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ABSTRACT

The cynomolgus monkey is widely used as a primate model in
preclinical studies because of its evolutionary closeness to hu-
mans. Despite their importance in drug metabolism, the content of
each cytochrome P450 (P450) enzyme has not been systemati-
cally determined in cynomolgus monkey livers. In this study, liver
microsomes of 27 cynomolgus monkeys were analyzed by immu-
noblotting using selective P450 antibodies. The specificity of each
antibody was confirmed by analyzing the cross-reactivity against
19 CYP1-3 subfamily enzymes using recombinant proteins.
CYP2A, CYP2B6, CYP2C9/19, CYP2C76, CYP2D, CYPZ2E,
CYP3A4, and CYP3A5 were detected in all 27 animals. In con-
trast, CYP1A, CYP1D, and CYP2J were below detectable levels in
all liver samples. The average content of each P450 showed that
among the P450s analyzed CYP3A (3A4 and 3A5) was the most
abundant (40% of total immunoquantified P450), followed by

CYP2A (25%), CYP2C (14%), CYP2B6 (13%), CYP2E1 (11%),
and CYP2D (3%). No apparent sex differences were found for any
P450. Interanimal variations ranged from 2.6-fold (CYP3A) to 11-
fold (CYP2C9/19), and most P450s (CYP2A, CYP2D, CYP2E,
CYP3A4, and CYP3AS) varied 3- to 4-fold. To examine the corre-
lations of P450 content with enzyme activities, metabolic assays
were performed in 27 cynomolgus monkey livers using 7-ethoxy-
resorufin, coumarin, pentoxyresorufin, flurbiprofen, bufuralol, dex-
tromethorphan, and midazolam. CYP2D and CYP3A4 contents
were significantly correlated with typical reactions of human
CYP2D (bufuralol 1’-hydroxylation and dextromethorphan O-
deethylation) and CYP3A (midazolam 1’-hydroxylation and 4-hy-
droxylation). The results presented in this study provide useful
information for drug metabolism studies using cynomolgus
monkeys.

Introduction

Cytochromes P450 (P450s) are a gene superfamily com-
prised of a large number of genes, 57 functional genes and 58
pseudogenes in humans (Nelson et al., 2004). P450s, espe-
cially the CYP1-3 family enzymes, play important roles in
the metabolism of a variety of drugs and are responsible for
approximately 80% of oxidative metabolism (Wilkinson,
2005). The major P450s involved in drug metabolism have
been quantified in 60 human livers by immunoblotting (Shi-
mada et al., 1994). That study found that CYP3A was most
abundant in total hepatic P450 content, followed by CYP2C,
CYP1A2, CYP2E1, CYP2A6, CYP2D6, and CYP2B6. A sim-
ilar study conducted in human small intestine found that
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CYP3A was most abundant, followed by CYP2C, CYP2J2,
and CYP2D6 (Paine et al., 2006). These studies provided
useful information for understanding drug biotransformation
in humans.

Cynomolgus monkey (Macaca fascicularis) is a primate spe-
cies widely used in drug metabolism studies. More than 20
P450s have been identified in cynomolgus monkey, and these
enzymes are highly identical to orthologous human P450s (Uno
et al., 2011a). The only exception is CYP2C76 that is not or-
thologous to any human P450 and is expressed as a functional
drug-metabolizing enzyme in liver (Uno et al., 2010a). In cyno-
molgus monkey liver, other CYP2C genes encoding functional
drug-metabolizing enzymes are also expressed, including
CYP2C8, CYP2C9, and CYP2C19 (Uno et al., 2006). In this
article, cynomolgus P450s are designated as recommended by
the P450 Nomenclature Committee (http:/drnelson.uthsc.edu/
cytochromeP450.html) (Uno et al., 2011a). The cynomolgus
CYP3A subfamily includes CYP3A4 and CYP3AS5, which are
predominantly expressed in liver (Uno et al., 2007a) and encode

ABBREVIATION: P450, cytochrome P450; TEMED, N,N,N’,N’'-tetramethylethylenediamine.
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enzymes involved in the metabolism of human CYP3A sub-
strates, such as midazolam and nifedipine (Iwasaki et al., 2010;
Uno et al., 2010c¢). Likewise, other cynomolgus P450 subfami-
lies including CYPIA (CYPIA1 and CYP1A2), CYP2A
(CYP2A23, CYP2A24, and CYP2A26), CYP2B (CYP2B6),
CYP2D (CYP2D17 and CYP2D44), and CYP2E (CYP2E1), are
also predominantly expressed in liver and encode the proteins
that metabolize the substrates of orthologous human P450s
(Uno et al., 2007a, 2009b, 2010d, 2011d; Uehara et al., 2010).
Cynomolgus CYP1D1 is orthologous to human CYPIDI1P and is
expressed in liver at a comparable level to CYP1A1, but is much
more abundant than CYPIA2 (Uno et al., 2011d). Cynomolgus
CYP2J2 is preferentially expressed in liver, along with kidney
and jejunum (Uno et al., 2007a), although its function remains
to be characterized.

Despite the importance of cynomolgus monkey in drug
metabolism studies, the expression of the major P450 en-
zymes has not been systematically examined in cynomolgus
monkey liver. In this study, the major P450s were measured
in liver microsomes of 27 cynomolgus monkeys by immuno-
blotting using selective antibodies. Analyzed P450s included
CYP1A(1/2), CYP1D1, CYP2A(23/24/26), CYP2B6, CYP2C9/
19, CYP2C76, CYP2D(17/44), CYP2E1, CYP2J2, CYP3A4,
and CYP3AS5. The specificity of the antibodies was assessed
using the recombinant proteins of 19 cynomolgus P450s. The
specific contents of these P450s were calculated and pre-
sented as mean values and interanimal variations.

Materials and Methods

Chemicals and Materials. Polyclonal anti-human CYP1Al,
anti-human CYP2A6, anti-human CYP2E1, anti-human CYP2C9,
anti-human CYP2D6, and anti-human CYP3A4 antibodies were pur-
chased from Nosan Corporation (Yokohama, Japan), and polyclonal
anti-human CYP2B6 and anti-human CYP3A5 antibodies were pur-
chased from BD Gentest (Woburn, MA). Polyclonal anti-human
CYP2J2 and anti-cynomolgus CYP2C76 antibodies were prepared as
described previously (King et al., 2002; Uno et al., 2006). The sec-
ondary antibodies (donkey anti-goat and sheep anti-rabbit horserad-
ish peroxidase-conjugated IgGs) were purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA) and SurModics, Inc. (Eden
Prairie, MN), respectively. Chemicals and reagents for the polyacryl-
amide gels, including SDS, bis/acrylamide (37.5:1), ammonium per-
sulfate, and TEMED were purchased from Bio-Rad Laboratories
(Hercules, CA). All other chemicals were of analytical grade from
Sigma-Aldrich (St. Louis, MO), unless otherwise specified.

Animals, Tissues, and Microsomal Preparation. Liver sam-
ples were collected from 27 cynomolgus monkeys (14 males and 13
females from Indochina or Indonesia, 4-9 years of age). This study
was reviewed and approved by the Institutional Animal Care and
Use Committee at Shin Nippon Biomedical Laboratories, Ltd.
(Kainan, Japan). Each liver sample was homogenized in a 9-fold
volume of 0.25 M Tris-buffer sucrose solution, pH 7.4, under ice-cold
conditions, followed by centrifugation at 9000g for 30 min at 4°C. The
resultant supernatants were centrifuged at 105,000g for 1 h at 4°C, and
the microsomal pellets were resuspended in 0.25 M Tris-buffer sucrose
solution, pH 7.4. Protein concentrations of the prepared microsomes
were measured by the Bradford method using Bio-Rad Protein Assay
Kit (Bio-Rad Laboratories) with serum albumin as the standard.

Heterologous Expression of P450s in Escherichia coli. The
recombinant proteins of 19 cynomolgus P450s (CYP1A1l, CYP1A2,
CYP1D1, CYP2A23, CYP2A24, CYP2A26, CYP2B6, CYP2C18,
CYP2C8, CYP2C9, CYP2C19, CYP2C76, CYP2D17, CYP2D44,
CYP2E1, CYP2J2, CYP3A4, CYP3A5, or CYP3A43) were expressed
in E. coli, and membrane preparations were performed as described
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previously (Uno et al., 2006, 2007a, 2009b, 2010b, 2011d; Uehara et
al., 2010). For expression of cynomolgus CYP2J2 recombinant pro-
tein, the N-terminus modification was conducted by polymerase
chain reaction with the forward and reverse primers, 5'-GGAATTC-
CATATGGCTCTGTTATTAGCAGTTTTTGCGGCTGCCC
TCTGGG-3' and 5'-GCTCTAGAGCAAAATCACACCCGAGGAAC-
3’, respectively. The Ndel and Xbal sites (underlined) in the forward
and reverse primers, respectively, were used for subcloning of poly-
merase chain reaction products into pCW vectors that contained
human NADPH-P450 reductase ¢cDNA. The content of each P450
protein in the membrane preparation was determined by Fe?* - CO
versus Fe?" difference spectra as described previously (Omura and
Sato, 1964).

Immunoblotting. To measure the expression of P450 proteins in
cynomolgus monkey liver, immunoblotting was performed as de-
scribed previously (Uno et al., 2006). In brief, specificity of each
antibody was assessed using recombinant proteins (1.0 pmol each) of
the 19 cynomolgus P450 proteins, which were fractionated in 10%
SDS polyacrylamide gels and transferred to Hybond-P filters (GE
Healthcare, Chalfont St. Giles, Buckinghamshire, UK). The filters
were immunoblotted with primary antibody (1:200-1:100,000), in-
cluding polyclonal anti-human CYP1A1, anti-human CYP2A6, anti-
human CYP2B6, anti-human CYP2C9, anti-cynomolgus CYP2C76,
anti-human CYP2D6, anti-human CYP2E1, anti-human CYP2J2,
anti-human CYP3A4, and anti-human CYP3A5 antibodies. The fil-
ters were then immunoblotted with secondary antibody (1:5000), and
developed using an enhanced chemiluminescence Western blotting
detection reagent (GE Healthcare) and autoradiography. The devel-
oped films were scanned with a desktop scanner, and the optical density of
the bands was quantified using Image J software (National Institutes of
Health, Bethesda, MD). Standard curves for quantification were generated
using the recombinant P450. For CYP2A, CYP2C9/19, and CYP2D, the
recombinant protein of CYP2A23, CYP2C9, and CYP2D17 was used. Pilot
experiments for each antibody and five representative liver samples were
conducted and it was decided to load 5 g of microsomal proteins in gels to
keep the densities of the protein bands within the linear range of the
standard curves. Limits of detection are provided in Table 1. Each liver
sample was analyzed in duplicate with each P450 antibody. The amount of
each P450 protein per lane was calculated relative to the standard curve
and was divided by the amount of total protein loaded to determine specific
content.

Enzyme Assays. Drug-metabolizing enzyme activities were mea-
sured using typical human P450 substrates (bufuralol, coumarin,
dextromethorphan, 7-ethoxyresorufin, midazolam, pentoxyresoru-
fin, and progesterone) as described previously (Yamazaki and Shi-
mada, 1997; Yamazaki et al., 2002; Emoto et al., 2009). In brief, each
mixture (0.20 ml) contained liver microsomes (20 pg of protein), an
NADPH-generating system (0.25 mM NADP*, 2.5 mM glucose
6-phosphate, and 0.25 unit/ml glucose 6-phosphate dehydrogenase),
and substrate (20 uM bufuralol, 10 pM coumarin, 200 pM dextro-
methorphan, 10 uM 7-ethoxyresorufin, 100 pM midazolam, 10 pM
pentoxyresorufin, or 100 pM progesterone) in 50 to 100 mM potas-
sium phosphate buffer, pH 7.4. After incubation at 37°C for 10 min,
reactions were terminated by adding 0.40 ml of ice-cold methanol, 10
wrl of 60% perchloric acid, or 1.5 ml of ethyl acetate. After centrifu-
gation at 1500g for 10 min, the supernatant or extract was analyzed
by reverse-phase high-performance liquid chromatography with a
fluorescence or UV detector. Metabolic assays using diclofenac and
testosterone as substrates were carried out as described previously
(Nakanishi et al., 2011). To estimate a correlation between drug-
metabolizing enzyme activities and P450 amounts, linear regression
analysis was performed using Origin7.5J software (OriginLab Corp.,
Northampton, MA).

Results

Specificity of the P450 Antibodies. Because most anti-
bodies used were originally raised against human P450 pro-
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TABLE 1
Individual P450 contents in cynomolgus monkey liver

P450 Content (Mean = S.D.)

P450 Range Detection Limit
Total Male Female
pmol/mg

Total P450* 724 = 192 771 = 156 674 = 220 275-1141 N.A.
CYP1A BDL BDL BDL BDL 0.01
CYP1D BDL BDL BDL BDL 0.01
CYP2A 26 £ 7.2 24 6.7 28 £ 7.2 1441 0.025
CYP2B6 14 = 6.5 14 £ 6.3 14 6.9 3.3-26 0.025
CYP2C9/19 11 = 3.8 9.8 +46 12 =24 1.5-16 0.01
CYP2C76 43 *20 43 1.7 43*+24 1.4-8.5 0.01
CYP2D 3.2+ 0.7 3.3+0.6 3.1+0.8 1.4-4.6 0.00025
CYP2E1 12 =27 12 = 3.1 11 =22 5.5-17 0.01
CYP2J2 BDL BDL BDL BDL 0.01
CYP3A4 27 *+5.3 29 =25 26 £ 6.9 10-34 0.01
CYP3A5 9.0+ 3.1 10 = 3.5 79*+23 4.8-21 0.01
CYP3A4 + 3A5 36 £ 6.3 39 £ 46 34 £6.9 19-49 N.A.
Total® 106 + 14 106 = 10 106 + 18 81-130 N.A.

N.A,, not available; BDL, below detection limit.
“ Spectrally determined P450.
® Sum of the immunoquantified P450s.

teins, the specificity of each P450 antibody was assessed by
Western blotting using the recombinant proteins of 19 cynomol-
gus P450s. CYP2A23/24/26, CYP2B6, CYP2C9/19, CYP2C76,
CYP2D17/44, CYP2E1, CYP2J2, CYP3A4, and CYP3A5 were
selectively detected by the antibodies used (Fig. 1). Anti-human
CYP1A1 antibody reacted with CYP1A1/2 and CYP1D1 of cyn-
omolgus monkey, but the size differences allowed the specific
detection of these P450s. Cynomolgus CYP2C18, CYP2CS8, and
CYP3A43 were not reacted with any antibody used.

P450 Content in Cynomolgus Monkey Liver. P450 ex-
pression was measured in the livers of 27 cynomolgus monkeys
by immunoblotting using the selective antibodies. The blots of
the standard curves and the five representative liver samples
are shown in Fig. 2. Among the 11 P450 antibodies used, 9
detected P450 proteins in all liver samples, whereas no bands
were observed in any of these liver samples using the anti-
human CYP1A1 or CYP2J2 antibody (Fig. 2). Therefore, cyno-
molgus CYP2A23/24/26, CYP2B6, CYP2C9/19, CYP2C76,
CYP2D17/44, CYP2E1, CYP3A4, and CYP3A5 proteins were
quantified in 27 liver samples. Among these P450s, CYP3A4
content averaged 27 pmol/mg protein, ranging from 10 to 34
pmol/mg protein, and was the highest of all of the P450s exam-
ined in cynomolgus monkey liver (Table 1). CYP3A5 content

averaged 9.0 pmol/mg protein, ranging from 4.8 to 21 pmol/mg
protein (Table 1). Hence, total CYP3A (CYP3A4 and CYP3A5)
content was 36 pmol/mg protein, ranging from 19 to 49 pmol/mg
protein, making CYP3A the most abundant subfamily in cyno-
molgus monkey livers. This was followed by CYP2A, CYP2B6,
CYP2E1, CYP2C9/19, CYP2C76, and CYP2D, which averaged
26, 14, 12, 11, 4.3, and 3.2 pmol/mg protein, respectively (Ta-
ble 1). P450 content was not substantially different (>1.5-fold)
between males and females.

The content of most P450 proteins varied 3- to 4-fold in the
animals analyzed, including CYP2A, CYP2D, CYP2E1],
CYP3A4, and CYP3A5 (Table 1). The variations were even
less for total CYP3A content (2.6-fold). The larger interani-
mal variations were observed for CYP2B6 (7.9-fold),
CYP2C9/19 (11-fold), and CYP2C76 (6.3-fold) (Table 1). The
differences in the interanimal variations were remarkable
between CYP3A4 and CYP2C9/19, which showed the small-
est and largest degree of variations in 27 animals, respec-
tively (Fig. 3). Because of the interanimal variations, CYP2A
was the most abundant P450 in three animals, whereas
CYP3A was the most abundant in the rest of the animals.
Likewise, CYP2C9/19 was more abundant than CYP2C76 in
most animals, but CYP2C76 was more abundant than

Cynomolgus P450s (Recombinant proteins)
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Anti-hCYP3A4

Anti-hCYP3A5
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CYP2C9/19 in two animals. The CYP3A4 amount varied
3.3-fold in 27 animals, among which two animals expressed
CYP3A4 approximately 2-fold less than others (Fig. 3). When
these two animals were excluded, the amount of CYP3A4
varied only 1.4-fold in the 25 animals.

Total immunoquantified P450s averaged 106 pmol/mg pro-
tein, ranging from 81 to 130 pmol/mg protein, and were lower
than spectrally determined P450s. Using this value, the con-
tent of each P450, expressed as a percentage of total P450s,
ranged from 23 to 44, 11 to 34, 14 to 42, 4 to 24, 5 to 17, 2 to
16, 5 to 18, 2 to 8, and 2 to 5%, for CYP3A, CYP3A4, CYP2A,
CYP2B6, CYP2E1, CYP2C9/19, CYP3A5, CYP2C76, and
CYP2D, respectively, and the average values generally fol-
lowed this trend (Fig. 4). These results indicated that CYP3A

CYP3A5
8%
CYP2A (23/24/26)
25%
CYP3A4
26%
CYP2B6
13%
CYP2E1
1% CYP2C9/19
CYP2D (17/44) 10%
3% CYP2CT76
4%

Fig. 4. The cynomolgus monkey hepatic P450 pie. For each P450, mean
expression values are expressed as percentages of the total immunoquan-
tified P450 content.

is the most abundant subfamily in cynomolgus monkey liver.

Drug-Metabolizing Enzyme Activities. To assess the
correlation between quantified P450 amount and drug-me-
tabolizing enzyme activities, enzyme activities were mea-
sured using liver microsomes of 27 cynomolgus monkeys. We
examined bufuralol 1'-hydroxylation, coumarin 7-hydroxyla-
tion, dextromethorphan N- and O-deethylation, diclofenac
4'-hydroxylation, 7-ethoxyresorufin O-deethylation, midazo-
lam 1’- and 4-hydroxylation, pentoxyresorufin O-deethyla-
tion, progesterone 6B-hydroxylation, and testosterone 2a-,
6B-, 16a-, and 16B-hydroxylation. The correlation coefficients
indicated that among the P450s analyzed CYP2D was highly
correlated with bufuralol 1’-hydroxylation and dextrometho-
rphan O-deethylation, whereas CYP3A and CYP3A4 were
highly correlated with midazolam 1’-hydroxylation, midazo-
lam 4-hydroxylation, and testosterone 6B-hydroxylation
(Table 2). Significant correlation coefficients were also observed
for CYP3A4 (dextromethorphan N-deethylation and progester-
one 6B-hydroxylation), CYP2B6 (testosterone 16p-hydroxyla-
tion), and CYP2C9/19 (diclofenac 4-hydroxylation) (Table 2).
Other occasional correlations were found for CYP2A (7-
ethoxyresorufin O-deethylation), CYP2B6 (midazolam 1’'- and
4-hydroxylation), CYP2C9/19 (midazolam 4-hydroxylation),
CYP2C76 (bufuralol 1’-hydroxylation, 7-ethoxyresorufin O-
deethylation, and pentoxyresorufin O-deethylation), CYP2D
(coumarin 7-hydroxylation), and CYP3A5 (bufuralol 1'-
hydroxylation and testosterone 2a- and 16a-hydroxylation) (Ta-
ble 2). No correlation was found for CYP2E1.

Discussion

In this study, the amount of P450 proteins was immuno-
quantified individually in 27 cynomolgus monkey livers us-
ing anti-P450 antibodies with their specificities confirmed on
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Correlation coefficients (r) between P450 amount and drug-metabolizing enzyme activities in cynomolgus monkey livers
Metabolic activities were measured as described under Materials and Methods. Values are mean + S.D. for 27 cynomolgus monkeys.

Activity Total 2A 2B6 20919  2C76 2D 2E1 3A4 3A5 3A
nmol/min/mg
protein

Bufuralol 1'- 0.79 + 0.26 0.29 0.25 -0.12 0.15 0.43* 0.657%** -0.09 -0.37 0.42%*  —0.10
hydroxylation

Coumarin 7- 0.097 * 0.061 0.15 0.14 -0.11 -0.15 0.12 0.44* 0.08 -0.26 —0.02 -0.22
hydroxylation

Dextromethorphan 0.12 = 0.047 0.11 0.37 -0.18 -0.31 0.01 0.08 0.13 0.46%* 0.02 0.20
N-deethylation

Dextromethorphan 0.63 = 0.52 0.18 0.31 0.08 -0.01 0.33 0.66%#* 0.10 -0.51 0.16 -0.35
O-deethylation

Diclofenac 4- 0.13 = 0.033 0.30 0.02 -0.18 0.38*  0.16 0.12 0.07 0.22 0.31 0.34
hydroxylation

7-Ethoxyresorufin 0.092 * 0.056 0.06 0.47*  —0.01 -0.22 0.39% 0.04 -0.22 -0.25 -0.21 -0.31
O-deethylation

Midazolam 1'- 1.78 = 0.56 0.44* 0.08 0.43* 0.32 0.28 0.11 -0.16 0.51%* 0.22 0.53%*
hydroxylation

Midazolam 4- 1.33 £ 0.41 0.40% 0.12 0.44* 0.45% 0.33 —0.05 -0.25 0.697%#* 0.07 0.617%#*
hydroxylation

Pentoxyresorufin 0.0031 = 0.00092  0.43* 0.32 0.05 0.11 0.39¥ —0.15 -0.11 0.32 —-0.03 0.25
O-deethylation

Progesterone 6§- 3.01 £ 0.94 0.32 0.29 0.16 0.11 0.16 —0.16 0.02 0.51%* 0.04 0.44%
hydroxylation

Testosterone 2a- 0.16 = 0.027 0.01 —0.02 0.08 0.02 -0.14 0.06 0.02 0.07 0.43* 0.27
hydroxylation

Testosterone 683- 487+ 1.16 0.31 0.22 0.07 0.07 0.11  -0.08 —0.06 0.647%#%* 0.06 0.56%*
hydroxylation

Testosterone 16a- 0.11 = 0.074 0.12 —-0.01 -0.39 -0.07 0.05 0.22 -0.07 -0.35 0.50%%  —0.04
hydroxylation

Testosterone 163- 0.29 * 0.070 0.29 0.13 0.42%*  —-0.02 0.23 0.23 —0.08 0.25 0 0.21
hydroxylation

Statistical significance was determined based on the P value (probability that r is zero) of the linear regression: *, P < 0.05; ** P < 0.01; *** P < 0.001.

cynomolgus P450 proteins. The P450 enzymes were selected
based on gene and protein expression results that have been
reported previously. We have analyzed the macaque genome
to identify and characterize cynomolgus P450s orthologous to
human P450s that are relevant to drug metabolism in the
CYP1-3 family (Uno et al., 2011a), and all of the P450 pro-
teins that were expressed at detectable levels by immuno-
blotting (Fig. 2) were quantified in this study.

As shown by average immunoquantified P450 values in
cynomolgus monkey liver, CYP3A4 represented the most
abundant P450, making CYP3A (CYP3A4 plus CYP3A5) the
most abundant P450 subfamily in this species. In human
liver, CYP3A is also the most abundant P450 subfamily and
constitutes approximately 40% of total immunoquantified
P450 content (Shimada et al., 1994), similar to that of cyno-
molgus monkey (35%) as shown in this study. Moreover,
CYP3A4 and total CYP3A content varied 3.3- and 2.6-fold,
respectively, and these contents (CYP3A4 and total CYP3A)
varied even less (1.4-fold) when two animals showing low
expression were excluded. In contrast, human CYP3A4 con-
tent seems to vary nearly 60-fold (Wrighton et al., 1990;
Mimura et al., 1993; Stevens et al., 1993; Shimada et al.,
1994), and the variation is approximately 6-fold even when
the outliers from the data set are excluded. Therefore, the
variation of hepatic CYP3A4 content is much smaller in
cynomolgus monkeys than in humans.

In humans, the variation in CYP3A4 hepatic content seems
to be accounted for by regulatory factors, including pregnane X
receptor, but less likely by genetic variants (Stevens, 2006).
Cynomolgus CYP3A4 is predominantly expressed in liver (Uno
et al., 2007a) and can be substantially induced by P450 inducer

such as rifampicin via pregnane X receptor, similar to human
CYP3A4 (Kim et al., 2010), suggesting that cynomolgus mon-
keys and humans share transcriptional regulatory mechanisms
for CYP3A4. Moreover, cynomolgus CYP3A4 metabolizes vari-
ous human CYP3A4 substrates (e.g., midazolam, nifedipine,
and dexamethasone), but not the substrates largely metabo-
lized by other P450 subfamily enzymes (Iwasaki et al., 2010).
This is further supported by high correlation coefficients ob-
served between CYP3A4 content and catalytic activities for
human CYPS3A substrates, such as midazolam, indicating the
similar substrate selectivity of CYP3A4 in cynomolgus monkeys
and human. Based on similarities in hepatic content and sub-
strate selectivity of CYP3A4, regulatory mechanism for
CYP3A4, and small interanimal variations of cynomolgus
CYP3A4, cynomolgus monkey would be a suitable animal spe-
cies to investigate a CYP3A-dependent drug metabolism in
liver.

CYP2A was the second most abundant P450 subfamily in
cynomolgus monkey liver, representing 25% of total immuno-
quantified P450 content. In human liver, CYP2A6 represents
6% (14 pmol/mg protein) of total immunoquantified P450 con-
tent, less than that (26 pmol/mg protein) of cynomolgus mon-
key. In human liver, CYP2A6 is the major CYP2A expressed,
whereas CYP2A23, CYP2A24, and CYP2A26 are expressed in
cynomolgus monkey liver and metabolize the human CYP2A
substrate coumarin (Uehara et al., 2010). A larger number of
CYP2A enzymes and their predominant expression in liver
might partly account for more abundant CYP2A proteins and
the higher rate of coumarin 7-hydroxylation in cynomolgus
monkey liver than in human liver (Sharer et al., 1995; Bogaards
et al., 2000). The abundance of CYP2A protein suggests the



possible critical role of CYP2A for drug metabolism in cynomol-
gus monkey liver.

CYP2C was the third most abundant P450 subfamily in cyn-
omolgus monkey liver, representing 14% of total immunoquan-
tified P450s, including CYP2C9/19 (10%) and CYP2C76 (4%).
The CYP2C subfamily represents the second most abundant
P450 subfamily in human liver, constituting 25% of total im-
munoquantified P450s (Shimada et al., 1994). In liver, human
CYP2C content (60 pmol/mg protein) is more abundant than
cynomolgus CYP2C content (15 pmol/mg protein). Less CYP2C
protein might partly account for the lower rate of tolbutamide
4-hydroxylation (Weaver et al., 1999; Turpeinen et al., 2007),
which cynomolgus CYP2C9 and CYP2C76 catalyze (Uno et al.,
2006, 2007b). In this study, CYP2C8 was not analyzed, because
specific antibody for cynomolgus CYP2C8 was not available.
CYP2CS8 is one of the major functional CYP2C enzymes in
human liver. CYP2C8 content, if quantified, would provide
more accurate CYP2C content in cynomolgus monkey liver.

CYP2C76 protein content (4%) was less than CYP2C9/19
protein content (10%) in cynomolgus monkey liver. A previous
study showed that CYP2C76 mRNA was most abundantly ex-
pressed in cynomolgus monkey liver among the major CYP2C
mRNAs (Uno et al., 2006). In this study, CYP2C76 was more
abundant in CYP2C9/19 in only 2 of the 27 animals analyzed.
This discrepancy is most likely accounted for by the interanimal
variations in expression of CYP2C9/19 and CYP2C76 proteins,
which varied 11- and 6.3-fold, respectively, in this study. More-
over, the content of CYP2C9 and CYP2C19 might also vary
among animals, although their contents were not measured
separately in this study. Therefore, the most abundant CYP2C
enzyme might be different in each animal.

Cynomolgus CYP2B6, the only CYP2B enzyme in cynomol-
gus monkey, represented 13% of total immunoquantified P450s
in liver. In human liver, previous reports indicated that
CYP2B6 amount was 1 pmol/mg protein, constituting <1% of
total P450 content (Shimada et al., 1994). However, studies
using selective antibodies demonstrated that mean CYP2B6
content in human liver was higher, ranging from 2 to 82
pmol/mg protein (Stresser and Kupfer, 1999) and 0.7 to 71
pmol/mg protein (Ekins et al., 1998), making CYP2B6 content
6% of total hepatic P450 content (Stresser and Kupfer, 1999). In
human liver, a large variation has been observed in CYP2B6
content. CYP2B6 content varied 108-fold (Shimada et al., 1994)
and 100-fold (Ekins et al., 1998), representing the largest inter-
individual variations among the P450s analyzed (Shimada et
al., 1994). In this study, relatively large interanimal differences
(7.9-fold) among the P450s analyzed were observed in CYP2B6
content of cynomolgus monkey liver. These interindividual vari-
ations might account for variation in a CYP2B6-dependent drug
metabolism in cynomolgus monkey as well as human.

Cynomolgus CYP2E], the only cynomolgus CYP2E enzyme,
represented 11% of total immunoquantified P450s in liver. In
human, CYP2E1 content is 22 pmol/mg protein, representing
9% of total immunoquantified P450s (Shimada et al., 1994).
Less CYP2E1 content (12 pmol/mg protein) of cynomolgus mon-
key might account for the lower rate of aniline p-hydroxylation
(metabolized by human CYP2E1) in cynomolgus monkey liver
than in human liver (Shimada et al., 1997).

CYP2D represented 3% of total immunoquantified P450 con-
tent in cynomolgus monkey liver. Likewise, human CYP2D6,
orthologous to cynomolgus CYP2D17/44, constitutes 4% of total
immunoquantified P450 content in liver (Shimada et al., 1994).
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The previous studies showed that the rate of the reactions
catalyzed by CYP2D enzymes (i.e., bufuralol 1'-hydroxylation,
dextromethorphan O-demethylation) was higher in cynomolgus
monkey liver than in human liver (Sharer et al., 1995; Weaver
et al., 1999). CYP2D17/44 content was 3.2 pmol/mg protein,
similar to that of human CYP2D6 (5 pmol/mg protein) (Shi-
mada et al., 1994). Thus, the higher rate of CYP2D-dependent
reaction in cynomolgus monkey liver might be partly caused by
the faster rate of cynomolgus CYP2D enzyme, as shown previ-
ously (Mankowski et al., 1999; Uno et al., 2010d). In human,
CYP2D6, involved in the metabolism of approximately 25% of
known drugs in the market, is highly polymorphic, leading to
interindividual variations in response to drugs that are metab-
olized by CYP2D6 (Ingelman-Sundberg, 2005). Genetic poly-
morphisms have been also identified in cynomolgus P450 genes
(Uno et al., 2009¢, 2010c). Genetic polymorphisms in CYP2D
genes, if any, might account for the higher rate of the CYP2D-
dependent reaction in some animals.

In this study, CYP1A1/2 by the anti-human CYP1A1l anti-
body, was not detected in monkey liver (< 0.01 pmol/mg pro-
tein). In contrast, CYP1A2 is abundantly expressed and consti-
tutes 18% of total immunoquantified P450 content in human
liver (Shimada et al., 1994). Previous studies also reported that
the proteins that reacted with anti-CYP1A antibody were not
detected or barely detected in untreated cynomolgus monkey
liver, but highly induced by P450 inducers such as B-naphtho-
flavone, 3-methylcholanthrene, and 2,3,7,8-tetrachlorodibenzo-
p-dioxin (Edwards et al., 1994; Bullock et al., 1995; Sadrieh and
Snyderwine, 1995). CYP1A1 mRNA is highly induced in cyno-
molgus monkey hepatocyte culture by the P450 inducer
omeprazole (Nishimura et al., 2007; Ise et al., 2011), suggesting
that CYP1A is induced to a sufficient level to play a functional
role, upon exposure to exogenous compounds. Likewise,
CYP2J2 was not detected in cynomolgus monkey liver using
anti-human CYP2J2 antibody (< 0.01 pmol/mg protein).
CYP2J2 mRNA is expressed in cynomolgus monkey liver (Uno
et al., 2007a). The anti-human CYP2J2 antibody used might
not be sensitive enough to detect CYP2J2 expression in cyno-
molgus monkey liver.

In this study, total immunoquantified P450s represented
15% of spectrally determined P450 content in 27 cynomolgus
monkeys, lower than human liver where 72% of spectrally de-
termined P450 content are total immunoquantified P450s (Shi-
mada et al., 1994). This raises the possibility that other en-
zymes such as CYP4A and CYP4F enzymes are abundantly
expressed in cynomolgus monkey liver. Indeed, CYP4A and
CYP4F mRNAs are predominantly expressed in cynomolgus
monkey liver (Uno et al.,, 2007a), and CYP4F enzymes are
involved in the metabolism of drugs in cynomolgus monkey
small intestine (Hashizume et al., 2001; Nishimuta et al., 2011).
It is of great interest to measure the CYP4 family enzymes in
cynomolgus monkey liver.

The correlation of P450 enzyme amounts to enzyme activities
showed relatively high correlations for CYP2D with bufuralol
1’-hydroxylation and dextromethorphan O-deethylation, which
are catalyzed by cynomolgus CYP2D (Uno et al., 2010d). Like-
wise, CYP3A4 was highly correlated with midazolam 1’'-
hydroxylation and midazolam 4-hydroxylation, which are cata-
lyzed by cynomolgus CYP3A4 (Iwasaki et al.,, 2010). Other
significant correlations found also coincided well with previous
studies: testosterone 16B-hydroxylation by CYP2B6 (Uno et al.,
2009b), diclofenac 4-hydroxylation by CYP2C9/19 (Uno et al.,
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2011c), bufuralol 1’-hydroxylation and 7-ethoxyresorufin O-
deethylation by CYP2C76 (Uno et al., 2011b), dextrometho-
rphan N-deethylation by CYP3A4 (Iwasaki et al., 2010), and
bufuralol 1’-hydroxylation by CYP3A5 (Iwasaki et al., 2010). In
contrast, CYP2A content was not well correlated with coumarin
7-hydroxylation, which is catalyzed by cynomolgus CYP2A
(Uno et al., 2007a; Uehara et al., 2010). A previous study
showed that cynomolgus CYP2A23, CYP2A24, and CYP2A26
catalyzed coumarin 7-hydroxylation, but the efficiency varied
between the enzymes (Uehara et al., 2010). Because the content
of each CYP2A enzyme might vary in animal livers, the appar-
ent low correlation of cynomolgus CYP2A with coumarin 7-hy-
droxylation might be accounted for by the variable amount of
each CYP2A enzyme in the animal livers analyzed.

Significant correlation coefficients between metabolic activity
and P450 content were generally smaller in cynomolgus mon-
keys than in humans. For example, in cynomolgus monkeys,
correlation coefficients were 0.65 between CYP2D content and
bufuralol 1’-hydroxylation and 0.64 between CYP3A4 content
and testosterone 6B-hydroxylation, which were 0.80 and 0.81 in
humans, respectively (Shimada et al., 1994). Lower correlation
coefficients in cynomolgus monkeys can be simply attributable
to the fact that these substrates were selected for human P450s,
not cynomolgus P450s. In addition, the involvement of other
P450s in these reactions might also account for lower correla-
tion coefficients in cynomolgus monkeys; bufuralol 1’-hydroxy-
lation is also catalyzed by CYP2C76 (Uno et al., 2011b) and
CYP3A5 (Iwasaki et al., 2010). CYP2C76, not orthologous to
any human P450, is partly responsible for differences in pi-
tavastatin metabolism between cynomolgus monkeys and hu-
mans (Uno et al., 2010a). This information needs to be carefully
considered when conducting drug metabolism studies using
cynomolgus monkeys.

In summary, immunoquantification of P450 enzymes re-
vealed that CYP3A was the most abundant P450 subfamily in
cynomolgus monkey liver, similar to human liver, representing
35% of total immunoquantified P450 content, followed by
CYP2A (25%), CYP2C (14%), CYP2B6 (13%), CYP2E1 (11%),
and CYP2D (3%). Interanimal variations were observed, gen-
erally 3- to 4-fold for most P450s including CYP3A4. This de-
gree of variation is much less than that in human. The results
provide essential information for better understanding drug
metabolism in cynomolgus monkey and estimating the contri-
bution of the P450 enzymes for the metabolism of drugs in
development.
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