Skip to main content
. Author manuscript; available in PMC: 2011 Oct 24.
Published in final edited form as: J Am Chem Soc. 2010 Jan 20;132(2):737–747. doi: 10.1021/ja908326z

Table 1.

Photophysical Data of Pyrazoline Derivatives 1a-e in Methanol at 298K.


compd abs λmax
(nm)
em λmax
(nm)
Stokes shift
(cm−1)
ΔΕ00a
(eV)
ΔGetb
(eV)
Φ Fc
fed
neutral e acidic f Cu(I) g acidic f Cu(I) g
1a 394 487 4850 2.85 −0.22 0.0072 0.53 0.15 74 21
1b 381 480 5410 2.92 −0.31 0.0033 0.54 0.095 164 29
1c 373 464 5260 3.00 −0.39 0.0024 0.60 0.048 250 20
1d 356 445 5620 3.13 −0.47 0.0010 0.55 0.020 550 20
1e 350 448 6250 3.15 −0.54 n.d.h 0.46 0.020 n.d.h n.d.h
a

zero-zero transition energy; estimated based on ΔE00 = (Eabs(max)+Eem(max))/2.

b

PET free energy change calculated according to equation (1) with wp = −0.045 eV;12 the experimental donor and acceptor potentials are provided with the supporting information.

c

fluorescence quantum yield; quinine sulfate as reference.

d

fluorescence enhancement factor fe = ΦFneutral.

e

methanol.

f

180 mM TFA in methanol.

g

10 μM [Cu(I)(CH3CN)4]PF6 in methanol (0.1% acetonitrile).

h

signal/noise ratio insufficient for accurate determination.