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Myogenesis, the formation of skeletal muscle, is a multistep event that commences with myoblast proliferation, followed by
cell-cycle arrest, and finally the formation of multinucleated myotubes via fusion of mononucleated myoblasts. Each step is
orchestrated by well-documented intracellular factors, such as cytoplasmic signalling molecules and nuclear transcription
factors. Regardless, the key step in getting a more comprehensive understanding of the regulation of myogenesis is to explore
the extracellular factors that are capable of eliciting the downstream intracellular factors. This could further provide valuable
insight into the acute cellular response to extrinsic cues in maintaining normal muscle development. In this paper, we survey the
intracellular factors that respond to extracellular cues that are responsible for the cascades of events during myogenesis: myoblast
proliferation, cell-cycle arrest of myoblasts, and differentiation of myoblasts into myotubes. This focus on extracellular perspective
of muscle development illustrates our mass spectrometry-based proteomic approaches to identify differentially expressed secreted
factors during skeletal myogenesis.

1. Introduction

Myogenesis, the formation of skeletal muscle, has been
recognized as a hierarchical cellular event, commencing with
myogenic lineage specification and followed by iterative
proliferation of the muscle precursor cells called myoblasts in
which cell-cell contact is initiated. This triggers withdrawal of
myoblasts from the proliferation cycle (i.e., cell-cycle arrest)
and in turn switches on the differentiation program in which
mononucleated myoblasts are fused to each other and give
rise to multinucleated myotubes (i.e., building blocks for
contractile muscle fibres in the mature animal). Each step
is orchestrated by groups of intracellular factors, such as
cytoplasmic signalling molecules and nuclear transcription
factors, which are described in further detail below.

1.1. Myogenic Lineage Specification. Skeletal muscle orig-
inates from the paraxial mesoderm, epithelialization and
segmentation of which gives rise to the somites in a

cranio-caudal manner (i.e., somites are generated and spec-
ified from head to tail) (Figure 1). Various compartments of
the somite are committed to distinct cell lineages: myotome
(muscle), dermatome (skin), and sclerotome (bone and
cartilage), according to their relative orientations to the sur-
rounding tissue, such as ectoderm, neural tube, notochord,
and lateral mesoderm [1]. The ventral medial portion of the
somite is specified as the sclerotome, whereas the double-
layered structure remaining is called the dermomyotome
which gives rise to the dermatome and myotome. The latter is
subdivided into two compartments: dorsal medial lip (DML)
and ventral lateral lip (VLL). The former compartment gives
rise to the epaxial myotome that becomes the back muscle,
whereas the latter gives the hypaxial myotome that generates
the muscles of the body wall, limbs, and tongue [2–5].

1.2. Myoblast Proliferation with Simultaneous Repression of
Muscle Differentiation. After the primary wave of myoblasts
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Figure 1: Myogenic lineage specification. Dorsal medial lip and ventral lateral lip were denoted as DML and VLL, respectively. Redrawn
from Buckingham et al. [6].

is generated from the somite, they enter the cell cycle
and undergo iterative propagation to expand the cell pop-
ulation, eventually cell-cell contact occurs. This step has
been shown to be essential to withdraw the myoblasts
from the proliferation cycle and initiate the differentiation
program (Figure 2(a)) [7–9]. Thus, the proliferation and
differentiation of myoblasts are mutually exclusive events;
the tipping point between the two is governed by a master
regulator: the retinoblastoma protein (pRb) [10–12].

During proliferation, cyclin/cyclin-dependent kinases
(CDKs), such as cyclin D/cdk4, cyclin D/cdk6, cyclin E/cdk2,
and cyclin A/cdk2, are active. These kinases phosphorylate
pRb, holding it inactive [13–18]. As a result, pRb is unable
to bind to the E2F transcription factor complex and inhibit
its activation of downstream proliferation-associated cellular
events, including chromosome segregation, mitotic spindle
formation, and chromatin remodelling [19] (Figure 2(b)).

Notably, the differentiation of these myoblasts is critically
dependent upon a family of myogenic transcription factors:
the myogenic regulatory factors (MRFs), including myogenic
differentiation factor (MyoD) [20, 21] and myogenic factor 5
(Myf5) [22, 23]. The MRFs confer on the myoblasts a potent
ability to differentiate. By contrast, mitogenic myoblasts may
be prohibited from differentiation by myogenic repressors,
including Id [24, 25], twist [26–28], MyoR [29, 30], Mist 1
[31], and I-mf [32]. In the absence of myogenic repressors,
MRFs, which are members of the class II basic helix-loop-
helix (bHLH) superfamily, can dimerize with members of
the class I bHLH family, the E proteins. The E protein:
MRF heterodimer thus resulted recognizes and binds to
the consensus DNA sequence (CANNTG) named the E-
box, which lies upstream of most muscle-specific genes, for
example, the myosin heavy chain and muscle creatine kinase
[33]. Conversely, in the presence of myogenic repressors,
the dimerization between MRF and the E protein inside the

nucleus is negated either by (1) competitive binding to MRFs
or the E proteins by means of Id, twist, MyoR, and Mist 1,
or (2) sequestering MRFs in the cytoplasm by means of I-mf.
Additional control can come via other interactions, including
those of pRb and CDKs which can also phosphorylate MRFs
and subject them to degradation [34–36] (Figure 2(b)). The
initial repression of muscle differentiation is essential for
ensuring a sufficiently large number of myoblasts are attained
prior to differentiation to populate the vast amount of
skeletal musculature in the metazoan species.

1.3. Cell-Cycle Arrest of Myoblasts with Simultaneous Acti-
vation of Muscle Differentiation. Under growth conditions,
myoblasts proliferate until they reach confluency and cell-
cell contact provokes growth arrest. The switch between
cell-cell contact and cell-cycle arrest is mediated by trans-
membrane proteins, such as m-cadherin [37–42]. Upon
cell-cell contact, m-cadherin is activated and induces CDK
inhibitors (CDKIs), for example, p21 and p57 [43, 44]. As the
name suggests, CDKIs inhibit CDK from phosphorylating
its respective substrates, such as pRb and MRF [45, 46]. As
a result, both pRb and MyoD are spared from degradation.
The corollary to that is twofold: (1) nonphosphorylated pRb
can bind and inhibit E2F from activating the downstream
proliferation events, by which cell-cycle arrest of myoblasts
is achieved [47, 48]; (2) nonphosphorylated MyoD can
dimerize with the E protein and cooperatively bind to the
E box to activate the expression of muscle-specific gene,
thus triggering the differentiation program. Furthermore,
with the recruitment of myogenic coactivators, such as
myocyte enhancer factor 2 (MEF2) [49–52] as well as the
chromatin remodelling factors, the histone acetyltransferases
(HATs), for example, p300 and p300/CBP-associated factor
(PCAF) [53–62], the differentiation program is initiated
(Figure 2(c)). In addition, activated cadherin interacts and
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Figure 2: Skeletal muscle differentiation at the microscopic and molecular level. (a) During myogenesis, mononucleated myoblast
proliferate, followed by cell-cycle exit, and fusion to form multinucleated myotube; (b) during proliferation, at the molecular level, active
CDK could trigger myoblast proliferation by phosphorylating and subjecting pRb to degradation, in which E2F transcription factor is
free from the inhibitory effect of pRb and elicits the proliferation of myoblasts. Simultaneously, CDK can also block myoblasts from
differentiation via the phosphorylation-induced degradation of MRF. As a consequence, E protein by itself cannot drive the differentiation
program; (c) upon cell-cell contact, m-cadherin is activated, by which CDKI is induced. This in turn inhibits CDK from phosphorylating
its downstream substrates: pRb and MRF. Hence, both pRb and MRF are exempted from degradation, in which the former can withdraw
the myoblasts from the cell cycle by inhibiting E2F transcription factor from activating the proliferation-associated events, whereas the
latter complexes with E protein, myogenic co-activator MEF2, and the chromatin remodeling molecule HATs, in an effort to evoke the
differentiation program of myoblasts synergistically. Phosphate groups were indicated as “PO4”.

triggers a cell adhesion molecule of the Ig superfamily called
CAM-related/downregulated by oncogenes (CDO) [63, 64].
The CDO complex promotes myogenesis by activating the
p38 MAPK signalling pathway [65–68], which is a well-
known promyogenic signal acting at various steps [69–71].
p38, for example, enhances the activity of MyoD [72],

and its co-activator MEF2 [73], favouring MyoD/E pro-
tein heterodimerization by phosphorylating E protein [74],
recruiting SWI-SNF chromatin-remodelling complex to the
promoter of muscle-specific genes to enhance accessibility
to transcriptional regulators required for subsequent gene
expression [75]. Intriguingly, CDO is a target of MyoD,
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establishing positive feedback loop which reinforces the
muscle differentiation program [64, 76].

1.4. From Intra- to Extracellular Perspective of Myogenesis.
Irrespective of well-documented intracellular factors entailed
in myogenesis, the key step in developing a more compre-
hensive picture of the regulation of muscle development
is to investigate the extracellular factors that prime these
downstream intracellular events. This, in turn, may pro-
vide valuable insight into the acute cellular response as
a result of extrinsic cues in normal muscle development
and regeneration. Intriguingly, the effects exerted by the
“conditioned” media (CM) on the development of muscle
cells have been documented some time ago [77, 78], illus-
trating the phenomena that myogenic cells modify their own
extracellular milieu by secreting factors that exert autocrine
and paracrine effects on the differentiation program. Fur-
thermore, the skeletal muscle has been recognized as the
largest endocrine organ in humans for secreting extracellular
factors, the myokines that orchestrate muscle development
in an autocrine fashion [79, 80]. Apart from the well-known
myokines, such as members of the insulin-like growth factor-
1 (IGF1) [81–90] and transforming growth factor (TGF)
families [91–99], which have potent, but opposing effects
on myogenesis, there were individual studies investigating
other myokines, such as plasminogen activator [100], col-
lagenase [101], decorin [102], glial growth factor [103],
neurocrescin [104], meltrin alpha [105], musculin [79, 106],
interleukin-1 beta [107], interleukin-7 [108], ADAMTS-
like 2 [109], follistatin-like 1 [110], secreted protein acidic
and rich in cysteine (SPARC) [111–113]. To make progress
on the characterization of the “secretome” in an unbiased
manner, we implemented an initial mass spectrometry-
based proteomics study to identify secreted proteins in the
mouse skeletal muscle cell line C2C12 [114]. Furthermore,
a more quantitative approach using stable-isotope labelling
by amino acids in cell culture (SILAC) in conjunction with
online reverse phase liquid chromatography tandem mass
spectrometry (RPLC-MS/MS), has now been implemented
to identify differentially expressed secreted proteins during
myogenesis.

2. Workflow of SILAC Quantification

In differential proteomics, stable-isotope labelling, for exam-
ple, 2H versus 1H, 13C versus 12C, and 15N versus 14N, is
employed to introduce a signature mass difference between
the samples of interest (e.g., treatment versus control). After
enzymatic protein digest, the ratios of the labelled peptide
peak intensities reveal the relative protein expression. There
are two general ways to introduce the stable-isotope label
into the sample: (1) chemical labelling, typically achieved via
the isotope-coded affinity tag (ICAT) or the isobaric tag for
relative and absolute quantitation (iTRAQ); (2) metabolic
labelling, conveniently performed via SILAC. ICAT targets
the sulfhydryl group on the cysteine residue [115], whereas
iTRAQ modifies the amino group on the N-terminus and
the lysine residue [116]. For SILAC, stable-isotope labelled
amino acids are metabolically incorporated into the living

cells as they grow. Irrespective of the labelling methodology,
the tagged samples are then combined and processed as
one in subsequent treatment, separation, and analysis. This
minimizes the impact of nonquantitative recovery of the
proteins and peptides in these steps on the accuracy of the
quantification [117, 118].

In recent years, SILAC has been widely applied to
various biological models and cell types, including immune
B cells [119], fibroblasts [120], neuronal cells [121], blood
cells [122], lung cells [123], chondrocytes [124], prostate
cancer [125], ovarian cancer [126], liver cancer [127, 128],
breast cancer [129, 130], esophageal cancer [131, 132], and
embryonic stem cells [133–135]. In addition, it has also been
successfully implemented in tissues [136, 137] and living
organisms [122, 138–140].

We employed SILAC labelling in an attempt to identify
differentially expressed secreted factors at the myotube- ver-
sus myoblast-stage (i.e., differentiation versus proliferation)
in C2C12 cells. As illustrated in Figure 3, CM proteins
derived from [12C6]-lysine labelled myoblasts (light) and
[13C6]-lysine labelled myotubes (heavy) were mixed in equal
amounts and subjected to one-dimensional gel electrophore-
sis (1D-SDS PAGE), followed by trypsin digestion. The
resulting tryptic peptides were analyzed by online RPLC-
MS/MS. The ratio of the heavy- versus light-labelled peptide
peak intensities in the MS mass spectrum mirrored the
relative expression level of that particular protein during
myogenesis.

3. Implications of the Secreted Proteins
Identified in Myogenesis

As previously discussed, myogenesis is a multistep process,
beginning with myogenic lineage specification, followed
by cell proliferation, cell-cycle arrest, and ultimately the
differentiation of myoblasts into myotubes. We postulated
that each of these steps is regulated by secreted factor(s).
According to our preliminary data, novel secreted proteins,
such as osteoglycin (OGN), peroxiredoxin 1 (Prx1), and
cytokine-induced apoptosis inhibitor 1 (CIAPIN1), were
identified as differentially expressed proteins. Their respec-
tive role(s) in myogenesis were proposed as follows.

3.1. OGN. OGN is also known as mimecan. It belongs to
the small leucine-rich repeat proteoglycan (SLRP) family of
proteins [141–147]. This protein was found to be essential in
maintaining the integrity of the extracellular matrix (ECM)
of the cornea [148, 149] and the vascular smooth muscle
[150, 151] by inhibiting the ECM-cleaving enzyme gelatinase
[152]. This anti-ECM cleaving property contributed to
OGN’s tumour suppressor role in hepatocarcinoma cells
by attenuating tumour cell migration [153]. Given OGN’s
differential expression in myogenesis, we hypothesized that
OGN may play an inhibitory role by hindering myoblast
migration and the subsequent cell-cell contact. As result, cell-
cycle arrest is inhibited and hence the muscle differentiation
program is sabotaged. Interestingly, the E box has been
identified in the promoter region of OGN [154]. This
projects a compelling regulation mechanism of OGN during
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myogenesis in which binding of the MRF and E protein
heterodimer to the E box may function as a docking
site to recruit a chromatin remodelling molecule, such as
histone deacetyltransferases (HDACs); as consequence, the
transcription and subsequent expression of OGN decrease.

Furthermore, OGN may also play a role in myogenic lin-
eage commitment, where the protein was initially identified
as a bone-inductive factor [155–159]. Intriguingly, we have
demonstrated the possibility that C2C12 myoblasts could be
recommitted to the osteoblast lineage by overexpressing a
bone-inductive gene called menin1 [160]. With this taken

into account, it is tempting for us to speculate a plausible
link between OGN and menin1 in which downregulation of
OGN may be essential in directing the myoblasts to myogenic
lineage.

3.2. Prx1. Prx1, also known as Pag [161] or MSP23 [162],
belongs to the antioxidant protein family for cellular defence
against reactive oxygen species (ROS) [163]. Prx1 was
revealed to be upregulated in various cancer types, such
as oral cancer [164], lung cancer [165–172], pancreatic
cancer [173], and esophageal cancer [174]. Expression level



6 International Journal of Proteomics

of Prx1 was shown to positively correlate with cancer
progression; knocking down Prx1 not only attenuated malig-
nancy, but also sensitized the cancer cells to chemother-
apy and improved survival [175–177]. Given the role of
Prx1 as a prosurvival factor by blocking apoptosis signal-
regulating kinase (ASK)- induced cell death [178–180], we
hypothesized that Prx1 may function as a mitogen that
promotes the proliferation of myoblasts. As proliferation
and differentiation are mutually exclusive events, the down-
regulation of Prx1 (unpublished data) may be essential for
the withdrawal of myoblasts from the proliferation cycle and
subsequent differentiation.

3.3. CIAPIN1. CIAPIN1 has been characterized as an
antiproliferation molecule in cell division and angiogenesis
[181–183]. CIAPIN1 was shown to be a suppressor of
various cancers, for instance gastric cancer [184], renal
carcinoma [185], esophageal cancer [186], and colorectal
cancer [187]. The antiproliferation effect of CIAPIN1 was
found to be mediated by upregulating CDKI, which in turn
allows pRb to inhibit the E2F transcription factor from
activating downstream proliferation events; as a result, cell-
cycle arrest prevails [185, 188]. We postulated that CIAPIN1
may function as a positive regulator of myogenesis, in
which the upregulation of CIAPIN1 (unpublished data) may
be essential in triggering cell-cycle arrest of myoblasts for
subsequent differentiation to take place.

4. Conclusion

We have demonstrated the fidelity of applying SILAC to
identify secreted factors during skeletal myogenesis in an
unbiased proteomics approach. OGN, Prx1, and CIAPIN1
were identified as novel differentially expressed extracellular
factors that are proposed to play a role in the myogenic
program (Figure 4). Based on the findings of this “discovery”
approach, gain and loss of function studies are now in
progress to further dissect these proteins’ individual and
combinatorial roles in myogenesis. The identification of
secretome factors that regulate myogenesis will enhance our
knowledge of extracellular regulation of differentiation as
well as identify biomarkers of potential therapeutic value in
muscle regeneration and stem cell programming.
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D. S. Greenspan, “Bone morphogenetic protein-1/tolloid-
related metalloproteinases process osteoglycin and enhance
its ability to regulate collagen fibrillogenesis,” Journal of
Biological Chemistry, vol. 279, no. 40, pp. 41626–41633, 2004.

[150] C. M. Shanahan, N. R. B. Cary, J. K. Osbourn, and P. L.
Weissberg, “Identification of osteoglycin as a component
of the vascular matrix: differential expression by vascular
smooth muscle cells during neointima formation and in
atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and
Vascular Biology, vol. 17, no. 11, pp. 2437–2447, 1997.

[151] B. Fernández, A. Kampmann, F. Pipp, R. Zimmermann,
and W. Schaper, “Osteoglycin expression and localization
in rabbit tissues and atherosclerotic plaques,” Molecular and
Cellular Biochemistry, vol. 246, no. 1-2, pp. 3–11, 2003.

[152] X. N. Cui, J. W. Tang, B. Song, B. Wang, S. Y. Chen, and
L. Hou, “High expression of osteoglycin decreases gelatinase
activity of murine hepatocarcinoma Hca-F cells,” World
Journal of Gastroenterology, vol. 15, no. 48, pp. 6117–6122,
2009.

[153] X. Cui, B. Song, L. Hou, Z. Wei, and J. Tang, “High
expression of osteoglycin decreases the metastatic capability
of mouse hepatocarcinoma Hca-F cells to lymph nodes,” Acta
Biochimica et Biophysica Sinica, vol. 40, no. 4, pp. 349–355,
2008.

[154] E. S. Tasheva and G. W. Conrad, “Interferon-γ regulation of
the human mimecan promoter,” Molecular Vision, vol. 9, pp.
277–287, 2003.

[155] H. Bentz, R. M. Nathan, D. M. Rosen et al., “Purification
and characterization of a unique osteoinductive factor from
bovine bone,” Journal of Biological Chemistry, vol. 264, no. 34,
pp. 20805–20810, 1989.

[156] L. Madisen, M. Neubauer, G. Plowman et al., “Molecular
cloning of a novel bone-forming compound: osteoinductive
factor,” DNA and Cell Biology, vol. 9, no. 5, pp. 303–309, 1990.

http://www.ncbi.nlm.nih.gov/pubmed/20617350


12 International Journal of Proteomics

[157] J. R. Dasch, D. R. Pace, P. D. Avis, H. Bentz, and S. Chu,
“Characterization of monoclonal antibodies recognizing
bovine bone osteoglycin,” Connective Tissue Research, vol. 30,
no. 1, pp. 11–21, 1993.

[158] T. Xu, P. Bianco, L. W. Fisher et al., “Targeted disruption of
the biglycan gene leads to an osteoporosis-like phenotype in
mice,” Nature Genetics, vol. 20, no. 1, pp. 78–82, 1998.

[159] S. Hamajima, K. Hiratsuka, M. Kiyama-Kishikawa et al.,
“Effect of low-level laser irradiation on osteoglycin gene
expression in osteoblasts,” Lasers in Medical Science, vol. 18,
no. 2, pp. 78–82, 2003.

[160] A. Aziz, T. Miyake, K. A. Engleka, J. A. Epstein, and J.
C. McDermott, “Menin expression modulates mesenchymal
cell commitment to the myogenic and osteogenic lineages,”
Developmental Biology, vol. 332, no. 1, pp. 116–130, 2009.

[161] M. T. Prosperi, D. Ferbus, I. Karczinski, and G. Goubin, “A
human cDNA corresponding to a gene overexpressed during
cell proliferation encodes a product sharing homology
with amoebic and bacterial proteins,” Journal of Biological
Chemistry, vol. 268, no. 15, pp. 11050–11056, 1993.

[162] T. Ishii, M. Yamada, H. Sato et al., “Cloning and char-
acterization of a 23-kDa stress-induced mouse peritoneal
macrophage protein,” Journal of Biological Chemistry, vol.
268, no. 25, pp. 18633–18636, 1993.

[163] H. Z. Chae, K. Robison, L. B. Poole, G. Church, G. Storz,
and S. G. Rhee, “Cloning and sequencing of thiol-specific
antioxidant from mammalian brain: alkyl hydroperoxide
reductase and thiol-specific antioxidant define a large family
of antioxidant enzymes,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 91, no. 15, pp.
7017–7021, 1994.

[164] T. Yanagawa, S. Iwasa, T. Ishii et al., “Peroxiredoxin I
expression in oral cancer: a potential new tumor marker,”
Cancer Letters, vol. 156, no. 1, pp. 27–35, 2000.

[165] J. W. Chang, H. B. Jeon, J. H. Lee et al., “Augmented
expression of peroxiredoxin I in lung cancer,” Biochemical
and Biophysical Research Communications, vol. 289, no. 2, pp.
507–512, 2001.

[166] H. J. Kim, H. Z. Chae, Y. J. Kim et al., “Preferential elevation
of Prx I and Trx expression in lung cancer cells following
hypoxia and in human lung cancer tissues,” Cell Biology and
Toxicology, vol. 19, no. 5, pp. 285–298, 2003.
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