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A new likelihood estimator and its comparison with
moment estimators of individual genome-wide
diversity

J Wang
Institute of Zoology, Zoological Society of London, London, UK

The inbreeding coefficient of an individual, F, is one of the
central parameters in population genetics theory. It has found
important applications in evolutionary biology, conservation
and ecology, such as the study of inbreeding depression. In
the absence of detailed and reliable pedigree records,
researchers have developed quite a few estimators to
estimate F or the genome-wide homozygosity from genetic
marker data. The statistical properties and comparative
performances of these metrics are rarely known, however,
which impedes an informed choice of the most appropriate
one in practical applications. In this investigation, I propose a
new likelihood F estimator that makes efficient use of marker
information and takes into account of allelic dropouts, null
alleles and prior knowledge of inbreeding. I compare the
likelihood estimator with three moment estimators of F and
three metrics of genomic homozygosity (or heterozygosity)
by analysing both simulated and empirical datasets. It is

shown that the likelihood estimator invariably outperforms
the other estimators and metrics across all datasets
analysed. For a typical dataset in heterozygosity-fitness
correlation studies involving 10–20 microsatellites and 50
individuals, the correlation between the likelihood estimator
and F (the simulated true inbreeding coefficient) is about
8B35% higher than that between the moment estimators
and F. A frequently applied metric, multilocus heterozygosity
(MLH), and an F estimator based on the consideration
of the proportion of alleles in homozygous conditions, F̂R, are
shown to have particularly poor performances. The low
correlation between MLH and fitness traits, which is widely
observed in numerous empirical studies, might be partially
caused by the adoption of this inefficient estimator of
genomic inbreeding.
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Introduction

Individuals in natural populations vary in their geneal-
ogy and thus have different genome-wide diversity.
Those having more or/and more recent common
ancestors between their maternal and paternal lineages
are expected to harbour less genetic diversity and show
more genome-wide homozygosity. Individuals with the
same genealogy also differ in genome-wide diversity
because of the high stochasticity in Mendelian inheri-
tance (Stam, 1980; Hill, 1993). The relative level of an
individual’s genome-wide diversity can be measured
and assessed by its inbreeding coefficient, a concept
developed by Wright (1922). He defined the inbreeding
coefficient of an individual, F, as the correlation between
the gametes combining to form the individual. Later F
was redefined as the probability that two genes at any
locus in the individual are identical by descent (Haldane
and Moshinsky, 1939; Malecot, 1948). If the inbreeding
coefficient of an individual is F, then the heterozygosity
at any locus of the individual is expected to be reduced

to 1�F of that of an outbred individual (F¼ 0). A
completely inbred individual (F¼ 1), therefore, will have
no variation at any locus of its genome (that is,
homozygous for the whole genome).

The inbreeding coefficient of an individual can be easily
calculated from its pedigree (Wright, 1951). Unfortu-
nately, however, pedigree records are frequently lacking,
incomplete or inaccurate in most natural populations.
Alternatively, various genetic markers can be used to
measure individual genome-wide diversity. Several me-
trics have been proposed and applied for such purposes,
such as multilocus heterozygosity (MLH), internal relat-
edness (IR) and d2 (Coltman and Slate, 2003; Balloux et al.,
2004; Chapman et al., 2009; Szulkin et al., 2010). In
particular, as surrogates for inbreeding coefficients, these
metrics are applied widely to study the heterozygosity-
fitness correlations (HFC) in natural populations,
and significant correlations are usually interpreted as
evidence of inbreeding depression (Szulkin et al., 2010).

It now becomes clear from numerous empirical studies
on HFC (reviewed recently by Coltman and Slate, 2003;
Chapman et al., 2009; Szulkin et al., 2010) that the
correlations are generally weak (ro0.1 in average) and
inconsistent among populations. The low HFCs are
partially explained by the low correlation between
MLH measured at a few marker loci and inbreeding
(that is, genome-wide homozygosity) in large random
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mating populations, in which both the mean and the
variance of individual inbreeding coefficients are ex-
pected to be low (for example, Balloux et al., 2004; Slate
et al., 2004). Indeed, in the absence of identity disequili-
brium (the correlation in homozygosity among loci
within an individual) due to non-uniform inbreeding
or linkage (Crow and Kimura, 1970), the allelic states
(that is, either heterozygous or homozygous) become
independent of each other among loci within indivi-
duals, and the MLH at a set of markers will reflect the
diversity of these particular markers only and will be
uncorrelated with the heterozygosity elsewhere in the
genome (Chakraborty, 1981; Szulkin et al., 2010). Both
theoretical (for example, Slate et al., 2004) and simulation
(Balloux et al., 2004) studies suggested that MLH and
fitness are unlikely to be correlated unless inbreeding
events are frequent and severe, and unless a large
number of markers are used (B200).

ID should be ubiquitous in natural populations
because of the widespread occurrences of non-random
mating (for example, partial selfing and mating between
close relatives), population structure (for example, social
structure and subdivision), population bottlenecks and
migration. Additionally, linked markers will gain extra
ID caused by their physical linkage. In the presence of
ID, the diversity assessed at a set of marker loci will be
correlated with that of the entire genome and thus could
act as a proxy of F of an individual. However, simple
proxies of F such as MLH fail to capture and use marker
information fully and are thus expected to be inferior to a
direct estimate of F from the same marker data.

First, metrics like MLH are expected to vary among
loci due to locus-specific properties such as mutation
rates. For the same individual, a different set of markers
will lead to a different MLH value, and the MLH of
highly polymorphic markers like microsatellites will be
larger than that of lowly polymorphic markers such as
single-nucleotide polymorphisms (SNPs). In contrast, an
estimator of F should be marker independent. Second,
because of the inherent difference in heterozygosity
among loci due to locus rather than individual proper-
ties, it is difficult to interpret MLH as a proxy for F. For
example, two individuals cannot be compared impar-
tially in inbreeding levels when their MLH is assessed
for two different sets of loci (for example, SNPs and
microsatellites). So long as the two sets of markers
assayed for two individuals are not completely over-
lapping (due to, for example, missing data for one or
both individuals), the MLH of the two individuals may
differ because of the difference not in inbreeding, but in
markers. In contrast, estimates of F from different loci are
expected to be the same for a given individual and can
thus be optimally combined (weighted) using allele
frequency and other information to yield an overall
estimate of F. Third, genotype data are imperfect (Bonin
et al., 2004; Pompanon et al., 2005). Microsatellites, for
example, may suffer from allelic dropouts and null
alleles, which may bias inbreeding and MLH estimates.
Because F estimators are model-based, it is possible to
avoid or reduce the bias by incorporating genotyping
errors in the model, as shown below. Due to these
reasons, therefore, the low HFC observed in empirical
studies (Coltman and Slate, 2003; Chapman et al., 2009;
Szulkin et al., 2010) and supported by theoretical
considerations (Balloux et al., 2004; Slate et al., 2004)

may be partially caused by the inefficiency of MLH as a
surrogate for F, rather than the absence or weakness of
identity disequilibrium or inbreeding depression.

It is challenging to estimate individual inbreeding
coefficient accurately from a small number of markers.
Most marker-based inbreeding estimators are developed
for estimating the average F of individuals, or population
level inbreeding (for example, Li and Horvitz, 1953;
Robertson and Hill, 1984; Hill et al., 1995; Ayres and
Balding, 1998). A few estimators are proposed to use
unlinked codominant markers (Ritland, 1996; Ritland and
Travis, 2004; Carothers et al., 2006; Wang, 2007), unlinked
dominant markers (Dasmahapatra et al., 2008) or linked
genomic markers (Leutenegger et al., 2003) to estimate
individual inbreeding coefficients. Some of the estimators
were compared with MLH in estimating individual
inbreeding coefficients using empirical and simulated
genomic marker data (Polašek et al., 2010). More
systematic comparative studies of these F estimators
and the widely used surrogates are needed to understand
their behaviours and to facilitate the choice and use of
the most appropriate estimator in molecular ecology,
conservation biology and human genetics studies.

In this investigation, I will derive a new likelihood
estimator of individual inbreeding coefficient from its
marker genotype data, and compare it with other F
estimators and surrogates in accuracy using both
simulated and empirical data. I also improve a moment
F estimator by using its symmetric form and by applying
locus-specific weights. The analysis results from simu-
lated and empirical datasets are helpful in understand-
ing the behaviours and relative performances of different
estimators, and in choosing the appropriate estimator in
practical applications. They are also useful in the
experimental design of and the interpretations of the
results in studies involving individual inbreeding coeffi-
cients or surrogates, such as HFC studies.

Methods

In this section, I derive a new likelihood estimator that
accommodates allelic dropouts and null alleles, and
briefly describe a number of moment estimators of F
and a few widely used metrics for individual genomic
diversity or homozygosity. I then describe the simula-
tions and some empirical datasets that are used to
investigate the behaviours and to compare the accuracies
of different estimators.

Likelihood estimator
Consider a locus with k þ 1 alleles, denoted by Ai with
index i¼ 0, 1, 2, . . . k. The first allele, A0, is undetectable
(null) and its frequency in the population is q. The
remaining k alleles, Ai (i40), are detectable codominant
alleles, and their frequencies in the population are pi.
Obviously, qþSi¼ 1

k pi¼ 1 and q¼ 0 for a null allele free
locus. I assume allelic dropouts affect heterozygous
genotypes only, and when a single dropout occurs (at a
rate d) to a heterozygote, it leads to one of the two
possible homozygous phenotypes at an equal probability
(Wang, 2004). Double dropouts at the same locus of the
same individual are ignored, because they rarely occur
and, if they do, can be easily detected and thus rectified
by regenotyping. Allelic dropouts and null alleles are
assumed to occur independently to a genotype, and the
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probability of both occurring to the same genotype is
negligibly small. Under these assumptions, the prob-
ability of the observed phenotype (AiAi or AiAj), or the
likelihood of F, of an individual is

Q ¼ ðFpi þ ð1� FÞpiðpi þ ð1� pi � qÞdþ 2qÞÞ=ð1� PNÞ; for AiAiði40Þ
ð2ð1� FÞð1� dÞpipjÞ=ð1� PNÞ; for AiAjði; j40; i 6¼ jÞ

�

where PN¼ (1�F)q2þ Fq is the expected frequency of null
allele homozygotes. For a set of L loci under linkage
equilibrium, the likelihood function is

Q ¼
YL

l¼1
Ql ð2Þ

where the likelihood at locus l, Ql, is calculated by (1)
using locus specific values of pi, d and q.

In natural populations, the inbreeding coefficients of
most individuals are small. To incorporate this prior
information and to reduce the overestimation of F due to
the imposed constraint of FX0 in the likelihood function,
I apply a prior probability of e�F to the likelihood
function

Q ¼ e�F
YL

l¼1
Ql: ð3Þ

Maximising (3) gives the maximum likelihood esti-
mate of F. As it is intractable to solve (3) analytically, I use
Brent’s method (Press et al., 1996) to obtain numerical
solutions of (3) with F̂ constrained to the legitimate range
of [0, 1]. Tests using numerous simulated and empirical
datasets with a large number of initial F̂ values indicate
that the method is fast and converges reliably irrespec-
tive of the initial F̂ values. For simplicity, estimator (3) is
denoted as F̂L hereafter.

Moment F estimators
Ritland (1996) derived an estimator of the inbreeding
coefficient of an individual from its multilocus genotype
data,

F̂ ¼
XL

l¼1

ðkl � 1Þ
 !�1XL

l¼1

Xkl

i¼1

Sil � p2
il

pil
ð4Þ

where pil is the frequency of allele i (¼ 1, 2, y kl) at locus
l (¼ 1, 2, y, L), and Sil is an indicator variable taking a
value of 1, if the individual is homozygous for allele i at
locus l or 0, if otherwise. For a single locus (L¼ 1), this
estimator is the same as that derived by Li and Horvitz
(1953), based on the consideration of the proportion of
alleles in homozygous conditions. In the single locus
estimator, an equal weight is given to each allele
irrespective of its frequency (Ritland, 1996). The multi-
locus estimate of (4) was obtained by (Ritland, 1996) by
weighting single locus estimates. The weight for a locus
is the inverse of the variance of the estimate from the
locus, obtained assuming F¼ 0. For simplicity, estimator
(4) is denoted as F̂R hereafter.

In the case of a single k-allele locus, (4) yields an
estimate of F̂ii¼ (1/pi�1)/(k�1) for an AiAi homozygote
and F̂ij¼�1/(k�1) for any AiAj heterozygote (iaj). For a
homozygote, F̂ii40 and the magnitude of F̂ii decreases
with an increasing pi (the frequency of the allele in the
genotype) and k (number of alleles). In other words, (4)
gives a higher positive F estimate for an individual who
is homozygous for a more rare allele at a locus with
fewer alleles. F̂ii is larger than, equal to and smaller than

1, when pi o1/ k, pi¼ 1/k and pi41/k, respectively.
Extremely large estimates occur to homozygotes of very
rare alleles. If pi¼ 1/k2, for example, F̂ii¼ kþ 1. This

suggests that (4) is very sensitive to allele frequencies and
may be affected by misspecification of allele frequencies,
mutations and genotyping errors. For a heterozygote,
F̂ijo0 and the magnitude of F̂ij decreases with k,
irrespective of the frequencies of the alleles in the
heterozygote. Overall, (4) is lower bounded by �1 (which
occurs to a heterozygote at a biallelic locus), but has no
upper bound. The distribution of (4) is rightward skewed.

Carothers et al. (2006) obtained a single-locus F
estimator

F̂ ¼ h� 1þ S

h
; ð5Þ

where h is the expected heterozygosity and S is an
indicator variable taking a value of either 1, if the
individual is a homozygote or 0, if otherwise, at the
locus. (5) is the same as that derived by Li and Horvitz
(1953), based on the consideration of the total proportion
of heterozygotes. Carothers et al. (2006) showed that (5) is
an unbiased estimator of F and its variance is (1�F)(1/
h�1þF), which reduces to 1/h�1 approximately for low
inbreeding. Using the inverse of the variance as the locus
weight, a multilocus estimator is obtained

F̂ ¼
XL

l¼1

hl

1� hl

 !�1XL

l¼1

Sl

1� hl
� 1

� �
; ð6Þ

where hl is the expected heterozygosity and Sl is the
indicator variable for homozygosity as defined in (5), at
locus l (¼ 1, 2, y, L). For simplicity, estimator (6) is
denoted as F̂C hereafter.

In the case of a single locus, (5) yields an estimate of
F̂ii¼ 1 for any homozygote and F̂ii¼ 1�1/h for any
heterozygote (iaj). Theoretically (5) is upper bounded
by 1 and has no lower bound, as F̂ij decreases with a
decreasing heterozygosity. In contrast to F̂R, therefore, F̂C

is leftward skewed. However, F̂C is less skewed than F̂R,
and is less sensitive to rare alleles, mutations and
genotyping errors.

Ritland and Travis (2004) derived, following Lynch
and Ritland’s (1999) approach to pairwise relatedness
estimation, an estimator for the inbreeding coefficient
of an individual with a single locus genotype AiAj (i,j¼ 1,
2, y, k)

F̂ ¼ S� pi

1� pi
; ð7Þ

where allele i is arbitrarily chosen as the reference allele
and the indicator variable S¼ 1 if i¼ j and S¼ 0 if iaj. A
better estimator is to use both alleles as reference and
take the average of the two resulting estimates as the
overall estimate

F̂ ¼ 1

2

S� pi

1� pi
þ

S� pj

1� pj

� �
ð8Þ

Estimator (8) is the same as (7) when the individual is a
homozygote (i¼ j), but is more accurate than (7) when

(1)
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the individual is a heterozygote (iaj). It is shown in
Appendix A that (8) is an unbiased estimator of F. Using
the inverse of the variance of (8) (see A1) as a weight, I
obtain a multilocus estimator

F̂ ¼
XL

l¼1

wl

 !�1XL

l¼1

wl

2

Sl � pil

1� pil
þ

Sl � pjl

1� pjl

� �
ð9Þ

where, for locus l,

wl ¼ 1� hl þ
1

2

Xkl

i¼1

Xkl

j¼iþ1

pilpjl
pil

1� pil
þ

pjl

1� pjl

� �2
0
@

1
A
�1

is the weight, Sl is the indicator variable for homo-
zygosity (¼ 1/0 if the individual is a homozygote/
heterozygote), hl is the expected heterozygosity and pil is
the frequency of allele i. For simplicity, estimator (9) is
denoted as F̂LR hereafter.

In the case of a single locus, (8) yields an estimate of

F̂ii¼ 1 for any homozygote and F̂ij ¼ � 1
2 ð

pi

1�pi
þ pj

1�pj
Þ for a

heterozygote AiAj (iaj). F̂ij is always negative and its
magnitude (absolute value) decreases with the frequen-
cies of the two alleles in the heterozygote. F̂ij-0 when
both pi-0 and pj -0, and F̂ij-�1 when both pi -0.5
and pj -0.5. Therefore, (8) falls in the range of [�1, 1]. In
general, F̂LR is less skewed than both F̂R and F̂C. It is less
sensitive than F̂R and more sensitive than F̂C to rare
alleles, mutations and genotyping errors.

In the case of multiple biallelic loci, wl reduces to hl/
(1�hl), and (8) reduces to (5). Irrespective of the number
and allele frequency distribution of loci, (9) and (6) are
identical. In the case of an equal allele frequency, the
three estimators (F̂LR, F̂R and F̂C) are identical and reduce

to ðL�
PL

l¼1 SlklÞ=ðL�
PL

l¼1 klÞ, where kl is the number of
alleles at locus l (¼ 1, 2, y, L).

Surrogate metrics
Quite a few metrics have been proposed and applied
to measure and assess individual homozygosity or
heterozygosity. They are widely applied to HFC
studies as surrogates for inbreeding coefficients (Chap-
man et al., 2009; Szulkin et al., 2010). Here I focus on three
of them.

The MLH of an individual is the proportion of loci that
are heterozygous. It is a diversity measurement, and its
complement gives the proportion of loci that are
homozygous and acts as a proxy of inbreeding coeffi-
cient. If there is inbreeding depression, therefore, one
should observe a negative correlation between MLH and
a fitness component among individuals. There are quite a
few variants to MLH (Chapman et al., 2009; Szulkin et al.,
2010). MLH ignores locus specific properties (for
example, number and frequencies of alleles), and thus
is simple to calculate and is robust to misspecifications
of allele frequencies, scoring errors and mutations.
It is criticised, however, for wasting information, which
may lead to reduced accuracy. For example, a homo-
zygote for a rare allele should indicate a higher level
or/and a greater chance of inbreeding than a homo-
zygote for a common allele. Similarly, a homozygote
at a locus with many alleles in an even frequency
distribution should indicate a higher level or/and a
greater chance of inbreeding than a homozygote at a

locus with few alleles in a skewed frequency distribu-
tion. MLH fails to incorporate allele frequency informa-
tion within a locus and between loci and may be
inappropriate when markers differ in number and
frequency of alleles, or when not all individuals are
typed with the same panel of markers (Aparicio et al.,
2006).

Aparicio et al. (2006) proposed a homozygosity index
that weighs the contribution of loci by their expected
heterozygosity. The index, called homozygosity by locus
(HL), is defined as

HL ¼

PL
l¼1

Slhl

PL
l¼1

hl

; ð10Þ

where, at locus l, Sl is an indicator variable that
takes values of 1 and 0 when the individual is a
homozygote and heterozygote, respectively, and hl is
the expected heterozygosity. HL varies between 0, when
all loci are heterozygous and 1, when all loci are
homozygous. For two individuals having the same
number of homozygous loci, the one whose homozygous
loci are more informative (that is, with higher hl values)
has a higher HL. No distinctions are made, however,
among genotypes within a locus in calculating HL.
Individuals having the same set of homozygous loci
will have the same value of HL, although they
may be homozygous for different alleles of different
frequencies.

Adapting Queller and Goodnight’s (1989) measure
of relatedness between individuals, Amos et al. (2001)
proposed a metric, called IR, to measure the relatedness
between paternal and maternal alleles at a locus in an
individual. It is defined as

IR ¼

PL
l¼1

ð2Sl � p1l � p2lÞ

PL
l¼1

ð2� p1l � p2lÞ
; ð11Þ

where Sl is as defined in (10) and p1l and p2l are the
frequencies of the two alleles in the individual genotype
at locus l (¼ 1, 2, y, L). IR varies between 1, when all loci
are homozygous, and �1, when all loci are biallelic and
heterozygous.

It can be shown that, while 1�MLH, HL and IR
are all positively correlated with inbreeding coefficients
(F), they are biased estimators of F. However, the
degree of bias is irrelevant when the absolute values of
F are insignificant as in correlation analyses (such
as HFC).

Evaluation of estimators using simulated data
The performances of F estimators and surrogate metrics
are measured by their correlation coefficients with the
true F values in simulations. The true F value of an
individual is drawn from a beta distribution with
parameters a and b, so that the mean and variance of F
are a/(aþ b) and ab/((aþb)2(aþbþ 1)), respectively.
For a given F, the individual genotype is generated from
a given allele frequency distribution at a locus, and
genotypes at multiple loci are generated independently
assuming linkage equilibrium. Where allelic dropouts or
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null alleles are considered, individual genotypes are
changed at random, following the models and at the
rates of these events before being analysed for inbreed-
ing. Allele frequencies at a locus are drawn from a
uniform Dirichlet distribution and are used in generating
simulated genotypes, and in calculating F estimators and
surrogate metrics.

To investigate the impact of the variance in actual F on
the performances of different estimators, values of
parameters a and b are chosen in simulations to yield a
fixed mean (0.05, which is close to those in empirical
studies) and a variable variance (0.0001–0.0256) of F.
To understand the relative performances of different F
estimators when different numbers of markers with
variable polymorphisms are used, genotype data at a
variable number of loci with a variable number of
alleles per locus were simulated and analysed by the
estimators. To investigate the sensitivity of different
estimators and metrics to the misspecification of allele
frequencies, a sample of individuals is drawn from the
population to estimate allele frequencies. The estimated
frequencies are then used in calculating F estimators and
surrogate metrics. To investigate the effect of allelic
dropouts on the performances of the estimators, geno-
type data with a variable allelic dropout rate were
generated and analysed by different estimators. For the
likelihood estimator, the data were analysed with
dropouts both accounted for and ignored. For a given
set of parameters, 100 000 replicated datasets are simu-
lated and analysed to produce a correlation coefficient
between each F estimator (surrogate metric) and the
simulated true F value.

All estimators and metrics should be positively
correlated with F, except for MLH, which is negatively
correlated with F. To facilitate comparison with other
estimators and metrics, the absolute values of correlation
for MLH are drawn in all graphs.

Evaluation of estimators using two empirical datasets of

human populations
To compare the performances of the F estimators and
surrogate metrics in practical situations, they are applied
to the analysis of two empirical datasets. One dataset is
from Rosenberg et al. (2005), which contains the genotype
data at 783 autosomal microsatellite loci and 210
insertion/deletion polymorphisms of 1048 individuals
from 53 populations. The other dataset is from Pember-
ton et al. (2008), which contains the genotype data at 2810
SNPs of 957 individuals. Both datasets are available
online from http://rosenberglab.bioinformatics.med.
umich.edu/diversity.html. As individual inbreeding coef-
ficients are unknown, it is impossible to use the correlation
coefficient as adopted in simulations to measure accuracy.
However, to be a good estimator of F or genomic diversity,
it should yield estimates, from two independent sets of
markers that are correlated (Balloux et al., 2004). For each
dataset, a number of L markers are selected at random
without replacement from the original set of loci to form
one subset, and another subset of L markers is selected
similarly. The two non-overlapping subsets are then used
to calculate an F estimator or metric of each individual, and
the correlation coefficient between the two sets of estimates
is calculated. This process is repeated 1000 times for each
value of L.

Results

Variance of actual F
At a given low mean value (0.05) of actual F, the
correlations between different metrics and F values as a
function of the variance of F are compared in Figure 1. As
can be seen, all metrics become more correlated with F
with an increasing variance in F, as expected. When the
variance of F is small, all individuals tend to have the
same or very similar levels of inbreeding. In such a case,
no matter which metric is used and how informative the
markers are, the correlation is always small. This is
understandable because the covariance and thus correla-
tion between two random variables becomes zero when
either variable tends to become constant. A more
appropriate measurement of the accuracy of a metric is
its mean squared error, which incorporates both the
variance and bias of the metric and is valid, regardless of
the variance of F. Unfortunately, however, mean squared
error is not suitable for comparing F estimators and other
metrics, as the latter can be highly biased whereas the
former are unbiased. This caveat of correlation coefficient
as an accuracy measurement should be born in mind and
a low correlation does not necessarily mean that F is not
accurately estimated by the unbiased estimators (F̂L, F̂LR,
F̂R and F̂C).

Among the estimators and metrics, F̂L is the best, F̂R is
the worst, whereas the rest have the same intermediate
performance in the whole range of the variances of F. F̂R

gives unbiased estimates of F, but the estimates are
highly variable and thus have a low correlation with F.
In (4), weighting is applied to alleles within a locus and
to different loci, based on the assumption of F¼ 0.
Although this is probably the best weighting scheme
when inbreeding is low, it does cause a loss of precision
for individuals with a substantial level of inbreeding.
The other two moment estimators, F̂LR and F̂C, use a
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Figure 1 Correlation coefficient between each estimator (metric)
and true F as a function of the variance of F. A total of 10 markers,
each having 10 alleles with frequencies drawn from a uniform
Dirichlet distribution, are used in calculating the F estimators
(metrics). In the simulations, an individual F value was drawn from
a beta distribution with a fixed mean of 0.05, and with a variance
increasing from 0.0001 to 0.0256 on the x axis.
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similar weighting scheme, but the scheme is applied to
loci only. Furthermore, F̂R is highly sensitive to the
presence of rare alleles and could lead to extremely large
estimates for a homozygote of very rare alleles.

In Figure 1, a fixed low level of inbreeding, 0.05, is
simulated to mimic real populations. A review reveals
that the mean and variance of individual inbreeding in
12 vertebrate populations are on average 0.042 (range
0.007–0.103) and 0.0047 (range 0.0007–0.0192) (Slate et al.,
2004). Using a variable number of microsatellites (13–
138), the correlation between MLH and F is observed to
be �0.26 on average, with a range of �0.03B�0.54 (Slate
et al., 2004). These results are qualitatively consistent
with the simulation results shown in Figure 1. At other
levels of mean inbreeding, results similar to those shown
in Figure 1 were also obtained in simulations.

Number of markers
Figure 2 shows the correlations between different metrics
and F values as a function of the number of markers used
in analyses. The mean and variance of F were fixed at
0.05 and 0.005 in simulations to match the observed
values in empirical studies (Slate et al., 2004). For the case
of microsatellites (each having 10 alleles, Figure 2a), F̂L

outperforms the other metrics no matter how many
markers are used. The worst metric is F̂R, in agreement
with Figure 1. MLH becomes the second worst metric
with an increasing number of loci, probably because it
discards allele frequency information. In contrast, the
two improved metrics, IR and HL, have a performance,
which is much better than that of MLH and is similar to
that of F̂LR and F̂C. The correlations between F̂L and F are
0.57 and 0.71, respectively, when L¼ 16 and 32, respec-
tively. For MLH to attain the same levels of correlations
with F, however, L¼ 32 and 120 markers must be used,
respectively.

Similar results are obtained for SNPs (each having two
alleles), as shown in Figure 2b. The differences are, MLH
performs the worst and F̂LR becomes identical to F̂C. The
performance of F̂R is improved to become the second
worst, because of the much-reduced chances of rare
alleles and much-fewer weightings within a locus.

Number of alleles
Figure 3 compares the correlations between different
metrics and F values as a function of the number of
alleles per locus (k). Although all metrics are increasingly
correlated with F with an increasing value of k, MLH and
F̂R become almost attenuated when roughly k¼ 16. This
is because MLH makes no use of allele frequency
information, which becomes more important with an
increasing value of k under the uniform Dirichlet
distribution. F̂R is sensitive to rare alleles and could
yield extremely large estimates for homozygotes of rare
alleles. Furthermore, there are k equal weightings about
the k alleles at a locus, the weightings being optimal only
when F¼ 0 (Ritland, 1996). Because of these two causes,
F̂R becomes more and more inferior to other metrics in
performance with an increasing k. In practice, this
estimator has some value only when k is small, such as
the case of SNPs.
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Except for MLH, all metrics use allele frequency
information and their performances (excluding that
of F̂R) improve with an increasing number of alleles.
Again, the likelihood estimator outperforms the others,
regardless the value of k, whereas F̂LR, F̂C, IR and HL are
almost indistinguishable in performances.

Sample size
In the above, allele frequencies are assumed known in
calculating each metric. In reality, however, allele
frequencies are estimated from a sample of individuals
and how robust the metrics are to misspecifications of
allele frequencies is of practical interest. Figure 4 plots
the correlations between different metrics and F values
as a function of the size of the sample used in estimating
allele frequencies. All metrics, except for F̂R, are fairly
robust to sampling errors of allele frequencies. There is
no substantial loss of performance even when only 10
individuals are used to estimate allele frequencies. In
contrast, F̂R is extremely susceptible to sampling errors of
allele frequencies. Its correlation with F stabilizes only
when sample size reaches about 300 (Figure 4).

Allelic dropouts
Allelic dropouts lead to an excess of homozygotes and
thus an overestimation of F if they are ignored. Figure 5
compares the correlations between different metrics and
F values as a function of the dropout rate (d) at each of 20
loci. The likelihood estimator was implemented with
allelic dropouts either ignored (that is, assuming d¼ 0) or
taken into account. As can be seen, all metrics become
less correlated with F with an increasing value of d. This
is true even with the likelihood estimator in which allelic
dropouts are accommodated. As expected, the likelihood
estimator is more sensitive to dropouts. Its performance
drops faster than that of other metrics with an increasing

d value, when dropouts are ignored. In contrast, when
dropouts are accounted for, the likelihood estimator is
always substantially better than other estimators, regard-
less of the value of d. Similar results were obtained for
the cases of null alleles, and both null alleles and
dropouts.

Analysis of empirical datasets
The correlations between estimates from two subsets of
markers as a function of the number of markers included
in a subset (L) are shown in Figure 6. For microsatellites,
F̂R has the lowest correlation, regardless of the value of L,
confirming the simulation results for markers with
multiple alleles. F̂L has the highest correlation, whereas
MLH has the second lowest correlation throughout the
range of L (5–496). For SNPs, F̂L has the highest and
MLH has the lowest correlation. F̂LR and F̂C are identical
and are indistinguishable from HL in correlation. IR and
F̂R have very similar correlations that are slightly smaller
than those of F̂L.

For both datasets, the highest correlation obtained
with F̂L is larger than 0.8, suggesting a high level of
identity disequilibrium. This is not surprising consider-
ing that the datasets of microsatellites and SNPs come
from 53 and 54 worldwide populations, respectively.
These populations are genetically differentiated (for
example, Rosenberg et al., 2005) and are different in size,
and thus in levels of inbreeding. Furthermore, consan-
guineous marriages are customary in some populations
(Bittles and Neel, 1994), which leads to a further increase
in identity disequilibrium.

Discussion

In this investigation, I proposed a likelihood estimator of
individual inbreeding coefficient (F) that makes efficient
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use of marker information (allele frequencies) and takes
into account of allelic dropouts, null alleles and prior
knowledge of inbreeding. The estimator is compared
with three moment estimators of F and three metrics of
homozygosity (or heterozygosity) by analysing both
simulated and empirical datasets. It is shown that the
likelihood estimator invariably outperforms the other
estimators and metrics across all situations considered.

The performance differences among the estimators
and metrics come mainly from the schemes used to
weigh the information among alleles within a locus and
among loci. The optimal weighting is built into the
likelihood estimator naturally, whereas the weighting
scheme for each moment estimator of F is derived
assuming F¼ 0. For inbred individuals (F40), the
weighting is obviously suboptimal and thus leads to a
loss of accuracy. The problem is especially acute for F̂R in
the case of a multi-allele locus, because F̂R uses an equal
weight for each allele at the locus. When the number and
frequency differences of alleles at a locus are large, this
weighting scheme results in a substantial loss of
accuracy. It seems that F̂R should not be used in practice
for highly polymorphic multi-allele loci, such as micro-
satellites. Compared with MLH that makes no weighting
within and between loci, both HL and IR have much
improved performances brought about by weighting loci
using allele frequency information. The improvements
are visible even when allele frequencies are inaccurately
estimated (Figure 4) or genotyping errors are present
(Figure 5), and increase with the number of alleles per
locus (Figure 3).

The three moment estimators of F are unbiased, the
likelihood estimator is slightly biased due to the
constraint of FX0, whereas the three homozygosity
metrics are all biased for F. IR is generally much less
biased than MLH and HL, and its bias reduces rapidly
with an increasing number of loci. Although the four F
estimators provide the absolute estimates of F, the three
homozygosity metrics yield estimates that indicate
relative levels of inbreeding. Measured by the correlation
with true values of F, IR, HL, F̂LR and F̂C have a similar
intermediate performance, the likelihood estimator has

the best performance and MLH and F̂R have the worst
performance overall. Measuring performance by correla-
tion coefficient is justified only when the estimates are
used in a regression or correlation analysis, such as HFC.
More generally, performance is better measured by mean
squared error, which accounts for both sampling error
and biasness and is valid regardless of the variance of
F. When mean squared error is adopted as the criteria,
F̂LR and F̂C would be better than the three homozygosity
metrics.

As a performance (accuracy) measurement, the corre-
lation coefficient between an estimator and the true F
values is simple and valid, regardless of the degree of
bias. Like any other summary statistics, however, it does
not provide a complete assessment of the performance.
A low correlation coefficient, for example, can be due to a
low covariance between F and the estimator, a high
variance of the estimator, or both. A scatter graph
showing the correlations between the estimated and
simulated F values is more informative, but takes too
much space. A set of such scatter graphs showing the
correlations between each estimator and F can be found
in Appendix B. As can be seen, all estimators are highly
scattered around the true simulated F value. The F̂R

estimator has especially a high sampling variance,
yielding frequently estimates larger than 1, which are
out of the scale of the graph.

Allele frequency distributions of the markers affect all
estimators, but to different degrees. Some estimators,
such as F̂R, are highly sensitive to the presence of rare
alleles, whereas others are resilient. Simulation results
are shown in Figures 1–5 for a uniform Dirichlet
distribution of allele frequencies. In practice, allele
frequencies are probably more skewed, yielding more
rare alleles than the uniform distribution. I have also
conducted simulations assuming a triangular and an
equal allele frequency distribution, yielding qualitatively
the same conclusions as reached from the simulations
using the uniform distribution.

Given the poor performance of MLH compared with
the likelihood estimator, it is possible that the low HFCs
observed in numerous empirical studies (Chapman et al.,
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2009; Szulkin et al., 2010) are partially caused by the
adoption of this inaccurate metric. Higher HFCs might
have been obtained should the likelihood F estimator be
used in these empirical studies. The likelihood method
can use marker information efficiently and can incorpo-
rate null alleles and allelic dropouts. With slight
modification, it can use dominant markers (such as
AFLPs, see Dasmahapatra et al., 2008) together with
codominant markers to estimate F. It can also deal with
linkage among genomic markers, if the linkage map of
the markers is known (Leutenegger et al., 2003). It seems
to be difficult or impossible to cope with these complex-
ities for moment estimators of F or metrics of homo-
zygosity.

It is generally accepted that pedigree data allow a
much better inference of inbreeding than genetic markers
(Balloux et al., 2004). Although this is probably true in
some practical situations, it should be realised that
several conditions have to be satisfied for pedigree-
derived inbreeding estimates to be more accurate than
marker-based estimates. First, the pedigree must be deep
enough. Shallow pedigrees spanning just a couple of
generations fail to capture a sufficient number of
inbreeding loops and thus lead to an underestimation
of inbreeding. Furthermore, because of the lack of
information about the founders, they are assumed non-
inbred and unrelated which may lead to further under-
estimation of F. Although just a few generations are
required to provide a reasonably good estimate of F
(Balloux et al., 2004) in balanced pedigrees formed
through random mating, a considerably larger number
of generations are necessary in unbalanced pedigrees
formed by non-random mating, such as avoidance of
close inbreeding found in some natural populations and
in plant and animal breeding. MacCluer et al. (1983)
estimated the inbreeding levels of 5207 standardbred
horses from six breeding farms in North America, using
the pedigrees traced back as far as 30 ancestral genera-
tions. They showed that inbreeding coefficients increase
markedly with increasing pedigree depth, levelling off
only after 10–12 generations. It is true that a recent
common ancestor for the parents of an offspring has a
disproportionately large impact on the offspring’s F, but
there could be many remote common ancestors, remem-
bering that the total number of ancestors roughly double
with each generation into the past. Second, the pedigree
must be complete and accurate. For most natural
populations, pedigrees are difficult to acquire and, if
available, are usually incomplete and inaccurate as they
are obtained most often from a combination of beha-
vioural observations and marker-based inferences. It is
now well recognised that behavioural data are unreliable
because of events such as the widespread occurrence of
extra-pair mating (for example, Petrie and Kempenaers,
1998). Genetic parentage assignments from marker data
(Marshall et al., 1998; Wang and Santure, 2009) are also
error prone, with an accuracy depending heavily on the
amount of marker information.

It should also be realised that pedigree- and marker-
based inbreeding coefficients are conceptually different.
The F value calculated from pedigrees gives the expected
inbreeding of an individual, or the expected probability
of identity by descent of the two alleles at a random locus
in the individual’s genome. Individuals (say, full
siblings) with the same pedigree have the same expected

inbreeding, but may have different realised levels of
inbreeding. Meiosis is a highly stochastic process.
Although half of the DNA making up a gamete is
expected to be maternally derived and half is expected to
be paternally derived, there is a high stochastic variance
about this expectation (Stam, 1980). As a consequence,
grandchildren vary in the proportion of DNA they
inherit from each of their four grandparents. For humans
as an example, while the F value of the offspring of first
cousin marriage is expected to be 0.0625, its standard
deviation is 0.0243 (Carothers et al., 2006). This variance
increases with a decrease in genome size and recombina-
tion. Therefore, pedigree-derived F is the expected
inbreeding level of individuals possessing the same
pedigree and acts as an approximate estimate of
individual genome-wide autozygosity (realised inbreed-
ing). In contrast, the F value inferred from markers gives
the average realised level of inbreeding at these
particular loci of a particular individual. When these
markers are taken at random from the genome, it also
gives a good estimate of genome-wide inbreeding. Given
a sufficient number of markers, they could provide a
better estimate of individual genome-wide autozygosity
than pedigrees. This is becoming a reality with the
rapidly increasing availability of high-density genome-
scan data. Marker-based inbreeding estimation also
makes it possible to investigate inbreeding-related effects
(such as inbreeding depression) using individuals with
the same pedigree and thus the same expected F, as their
realised levels of inbreeding are variable.
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Polašek O, Hayward C, Bellenguez C, Vitart V, Kolčić I,
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Appendix A

Mean and variance of moment estimators of F
For a locus with k codominant alleles of frequencies pi

(i¼ 1, 2, y, k), the mean and variance of estimator (6) for
individuals with inbreeding coefficient F are
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Xk
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where h is the expected heterozygosity. With low
inbreeding (F-0), the variance is approximately

V½F̂� ¼ 1� hþ 1

2

Xk

i¼1

Xk

j¼iþ1

pipj
pi

1� pi
þ

pj

1� pj

� �2

: ðA1Þ

Appendix B

Scatter graphs between each estimator and F
The estimates from each estimator and the true simu-
lated F values across 100 000 replicate simulated datasets
are plotted in a scatter graph, Figure A. The simulated
individual F values were drawn from a beta distribution
with a mean and variance of 0.05 and 0.005, respectively.
A total of 20 markers, each having 10 alleles with
frequencies in a uniform Dirichlet distribution, are used
in simulations.
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