beier et al, 2007). In brief, tumour cells were treated as indicated.
Three hours after transfection, 1.4�105 viable cells (as determined
by trypan blue exclusion) were injected 2 mm lateral to the midline
and 4 mm anterior to bregma to a depth of 3 mm using a Hamilton
syringe. The bioluminescence of implanted tumour cells was
determined 15 days after implantation. One minute after injection
of 150 mg/kg D-luciferin (Biosynth), mice were anaesthetized and
emitted photons were registered for 5 min using Xenogen IVIS
Lumina Imaging System (Caliper Life Sciences). The signal was
normalized to background signal. Mice without detectable tumours
were excluded from the analysis.

Lentiviral transduction of R28 cells
Glioblastoma stem cells were stably transduced using a lentiviral
vector expressing firefly luciferase under control of the constitutive
spleen focus forming virus LTR promoter.

Third-generation packaging, VSV-pseudotyped, self-inactivating
lentiviral vectors were produced by transient transfection of HEK
293T cells using standard protocols (Wubbenhorst et al, 2010).
Medium was changed to stem cell medium after 24 h. Supernatants
were filtered through 0.45mm filter and used for spin infection
(Leisegang et al, 2008). Individual wells of a 24-well plate
were coated with 400ml RetroNectin (Takara Bio Europe SAS; final
concentration 12.5 mg/ml) for 2 h at room temperature, subse-
quently incubated for 30 min at 371C with bovine serum albumine
(2% in PBS) and washed with PBS prior to addition of cells.
1�105 cells/ml suspension cells were added onto RetroNectin-
coated wells. One millilitre virus containing supernatant supple-
mented with protamine sulphate (final concentration 4mg/ml) was
added to each well and infection was enhanced by 90 min
centrifugation at 321C and 800 g. Cells were incubated at 371C.
The next day, cells were washed off the wells, spun, resuspended in
5 ml fresh complete medium and further cultivated.

Cell lines
The generation of R11, R20, R28, R40, R44 and R52 cell lines from
glioblastoma samples was previously described (Beier et al, 2007).

Antibodies
The following antibodies were used: Rat-anti-hsAgo2 (11A9; Rudel
et al, 2008), mouse-anti-Tuj1 MMS-435p (Covance), mouse-anti-b-
Actin AC15 (Abcam), rabbit-anti-GFAP (DAKO), anti-CD133-2
293C3-PE (Miltenyi), anti-rabbit-HRP, anti-mouse-HRP (both from
Sigma). The polyclonal antibody to CAMTA1 was generated as
follows: a GST-tagged fragment containing aa 294–864 of CAMTA1
was expressed in E. coli and used for the immunization of rabbits.
Polyclonal antiserum was purified and used for western blotting.

Oligonucleotides
20-O-methyl antisense oligonucleotides and siRNAs/miRNAs were
chemically synthesized using RNA phosphoramidites (Pierce) on an
Äkta Oligopilot 10 DNA/RNA synthesizer (GE Healthcare), accord-
ing to the manufacturer’s protocol. The sequences of 20-O-methyl
oligonucleotides were miR-9* antisense, 50-ACUUUCGGUUAUCUAG
CUUUAT-30; miR-17-5p antisense, 50-ACUACCUGCACUGUAAGCA
CUUUGT-30; miR-106b antisense, 50-AUCUGCACUGUCAGCACUUUA
T-30; miR-9 antisense, 50-UCAUACAGCUAGAUAACCAAAGAT-30;
miR-122 antisense, 50-ACAAACACCAUUGUCACACUCCAT-30; miR-
301 antisense, 50-GCUUUGACAAUACUAUUGCACUGT-30 and miR-
330 antisense, 50-GCCUAAGACACAGGCCCAGAGAT-30. The siRNA
sequences (sense and antisense) were CAMTA1 siRNA 1, 50-CTACC
GAAGTTATAAGAAAUT-30, 50-TTTCTTATAACTTCGGTAGUT-30; CAM
TA1 siRNA 2, 50-GAAUCAAGCAGGAGAAUUUUT-30, 50-AAAUUCUC
CUGCUUGAUUCGT-30; control siRNA 1, 50-UUGUCUUGCAUUCGAC
UAAUT-30, 50-UUAGUCGAAUGCAAGACAAUT-30 and control siRNA
2, 50-UCGAAGUAUUCCGCGUACGUT-30, 50-CGUACGCGGAAUACUU

CGAUT-30. The sequences of synthetic miRNAs were miR-9, 50-UCU
UUGGUUAUCUAGCUGUAUGAT-30; miR-9*, 50-AUAAAGCUAGAUAA
CCGAAAGUT-30; miR-122, 50-UGGAGUGUGACAAUGGUGUUUGT-30

and miR-122*, 50-AACGCCAUUAUCACACUAAAUAT-30.

Flow cytometry
Cells were trypsinized and washed with DMEM-F12 and FACS
buffer (PBS containing 1% BSA). 107 cells were resuspended in 80 ml
FACS buffer containing 10% FcR blocking reagent (Miltenyi) and
incubated for 5 min on ice. In all, 10 ml Anti-CD133-PE was added,
and cells were incubated for 10 min on ice in the dark. Cells were
pelleted and washed once with FACS buffer. Stained cells were
sorted on an FACS Aria system (Becton Dickinson). Cell debris were
gated out using a forward scatter/sideward scatter dot plot. CD133-
negative and CD133-positive cell populations were identified using
unstained cells as control.

RNA isolation
Total RNA for mRNA analyses was isolated using the Prep Ease kit
(USB), according to the manufacturer’s instructions. For small RNA
detection, RNA was isolated using Trifast (Peqlab).

cDNA synthesis
cDNA for mRNA analysis was synthesized with random hexamer
primers from 2mg of total RNA using the First Strand cDNA
synthesis kit (Fermentas), according to the manufacturer’s protocol.
To quantify miRNAs, RNA samples were treated with DNaseI
(Fermentas), poly(A)-tailed using the poly(A)-tailing kit (Ambion)
and reverse transcribed using the First Strand cDNA synthesis kit
and the URT primer 50-AACGAGACGACGACAGACTTTTTTTTTTTTT
TTV-30 (Hurteau et al, 2006).

qPCR
qPCR was performed on a MyiQ cycler (BioRad) using the Mesa
Green qPCR mastermix (Eurogentec). The primers were GAPDH,
50-TGGTATCGTGGAAGGACTCATGAC-30, 50-ATGCCAGTGAGCTTCCC
GTTCAGC-30; b-actin, 50-CTGGAGAAGAGCTACGAGCTG-30, 50-TTGA
AGGTAGTTTCGTGGATG-30; CAMTA1, 50-ATCCTTATCCAGAGCAAA
TTCC-30, 50-AGTTTCTGTTGTACAATCACAG-30; NPPA, 50-CAGGATG
GACAGGATTGGA-30, 50-TCTTCAGTACCGGAAGCTGTT-30; NPR-A
50-TCGAAACCACCAAACTCCTC-30, 50-AGTGGTGGGACTGAAGATG
C-30; hsa-miR-9, 50-TCTTTGGTTATCTAGCTGTATG-30; hsa-miR-9*,
50-ATAAAGCTAGATAACCGAAAG-30; hsa-miR-34a; 50-TGGCAGTGTC
TTAGCTGGTTG-30; U6 snRNA, 50-GATGACACGCAAATTCGTGAA
G-30 and universal RT primer for miRNA and U6 snRNA detection,
50-AACGAGACGACGACAGACTTT-30. Data were evaluated using the
ddCt method with GAPDH or b-actin as reference mRNAs. Error
bars were obtained from triplicate PCR samples by propagating the
ddCt standard error of the mean through the exponential term as
previously described (Livak and Schmittgen, 2001).

Generation and sequencing of small RNA libraries
Small RNA libraries were generated by Vertis Biotechnology AG and
sequenced by 454 pyrosequencing as previously described (Tarasov
et al, 2007).

Analysis of the sequencing results
Known miRNAs were identified by comparing the sequencing
results with annotated miRNAs from the H. sapiens miRNA
database (miRBase) using the Microsoft Excel software. Several
miRNA reads were found to contain sequencing errors, typically
starting from nucleotides 18 to 25 that were possibly due to the
procedure of library preparation and/or pyrosequencing. Most
errors were poly(A) insertions at the 30-end of the reads. Therefore,
those reads that were fully complementary to a known miRNA from
nucleotides 1 to 18 but had additional (A) insertions at the 30-end
were re-annotated as miRNAs.

Read numbers for each miRNA were normalized to the total
number of reads of the corresponding library. For calculation of
miRNA expression, the normalized reads numbers from the CD133-
negative cell library were divided by the normalized read numbers
from the CD133-negative library.

Luciferase assays
To investigate miRNA effects on reporter constructs, T98G were
used for high transfection efficiency and high firefly and
renilla expression levels. T98G cells were co-transfected with
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20-O-methylated antisense oligonucleotides (80 nM final concentra-
tion) and pMIR-RL constructs (100 ng/well) in 48-well plates, using
Lipofectamine 2000. Twenty-four hours after transfection, cells
were lysed in passive lysis buffer (Promega). Luciferase activities
were measured on a Mithras LB 940 luminometer (Berthold
Technologies). Luciferase substrate reagents were purchased from
PJK cryosystems. All samples were assayed in 4–6 replicates.
Firefly/renilla luminescence ratios for individual samples were
normalized to corresponding ratios of the empty pMIR-RL plasmid
and control inhibitor-transfected samples.

Plasmids
The pMIR-RL dual luciferase vector was previously described
(Beitzinger et al, 2007). The 30-UTR of CAMTA1 mRNA was PCR
amplified from R28 genomic DNA using the primers 50-ATACGAGCT
CAGACATACAGCAGCATCCCTTAGCAATGTG-30 (forward), 50-ATAC
GCCGGCGGAAATTTTCTTCATTTTTAATTTACAGCAG-30 (reverse),
digested with SacI and NaeI and ligated into pMIR-RL. For the
analysis of miR-9 and miR-9* binding sites, all sites predicted by
TargetScan 5.0 and all seed matches that are conserved in mammals
and indicated in Figure 3A were mutated by PCR-based mutagenesis
as follows: the nucleotides CAAA in miR-9* seed matches were
replaced by GTTTand the nucleotides CTTT in miR-9* seed matches
were replaced by GAAA. A cDNA fragment encoding CAMTA1 was
PCR amplified from Marathon whole human brain cDNA library
(BD Bioscience). CAMTA1 orf was re-amplified by using the primers
50-ATACGATATCATGTGGCGCGCGGAGGGGAAATG-30 (forward)
and 50-ATATGCGGCCGCTCAAGTTCCTTGGCCTTTTTCAATTCTTTC
ACTC-30 (reverse) bearing EcoRV and NotI restriction sites,
respectively, followed by restriction digestion and ligation into
pIRESneo. Note that all CAMTA1 clones that were obtained
contained an additional exon of 21 nt in size (AGCTGACATGGA
TAGCCTTGA, data not shown) compared with the Refseq sequence
(NM_015215.1). The additional nucleotides are inserted after nt
4687 of NM_015215.1 and encode for seven additional amino acids
which localize to the predicted Calmodulin binding domain. An N-
terminal CAMTA1 deletion mutant lacking the amino acids 1–188
(nt 1–564) was cloned into pIRESneo and used as a control. All
constructs were verified by sequencing.

Analysis of gene expression in glioma patients
and correlation with survival
The results published here are in part based upon data generated by
the REMBRANDT, a project led by the National Cancer Institute
(NCI) (The Cancer Genome Atlas, 2008; Madhavan et al, 2009).
Information about the REMBRANDT database can be found at

https://caintegrator.nci.nih.gov/rembrandt/. TCGA project is a
joined effort of the NCI and the National Human Genome Research
Institute (The Cancer Genome Atlas, 2008). Information about
TCGA can be found at http://cancergenome.nih.gov.

Statistical analysis
Experiments were performed in three biological replicates, unless
stated otherwise. Mean values and standard error of the mean
(s.e.m.) were calculated from all biological replicates. Error
bars display ±s.e.m. Significance was assessed from biological
replicates using two-sided Student’s t-tests for unequal sample
variance. P-values o0.05 were considered as significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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