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Abstract
Iterative thresholding algorithms have a long history of application to signal processing. Although
they are intuitive and easy to implement, their development was heuristic and mainly ad hoc.
Using a special form of the thresholding operation, called soft thresholding, we show that the fixed
point of iterative thresholding is equivalent to minimum l1-norm reconstruction. We illustrate the
method for spectrum analysis of a time series. This result helps to explain the success of these
methods and illuminates connections with maximum entropy and minimum area methods, while
also showing that there are more efficient routes to the same result. The power of the l1-norm and
related functionals as regularizers of solutions to underdetermined systems will likely find
numerous useful applications in NMR.

Introduction
The computation of NMR spectra from short, noisy data records has long been a challenging
problem. Procedures adopted from fields outside of NMR have proven to be superior to the
discrete Fourier transform (DFT)[1, 2]; examples include maximum entropy (MaxEnt) [3, 4]
and minimum-area[5] reconstruction, maximum likelihood reconstruction (MLM)[6, 7], and
matrix methods such as LPSVD[8] and HSVD[9]. A method that is conceptually simpler
and easier to implement than these methods is iterative thresholding[10-12]. This and related
thresholding algorithms are widely used in the fields of image processing and fMRI.
Iterative thresholding is a fixed-point technique; an operation is repeatedly applied until it no
longer results in a change. The repeated operation has a particularly simple form: it involves
setting all values below a threshold τ (in absolute value) to zero, while leaving values above
τ unchanged.

Iterative thresholding algorithms applied to spectrum analysis have a strong heuristic appeal.
Consider a free induction decay (FID) containing several exponentially decaying sinusoids
with similar amplitudes, in which the length of the FID is short compared to the decay time
of the sinusoids. A high-resolution estimate of the spectrum can be obtained by zero-filling
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the FID prior to discrete Fourier transformation, but the DFT spectrum will contain
truncation artifacts. Choose a threshold value τ that is smaller than the peak maxima, but
larger than any truncation artifacts, and set every point in the DFT spectrum that is below τ
to zero, leaving the others unchanged. The inverse DFT of the thresholded spectrum will not
agree very well with the input FID. However, if we consider only the part that extends the
measured data, we may find that it is a more realistic extension than extending the data with
zeros. Thus a better spectral estimate may be obtained by extending the FID with values
from the inverse DFT of the thresholded spectrum, or equivalently, replacing the initial part
of the inverse DFT with the original FID. This process of inverse Fourier transformation,
replacement, Fourier transformation, and thresholding (Fig. 1) is repeated until there is no
change in the spectrum, that is, until the fixed-point is reached.

We refer to the thresholding operation in which values above τ are unchanged as hard
thresholding. By contrast, in the soft thresholding operation, data with absolute values above
τ are reduced by τ (with no change in complex phase). We show in the Appendix
(Supplementary Material) that the fixed-point of iterative soft thresholding (IST) is also a
minimum l1-norm reconstruction (defined below). This equivalence has several
implications. (1) Formal results on the properties of minimum l1-norm reconstructions have
been derived; no comparable results on the properties of the fixed-points of iterative
thresholding procedures are available; (2) Logan's theorem [13] shows that under certain
circumstances l1-norm reconstruction is able to perfectly reconstruct the spectrum of a noisy
signal; (3) The equivalence demonstrates how IST can be generalized to incorporate
deconvolution and modified to improve convergence; (4) The equivalence illuminates
similarities between IST and methods such as MaxEnt and minimum-area reconstruction.
The power of the l1-norm for regularizing reconstructions from sparse or noisy data has
received considerable attention in the statistical and applied mathematics
communities[13-16], and helps to explain the success of iterative thresholding methods.

We also note that fixed thresholding has been applied to the wavelet domain as a means for
“denoising” NMR spectra[17-19]. While we consider thresholding in the frequency or
Fourier domain in this work, similar results (the equivalence of iterative soft thresholding
and l1-norm regularization) apply to wavelet thresholding.

Minimum l1-norm reconstruction
The l1-norm of a spectrum f is defined as

[1]

where N is the number of points in the complex vector f. The goal of minimum l1-norm
reconstruction is to find the spectrum f which minimizes L(f) subject to the constraint that f
is consistent with the experimental data. This constraint is expressed by the formula

[2]

where M is the number of points in the complex FID d and C0 is an estimate of the
experimental error; IDFT is the inverse DFT. Minimum l1-norm reconstruction is similar to
minimum area reconstruction, proposed by Newman[5], the only difference being that
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Newman's “area” amounts to , which is not invariant under changes
of phase. As we shall see later, minimum l1-norm also bears a resemblance to MaxEnt.

The properties of minimum l1-norm reconstruction were extensively studied by Logan[20].
One of his most striking results is that under certain conditions, having to do with the
relative sparsity of the noise in the FID and the peaks in the spectrum, minimum l1-norm
reconstruction can result in a perfect spectrum, with no residual noise. Unfortunately,
Logan's conditions do not apply to real NMR data, but this result indicates the potential
power of the technique.

The problem of determining the minimum l1-norm reconstruction can be converted to an
unconstrained optimization problem by introducing a Lagrange multiplier τ. Let the
objective function Q(f) be given by

[3]

As we show in the Appendix (Supplementary Material), if f is a minimum l1-norm
reconstruction, then f is a minimum of Q. One technique for finding this minimum is to
perform a gradient search. The gradient of Q is

[4]

Computing the gradient of L is straightforward. Expanding Eq. [1], and writing  and  for
the real and imaginary parts of fω, we obtain

[5]

[6]

We will adopt the convention that ∂L / ∂fω is , which yields

[7]

The derivation of ∇C(f) is more laborious; we simply state the result (details are given in
(14)). Let F be the (N × N) unitary matrix corresponding to the DFT, and let K be the (M ×
N) projection matrix which shortens an N-element vector to its first M elements. Then

[8]

and

[9]
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where † denotes the Hermitian transpose; F† corresponds to the IDFT and K† corresponds to
zero-filling.

Relationship of IST to minimum l1-norm reconstruction
The somewhat opaque expression in Eq. [9] belies the simplicity of the underlying
operations. Re-writing Eq. [9] in operator notation,

[10]

where trunc(x) = zerofill(shorten(x)) is the operation of setting the elements xM, ..., xN-1 to
zero. Now we are in a position to see the unexpected relationship between the gradient of Q
and the operations of IST. Soft thresholding by τ is expressed by

[11]

So for indices ω at which |fω| > τ , soft thresholding is the same as subtracting τ∇L. The
replacement step of IST is expressed by

[12]

Comparison with Eq. [10] shows that replacement is the same as subtracting ∇C. So
combining the replacement operation and the thresholding operation, we see that one
iteration of IST corresponds to motion opposite the gradient of Q, and a fixed point of IST
corresponds to a minimum of Q.

This description is not quite complete, since ∇L is not defined for fω = 0 and soft
thresholding is not the same as subtracting τfω/|fω| if |fω| < τ. Nevertheless, the description
does suggest the relationship between IST and minimum l1-norm reconstruction; the formal
proof of their equivalence is given in the Appendix.

This equivalence shows how IST can be generalized to perform deconvolution.
Deconvolving a decay w involves reconstructing a spectrum whose IDFT, when weighted
by w, agrees with the experimental FID. This weighting can be incorporated into Eq. [2] by
setting

[13]

The corresponding modification to Eqs. [8] and [9] simply involve setting the diagonal
elements of the matrix K equal to w. The only change needed in IST is to adjust the
replacement operation so that it coincides with motion opposite the gradient of the revised
constraint. In operator notation, this becomes

[14]

where the weight operator corresponds to pointwise multiplication by the decay w.
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IST is capable of reconstructing spectra for non-linearly sampled data (15). Indeed, this can
be viewed as a special case of deconvolution: the weights for points not sampled are simply
set to zero.

Relationship of IST to MaxEnt
The equivalence of IST and minimum l1-norm reconstruction also makes clear the similarity
to MaxEnt. The basic aim of MaxEnt reconstruction is the same as that of minimum l1-norm
reconstruction, except the regularization functional is the entropy, rather than the l1-norm.
The entropy functional S is approximately given by

[15]

The main difference between the entropy and the l1-norm is the opposite sign; consequently
maximizing the entropy is very similar to minimizing the l1-norm. It has been shown that
under certain circumstances, the action of MaxEnt reconstruction is equivalent to a nonlinear
scaling of the DFT spectrum[21]. The nonlinear scaling reduces the absolute value of each
point in the spectrum; small values are scaled down proportionally more than large values.
The similarity to soft thresholding is clear.

Convergence of IST
While the formal results presented in the appendix show that the fixed-point of IST is the
minimum l1-norm reconstruction, they say nothing about how quickly IST converges.
Indeed, the finite precision of computer arithmetic makes it entirely possible that the step
size may reach machine zero — a value smaller than the smallest non-zero number that can
be represented — well before the minimum of Q has been reached. Should this happen, the
algorithm would appear to have converged, but it would not produce the correct result. In
testing for convergence, therefore, it is important that we monitor not only the step size,
defined by

[16]

where fω(i) is the ωth element of f at iteration i, but also the quantity

[17]

which is equal to zero only at a minimum of Q. (At indices ω for which fω=0, the gradient of
L is not defined; these indices can simply be ignored in calculating Test.)

Figure 2 shows various spectrum reconstructions of a f1 column from a NOESY data set
(following processing in f2) in which the diagonal resonance is about 10 times more intense
than the off-diagonal resonances. Row A is the unapodized, zero-filled DFT. The result of
IST applied for 800 steps is shown in row B; Stepsize became negligibly small, but not zero.
Row C shows the results of a modified algorithm in which the change during each iteration
is −β(i)∇Q, instead of −∇Q, where β(i) is a scale factor chosen to minimize Q at iteration i;
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it can be found by a simple line search (we refer to this algorithm as line-search IST, as
opposed to simple IST).

Figure 3 shows Q, Test, and Stepsize as a function of i. Since IST moves opposite ∇Q, the
value of Q always decreases monotonically, in contrast to Test and Stepsize. The non-
monotonic behavior of Stepsize and Test for line-search IST reflects well-known
deficiencies of gradient descent[22]. Figure 3 also shows that merely monitoring Stepsize is
not a safe way to test for convergence, since it becomes very small for simple IST even
while Q is still changing. Test has not converged to zero for simple IST even after 800
iterations. In contrast, Test converges to zero for line-search IST at about the time that
Stepsize becomes very small. The final values for Q are 14830 and 14665 for simple IST and
line-search IST, respectively.

Robustness of Minimum l1-norm Reconstruction
Figure 2 illustrates that IST is capable of suppressing the truncation artifacts typical of zero-
filled DFT spectra. For comparison, row D of Figure 2 shows a MaxEnt reconstruction. The
most striking difference is that minimum l1-norm reconstruction apparently “resolves” fine
structure in the peaks that is not evident at all in the MaxEnt reconstruction. A simple test
demonstrates that the additional structure in the minimum l1-norm reconstruction is not
correct. Figure 4 contains IST and MaxEnt reconstructions for the same data as Figure 3,
except that a single synthetic decaying sinusoid has been added to the time domain data
prior to reconstruction. Row A shows that IST yields an artifactual split line, while MaxEnt
(row B) correctly yields a single peak. The reconstructions agree equally well with the time
domain data: they have identical values of C(f).

In addition to proving more robust, MaxEnt reconstruction is more efficient. The modified
Cambridge algorithm used to compute the MaxEnt reconstruction (14, 18) involves 8
discrete Fourier transformations during each iteration (except the first), plus several other
matrix operations. Line-search IST requires two DFT's per iteration. IST typically requires
on the order of ten times as many iterations as MaxEnt; the reconstructions in Fig. 4 used
800 iterations of line-search IST and 40 iterations of MaxEnt, and the MaxEnt processing
required approximately one-sixth the computer time of IST. The difference in efficiency can
be attributed mainly to the sophisticated optimizer used in the Cambridge algorithm, which
incorporates elements of conjugate-gradient and variable metric optimizers, in contrast to
the simple gradient-descent of line-search IST. In principle, computation of minimum l1-
norm reconstructions could be made comparably efficient to MaxEnt reconstruction by the
use of more sophisticated search techniques.

Concluding Remarks
Iterative thresholding algorithms have proven to be popular because of their simplicity. We
have shown that iterated soft thresholding leads to the computation of the minimum l1-norm
reconstruction, and is closely related to MaxEnt and minimum-area reconstruction.
Although simple implementations of minimum l1-norm reconstruction and MaxEnt
reconstruction based on more powerful optimization techniques can yield strikingly different
results, the differences appear to be due to the relative robustness of the optimizers
employed, and not the objective functions. The relationship among thresholding, minimum
l1-norm reconstruction, and MaxEnt reconstruction demonstrated here provides an avenue
for unifying these different approaches to the problem of spectrum reconstruction and
deconvolution.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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1.
A schematic diagram of IST. The initial trial spectrum is the DFT of the zero-filled data.
Subsequent trial spectra are computed by applying the soft thresholding operation: setting
points below a threshold to zero, and subtracting the threshold from all other points. The
result is inverse Fourier transformed, the “tail” is used to extend the measured data, and the
augmented data is forward Fourier transformed and thresholded.
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2.
Spectral reconstructions of an f1 column from NOESY data for a 66-residue protein. Row A
is the unapodized zero-filled DFT spectrum; rows B and C show the results of 800 iterations
of simple and line-search IST, respectively. D is the result of 40 iterations of MaxEnt
reconstruction.
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3.
Testing for convergence of IST by plotting the values of the objective function Q, Test, and
Stepsize. Note that for simple IST, Q and Test continue to decrease even after Stepsize has
approached zero.
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4.
Reconstructions of the same data shown in Figure 2, except that a single decaying sinusoid
was added to the time domain data. The artificial peak is indicated by the arrow. A) 800
iterations of IST. B) MaxEnt reconstruction.
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