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Abstract

The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because
the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control
groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our
study we included both normal controls and feigners to control for conversion paresis. We studied both movement
execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal
hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and
unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for
conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and
precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-
sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and
disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that
contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of
conversion symptoms.
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Introduction

The etiology of medically unexplained symptoms such as

conversion disorder is poorly understood. Neuroimaging studies of

conversion paresis have not yet resulted in a commonly accepted

theory about the functional neuroanatomy of this disorder.

Because researchers have used different control groups, different

behavioral tasks and different statistical comparisons, the results

have been difficult to generalize between studies. However, by

combining the previously reported control groups, tasks and

statistical comparisons in various studies, we extracted common

neurophysiological abnormalities specific for this disorder. This

enabled us to formulate a hypothetical, neurophysiological model

that applies to conversion disorder in general.

Conversion disorder encompasses medically unexplained,

physical symptoms that are believed to develop unintentionally

in reaction to psychological and environmental factors such as

trauma or daily stressors [1]. This disorder inspired Freud to

develop his theories of consciousness, autobiographic memory and

self-reflection [2], which became the cornerstone of modern

psychology. Current criteria for conversion disorder include one or

more symptoms affecting voluntary motor or sensory function that

cannot be attributed to a neurological disorder. Symptoms suggest

a medical condition with a behavioral presentation mimicking

various types of neurological symptoms including tremor,

dystonia, pseudo-epileptic insults, sensory loss and paresis. Unlike

a factitious disorder or malingering, conversion symptoms are not

deliberately produced. According to cognitive theories on

conversion disorder [3], symptoms are unintentionally ‘‘produced’’

by activating inappropriate cognitive schemata or memories while

simultaneously inhibiting appropriate ones. The outcome, but not

the process itself, is consciously perceived by the patient as a

physical symptom.

The current study concerns a subtype of conversion disorder:

conversion paresis. From a neurological perspective, abnormal

cerebral activity in circuitry implicated in higher order motor

control [4] would be expected in this disorder. Furthermore,

psychological factors may influence movement preparation in

relevant motor areas such as the prefrontal cortex (implicated in

aspects of willed action) and the parietal cortex (implicated in the

integration of psychological and environmental information). The

preparation of internally driven movement is normally located in

secondary cortical motor areas [5,6] as well as in the cingulate

cortex [7,8].

Neuroimaging studies [9–15] (see Table 1 for an overview)

investigating the neural activity in Conversion Paresis have shown

anterior cingulate hyperactivation compared to normal controls

during movement execution of the paralyzed limb. This was

originally interpreted as inhibiting normal movement [12].

Subsequent theories focused on the self-monitoring function of

the anterior cingulate gyrus [10,15,16]. However, the increases in

cingulate activation reported in previous research are not

consistently present in all experimental paradigms (this applies to

both conversion paresis and feigners [13,14,17,18]). A recent

review [19] and a neuroanatomical study [20] discussed the

original interpretation of increased anterior cingulate activation.

Similarly, prefrontal activation has been reported as being

increased or decreased in patients, depending on the paradigm
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Table 1. Summary of fMRI results of abnormal cortical activation in conversion paresis.

Author1 CP NC FC Task Activation2 Method3

Marshall (1997) n = 1 L arm/leg
(leg fixated)

movement execution and –
preparation

+ C ACC (BA 24/32) A-UA

+ C frontal pole (BA 10)

2 I prim sensory cortex AM-AP

2 I prim motor cortex

2 I supramarginal (BA 40)

2 C inf temp cortex (BA 20/28)

Spence (2000)4 n = 2 L arm n = 6 HC n = 2 L arm movement execution affected side 2 I prefrontal areas (BA 9/46) CP-NC

2 I prefrontal areas (BA 9/46) CP-FC

Vuilleumier (2001) n = 7 passive vibration + C prefrontal (BA 6,8,9,46) A - R

4*L arm (/+leg) 2 C med occipital (BA 19/18) A – UA(R)

3*R arm (/+leg) + I prefrontal (BA 9/46,46,9,8)

2 C,I inf occipital (BA 18)

+ C,I prim somatosen. (BA1/2,5)

2 I lingual gyrus (BA 18)

C somatosensory ass (BA7)

Burgmer (2006)5 n = 4 n = 7 movement execution and –
observation

no abnormal activation6 A-R

3*L arm + leg absent activity motor cortices

1*R arm + leg

de Lange (2006) n = 8 implicit imagery + medial frontal6 A-UA

4*R arm + parietal operculum

4* L arm + superior temporal sulcus

+ superior temporal gyrus

de Lange (2008) n = 7 explicit imagery no abnormal activation6 A-AU

4*R arm implicit imagery + gyrus rectus

3*L arm + med frontal gyrus

+ sup frontal gyrus

+ sup temp gyrus

Stone (2007) n = 4 R leg n = 4 movement execution + C Paracentral lobe (BA 4) A-UA

+ C,I putamen

+ C insula

+ C,I inf. frontal gyrus

+ C,I lingual (BA 18)

+ C sup parietal gyrus (BA7)

2 I paracentral lobe (BA 4)

2 I prefrontal areas (BA 10,11 46)

+ C paracentral gyrus (BA 4) A-UA

+ C SMA (BA 6)

+ I cerebellum

2 I paracentral lobe (BA 4)

2 I parahippocampal (BA 29)

2 C cerebellum

2 I mid occipital (BA 19/39)

2 C sup parietal lobe (BA7)

1: first author; 2: + = increased activation, 2 = decreased activation, I = ipsilateral; C = contralateral, 3: A = Affected side, UA = Unaffected side, AM = Affected side
movement, AP = Affected side movement preparation, UA(R) = Affected side after recovery, R = Rest condition,; 4: PET; 5: spastic paresis, 6: authors did not provide BA.
doi:10.1371/journal.pone.0025918.t001
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used. Prefrontal activation was consistently decreased in para-

digms based on motor execution [12–14]. This is consistent with

the idea that conversion paresis is characterized by impaired

control of conscious motor will (willed action), accompanied by

abnormal levels of prefrontal motor function [13]. During motor

imagery [11], increased activation of the prefrontal cluster was

reported, while in a later study the same group found more

specifically that the dorsolateral part of the prefrontal cortex was

connected with parts of the motor system that are involved in

action planning [21].

Although the studies discussed above appear to have inconsis-

tent results, this is probably because conversion paresis was

investigated with different paradigms: different tasks (e.g. motor

execution, imagining, or observation) and different control groups

(e.g. healthy subjects moving normally or healthy subjects feigning

conversion paresis [13,17,22]. In a complex psychological

condition such as conversion paresis, differing neuroimaging

results could also be expected. Nevertheless, initial neuroimaging

results have shown that cerebral activation in conversion paresis is

abnormal, although a coherent underlying mechanism of neuronal

dysfunction needs to be elucidated.

Methodological aspects of previous studies
The incomparability of previous studies appears to be related to

the neuroimaging methods and paradigms used. There are two

methodological aspects that affect the comparability of such

studies.

First, functional neuroimaging as a method in general does not

discriminate between abnormal task-evoked cerebral activity

which causes a symptom, and abnormal activity which is a result

of a symptom (such as abnormal movement in conversion paresis.

When they are moving unnaturally, healthy subjects all show

seemingly abnormal cerebral activity. When abnormal movements

are performed, sensory feedback changes. To overcome the effects

of sensory feedback, paradigms employing movement imagery

have been applied. But even then, when studying conversion

paresis patients compared to healthy controls, researchers

inevitably find (a) abnormal activity associated with a cerebral

state, especially in a person suffering from conversion paresis, and

(b) abnormal cerebral activation that is the result of not moving (or

imagining movement) normally, regardless of the cause (i.e.

intentional or unintentional paresis).

Second, intentional and unintentional abnormal movement

results in identical abnormal cerebral activation patterns (with

respect to activation that is related to the act of moving, for

example sensory feedback). Two underlying issues are involved.

(1) Without comparison with healthy controls who intentionally

feign paresis, it is impossible to distinguish between cerebral

correlates of abnormal movement output caused by conver-

sion paresis and the cerebral correlates of identical abnormal

movement output caused by healthy, intentional, mecha-

nisms. Therefore, the neurophysiological abnormalities that

are specific for conversion paresis would not be identified.

(2) Abnormal activation that causes conversion paresis includes

hemisphere-specific activation, which is independent of

symptom lateralization, in addition to activation contralateral

to the affected side. In previous studies, a common strategy

was to assess within-group differences by contrasting the

affected and unaffected limb. The resulting hemispheral

difference was subsequently compared with the hemispheral

difference in a healthy control subjects. This strategy,

however, may neglect the effects of hemisphere-specific

activation, which is present in conversion paresis regardless

of symptom lateralization. As previous studies addressed both

left- and right sided symptoms, half of the data were flipped in

order to obtain a homogeneous group for analysis with all

abnormal hemispheral function contralateral to the affected

limb [10,14]. Although this is a good methodological strategy,

it also conceals hemisphere-specific activity. Essentially,

flipped data and within-group contrasts specifically reveal

abnormalities in contralateral activation, while unflipped data

and between-group contrasts may reveal additional hemi-

sphere-specific abnormalities in cerebral activation.

In sum, it remains unknown what neurophysiological abnor-

malities in conversions paresis are specific for unintentional

paresis. Moreover, hemisphere specific activity has not been

revealed by previous paradigms.

Present study
In our study we used 4 different types of data-analyses to focus

on the unknowns described above. Our first, general, research

question was the following: do the comparisons of patients with

feigners and controls, reveal meaningful neurophysiological

abnormalities when they are not controlled for within-patient

factors? More specifically, we addressed two additional hypoth-

eses. First, based on the relevant literature, we expected to find

increased anterior cingulate activation and decreased prefrontal

activation in within-group contrasts. Second, reasoning from a

neurological perspective, we expected to find conversion paresis-

specific cerebral activity, which would indicate a) impaired willed

action (i.e. decreased prefrontal activation) to account for the idea

that symptoms occur unintentionally, b) abnormal parietal

activity in between-group contrasts, associated with the cognitive

theories of impaired activation of movement schemata in

conjunction with environmental cues, and c) increased activity

reflecting abnormal movement initiation in motor areas respon-

sible for movement abnormal preparation (i.e. Premotor Cortex

(PM) activity and Pre- Supplementary Motor Area (SMA)) in

both patients and feigners.

In our study, we addressed these questions as follows. First, we

analyzed both standard within-group and additional between-

group contrasts separately in the same data. Second, we analyzed

both flipped and unflipped data. Third, we compared the cerebral

correlates of conversion paresis (unintentional) abnormal move-

ment to both feigned (intentional) abnormal movement and

normal movement. Fourth, we also investigated both movement

imagery and execution. This not only resulted in an interesting

overview of abnormal cerebral activation in conversion paresis,

but also yielded a large amount of data with complex

interrelationships.

Although whole-brain analyses were performed, for purposes of

clarity and brevity we limited the description and discussion of the

results in the text mainly to the areas described above: the

cingulate cortex, dorsolateral prefrontal cortex (DLPFC), motor

areas (motor cortex, premotor cortex, supplementary motor area

(SMA)), and supramarginal gyrus. The complete results (significant

at cluster level, see below) are presented in the tables.

Materials and Methods

Ethical statement
This study was approved by the ethical committee of the

University Medical Centre Groningen. All participants gave

written informed consent and were treated according to the

declaration of Helsinki.
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Subjects
See Table 2 for subject characteristics. Originally 5 groups were

included: 21 normal controls, right-sided feigning paresis (n = 7)

and left-sided feigning paresis (n = 6), right-sided conversion

paresis (n = 6) and left-sided conversion paresis (n = 4) (see

statistical analyses for the method used to merge the left- and

right sided groups in analyses A and B). These groups were

merged into 3 groups after flipping the data for analyses C and D

(see below). In the Methods and Results sections, these groups are

referred to as ‘patients’, feigners’, and ‘normal controls’ for reasons

of brevity. All patients suffered from flaccid paresis; dystonic

paresis was excluded. One patient was left handed. The clinical

diagnosis was made after neurological examinations that were

performed according the following protocols:

(1) Clinical exam. Special attention was given to inconsistencies

in muscle strength during the clinical exam and between the

actual exam and informal behavior such as getting dressed,

opening the door and shaking hands. In patients with paresis

of the leg, Hoovers sign was included. Symptoms were

consistently and congruently present in three patients; others

experienced periods without symptoms, but showed symp-

toms during scanning procedures.

(2) Neurophysiological exam. All patients were examined with

Motor Evoked Potential (MEP) with normal results.

(3) Biological tests. Extensive blood tests were performed,

including hematology, electrolytes, kidney and liver function-

ing and glucose. All patients had normal results.

(4) Psychological exam. Psychogenic factors were confirmed by

an expert neuropsychologist (M.B.) focusing on the existence

of a relationship between a psychological life event, daily

hassles and neurological symptoms. Psychological tests

regarding dissociative symptoms, psychological life events,

psychological complaints (including anxiety and depression,

personality pathology, and coping styles) and attentional

disorders were administered. The latter results were not

included in this paper; see [23–25] for an overview of the tests

and results.

(5) Clinical imaging (cerebrum and myelum) was performed on

all patients with 1.5T MRI using standard T1/T2-FLAIR

sequences. In addition, the anatomical T1 images obtained

with 3T MRI in this functional imaging study were inspected

for all subjects by an expert neurologist (B.M.J.) to check for

organic damage. One additional patient was excluded due to

structural brain damage. All other patients (n = 9 remained)

had normal results.

Procedures
Handedness was assessed according to the Dutch Handedness

Questionnaire [26]. The ability to perform mental imagery was

assessed by the Vividness of Movement Imagery Questionnaire

(VMIQ) [27], where low scores indicate better performance.

Further assessments included a neurological examination by a

movement disorder neurologist (K.L.L.). The T1 weighted MRI

scans were analyzed by an experienced neurologist (B.M.J.) to

assess possible cerebral pathology. Informed written consent was

obtained according to the declaration of Helsinki and the study

was approved by the Medical Ethical Committee of the UMCG.

All groups performed four tasks: execution and imagination of

flexion/extension movements of the right and left wrist separately

[28]. Prior to the experiment, subjects practiced the tasks for

2 minutes outside the MRI scanner. They were instructed to move

Table 2. Demographic and illness variables.

NC (n = 21) CP (n = 9) FC (n = 13)

Age 43.3 (SD 9.7) 44.8 (SD 11.4) 45.1 (SD 12.7)

Sex Male 4 (19%) 2 (20.2%) 9 (20.6%)

Female 17 (81%) 7 (77.8%) 4 (71.4%)

Paralysis

Side R:5, L:4 R:7, L:6

Severity 25 (18.7) 27.1 (17.6)

Patient Age duration* Fluctuating Severity %** Comorbidity***
Rating scan
movement

1 50 5 yes 20 sexual abuse 3

2 56 1 yes 0 loss of spouse 1

3 51 8 no 20 marital distress 4

4 18 2 yes 40 N.I.**** 4

5 43 2 yes 10 car accident 1

6 52 1 yes 20 sexual abuse 3

7 51 0.3 no 20 work disstress 2

8 42 0.5 no 65 somatization disorder. 4

9 40 3.0 yes 30 illness child 3

Mean (sd) 45 (11) 2.5 (2.5) 25 (19)

*years;
**Percentage of normal functioning according to patient;
***Psychiatric or Psychological co-morbidity;
****Not identified.
doi:10.1371/journal.pone.0025918.t002

Abnormal Parietal Function in Conversion Paralysis

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e25918



their wrist, but according to a 0.5 Hz pace which was indicated by

a visual cue (a flickering dot on the screen). The movements were

performed in a vertical plane with stretched fingers. The

instructions for execution were ‘‘try to move your hand as closely

as possible according to the rhythm of the dot (movement shown

by the instructor and practiced by the patient)’’. The instructions

for imagery were ‘‘imagine that you are moving your hand in an

identical manner and according to the same rhythm compared to

the movement execution condition’’.

During scanning, patients were presented with visual, written,

instructions that indicated the condition: ‘Right, Move’; ‘Left,

Move’; Right, Think’; ‘Left, Think’; ‘Rest’. Prior to the scanning

procedure, feigners received the following general instruction: ‘‘in

this experiment, while you are in the MR scanner you have to

simulate a paresis of your right/left hand as you would do if you

had to convince a medical examiner that your hand is partly

paralyzed, feels heavy and is difficult to move’’.

During scanning the forearms were positioned in pronation on

pillows, and we made sure subjects did not touch the scanner.

Their limbs were not within their field of view. Four task

conditions were defined: movement execution in the affected hand

(Execution affected), movement execution in the unaffected hand

(Execution unaffected), movement imagery in the affected hand

(Imagery affected), and movement imagery in the unaffected hand

(Imagery unaffected).

All tasks were preceded by a rest condition. All conditions had a

duration of 30 seconds. Three runs were performed lasting

12 minutes each. During each run, 12 response blocks (one task

per block) were scheduled. For each subject, tasks were presented

in a random but balanced order (i.e. all four conditions were

presented three times each). All subjects were video-taped during

scanning. Severity of paresis in patients and feigners during task

execution was rated using a rating scale of 1–5 on the degree of

flexion and extension of the wrist and the degree of stretching of

the fingers by two independent expert neurologist raters (1 = none,

2 = minor movement, 3 = partial extension/flexion of the hand,

4 = slowed or stiff full extension/flexion of the hand, 5 = normal

full extension/flexion of the hand).

Functional imaging
Cerebral activation in subjects was scanned using a 3 Tesla

Philips MRI scanner (Best, the Netherlands). The following pulse

sequence parameters were used: single shot EPI; 46 slices; 3.5 mm

slice thickness; no gap; 2246224 mm field of view; 64664 scan

matrix; transverse slice orientation; repetition time 3000 ms; echo

time 35 ms; flip angle 90u. Three runs of 240 brain volumes each

were acquired, i.e. 10 volumes per 30 seconds condition block. In

addition, a T1-weighted whole brain anatomical image was

acquired (resolution 16161 mm).

Statistical analysis
Patients and feigners were compared for the degree of

movement during the task (while scanning) with a two-sample t-

test (two-tailed). Patients and all normal controls were compared

using the VMIQ questionnaire with a two-sample t-test (two-

tailed).

We performed four types of data-analyses on the same group of

subjects to reveal different aspects of abnormal activation. Note

that in analyses B, C and D, both flipped and unflipped between-

group contrasts were not controlled for within-group comparisons

for reasons explained in the introduction. We made direct

comparisons between groups for each condition, e.g. affected side

patients versus affected side normal controls for the condition

‘Execution affected’.

For analyses A and B, the data were not flipped. When flipping

the data, it is assumed that right- and left-sided paresis will show

identical effects (contain identical variances). We allowed a

possible different effect size for left and right affected groups (at

the cost of two degrees of freedom) by initially defining five groups

instead of three (this minimizes error variance.) Therefore, two-

way between-group ANOVA was used. Factor 1 (group) contained

five levels (normal controls, right feigners, left feigners, right

patients, and left patients), and factor 2 (condition) contained four

levels (Execution affected, Execution unaffected, Imagery affected,

Imagery unaffected). To limit the number of comparisons, the left-

and right sided groups were merged in the definition of the

contrasts. Thus, note that also in unflipped data (analyses A and

B), only three (not five) comparisons were made, with group sizes

n = 22 for normal controls, n = 13 for feigners, and n = 9 for

patients.

A. Within-group contrasts. Affected and unaffected sides

were compared for each subject. The following three contrasts

were investigated within each group: A1) right hand versus left

hand for the normal control group, A2) affected versus unaffected

hand in the patient group, and A3) affected versus unaffected hand

in the feigner groups.

B. Between-group contrasts in unflipped data. In this

contrast, unflipped data were analyzed to convey the hemisphere-

specific activations. For this purpose, the groups of left- and right-

sided paresis were included as one group (n = 9), and the groups of

left- and right-sided feigned paresis were included as one group

regardless of symptom side (n = 13). In these three groups, two-

way between-group ANOVA was used. Factor 1 (group) contained

5 levels (normal controls, right feigners, left feigners, right patients,

and left patients), and factor 2 (condition) contained 4 levels

(Execution affected, Execution unaffected, Imagery affected,

Imagery unaffected). The following contrasts were investigated

in all four task conditions: B1) normal controls versus patients; B2)

normal controls versus feigners, and B3) patients versus feigners.

For analyses C and D, the data were flipped. For this purpose all

parametric maps from first level analysis of the left-sided pareses (4

patients, 6 feigners) were flipped prior to second level analysis. As a

result all patients and feigners ‘became affected’ on the right side.

Two groups of patients with conversion paresis (with either right-

and left-sided paresis) were merged into one group of n = 9

patients by defining affected ((n = 5 right-sided)+(n = 4 left-

sided) = n = 9 affected side)) and unaffected ((n = 5 left-

sided)+(n = 4 right-sided) = n = 9 unaffected side)) sides. Similarly,

two groups feigning paresis (including right- and left-sided paresis)

were merged into one group of n = 13 feigners by defining affected

((n = 7 right-sided)+(n = 6 left-sided) = n = 13 affected side)) and

unaffected ((n = 7 left-sided)+(n = 6 right-sided) = n = 13 unaffected

side)) sides. Note that only three (not five) comparisons were made

in analyses C and D, with group sizes n = 21 for normal controls,

n = 13 for feigners and n = 9 for patients.

C. Between-group contrasts in flipped data. Two-way

between-group ANOVA was used. Factor 1 (group) contained 3

levels (normal controls, patients, feigners) and factor 2 (condition)

contained 4 levels (Execution affected, Execution unaffected,

Imagery affected, Imagery unaffected). The following contrasts

were investigated: C1) normal controls versus patients; C2) normal

controls versus feigners, and C3) patients versus feigners.

D. Conjunction analysis. To identify overlap in the

resulting activation increases in contrasts formed in C, we

performed a conjunction analysis whereby we investigated which

anatomical areas were differently activated in normal controls

compared to both patients and feigners. This isolates abnormal

activity related to abnormal movement output of patients and

Abnormal Parietal Function in Conversion Paralysis
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feigners in general, regardless of its cause (see introduction). The

contrast investigated here was D1) normal controls versus (patients

and feigners). We also investigated what anatomical areas were

abnormally activated in patients compared to both control groups

to isolate abnormal activity specific for patients. This isolates

abnormal activity specific for patients. The contrast investigated

here was D2) patients versus (normal controls and feigners).

Spatial pre-processing and statistical analysis were carried out

using Statistical Parametric Mapping (version SPM2) [29]. The

functional images were realigned, co-registered to their own

anatomical image, normalized to a standard brain (MNI) and

subsequently smoothed with an isotropic Gaussian filter using an

8 mm Full Width-Half Maximum Gaussian kernel. Data were

analyzed using a random effects model. At the first level (per

subject), conditions were modeled as a box car convolved with the

canonical hemodynamic response function. The contrasts of the

movement and imagining conditions for each hand in each

condition (versus baseline) were fed into the second level.

Clusters of activation that reached statistical significance at

cluster-level P,0.05 (corrected for multiple comparisons, initial

threshold p,0.001 (T.3.14) are discussed. In our data set, cluster

size (k).200) for significant clusters. Note that Figure 1 also

contains activity significant at an uncorrected threshold of

p,0.001 T.3.14 (see Figure 1).

Results

Behavioral data
A trend towards better performance in control subjects was

found in the questionnaire on the capacity of movement imagery

(VMIQ) between patients (141678) and controls (including

feigners; 92650); (two-sample T-test, 2-tailed p = 0,057). Because

this result was not significant, we did not include it in further data

analyses. Most patients were able to move their affected hand to

some degree, ranging from 10 to 90% of normal use, and feigners

showed similar movement patterns during movement execution

conditions. All patients tried to move the hand in question

appropriately throughout the entire scanning sessions. No

differences in the degree of weakness (feigned or otherwise) was

found between feigners and patients according to the scanning

Figure 1. Cerebral activation patterns during movement execution in the affected hand for patients versus normal controls and
patients versus feigners. Flipped data for movement execution in the affected side is shown for (A) patients versus normal controls, (B)feigners
versus normal controls and (C) feigners versus patients. Figures were created with MRIcron, template Ch2better.nii.gz., without restriction of number
of voxels. X-coordinates (in mm) for each saggital section are listed below. Numbers indicate clusters that were significant at cluster-level (P,0.05,
whole-brain corrected at cluster level; k.200) and are also listed in the Tables. Note that this Figure also displays activity (not numbered) significant
at an uncorrected threshold, to preserve explorative qualities of the study. A: Increased activation (red, t = 3.16 to yellow, t = 7) and decreased
activation (blue t = 3.16 to green, t = 6.0) in patients versus normal controls. B: Increased activation (red, t = 3.16 to yellow, t = 8) and decreased
activation (blue t = 3.16 to green, t = 6.0) in feigners versus normal controls. C: Decreased activation in patients vs feigners (blue t = 3.16 to green,
t = 7.0). 1 = inferior frontal gyrus, 2 = precuneus, 3 = medial cingulate cortex, 4 = frontal pole, 5 = ventral lateral prefrontal cortex, 6 = supramarginal
gyrus, 7 = premotor cortex, 8 = superior temporal cortex, 9 = superior frontal operculum, 10 = primary somatosensory cortex, 11 = dorso lateral
prefrontal cortex, 12 = somatosensory association cortex, 13 = parahippocampal gyrus, 14 = primary/secondairy visual cortex, 15 = nucleus caudatus,
16 = SMA (in B extending into cingulate cortex), 17 = cerebellum, 18 = superior parietal cortex, 19 = frontal eye fields, 20 = orbitofrontal cortex. L = left,
R = right.
doi:10.1371/journal.pone.0025918.g001

Abnormal Parietal Function in Conversion Paralysis

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e25918



performance ratings (Table 2: patients: mean = 2.6, sd = 1.1;

feigners: mean = 2.6, sd = 1.0, two-sample T-test, 2-tailed p = 0.8).

fMRI data
Distinct activation patterns for patients, feigners and normal

controls were identified. Significant results were found in both

movement execution and movement imagery conditions. Results

from analyses A, B, C and D were presented in the Tables and

Figures if they reached significance at cluster-level P,0.05 (FWE),

corrected for the entire brain volume, cluster size (k).200; voxel

size 26262 after normalization). Of these, the anatomical areas

that were relevant according to the hypotheses described in the

Introduction are also discussed in the text.

A. Within-group contrasts: affected versus unaffected
side

Normal controls showed increased activity related to hand

movement in the primary and secondary motor areas contralateral

to the motor activity (Table 3). This was consistent with the side

where the movement took place. Feigners showed a similar

pattern, but a decrease in SMA activity was found on the affected

side compared to the unaffected side. Patients showed decreased

activity in multiple prefrontal areas and increased activity in the

contralateral primary motor cortex consistent with the expected

movement-related activity. The increased anterior cingulate

activity reported in the literature (see Introduction) was not

present at our threshold, but appeared at a much lower threshold

– uncorrected p = 0.05 (MNI x = 0, y = 38, z = 0, t = 1.65.

B. Between-group contrasts in unflipped data:
hemisphere-specific activation

Movement Execution in the affected hand. Patients

showed increased left cingulate cortex activation in comparison

to normal controls, spreading bilaterally at a lower threshold

(Table 4). The right supramarginal gyrus and DLPFC showed

decreased activation in patients versus feigners, but not compared

Table 3. Cerebral activation in within-group comparison Affected versus Unaffected* in patients and feigners) side during
movement execution.

Left Right

Contrast** BA k x y z t/Z x y z t/Z

CP A.CP UA

1. primary motor cortex 4 455 210 28 52 6.4/5.9

2. somatosensory ass. cortex 5 2024 230 230 54 7.8/7.0

3. (sec) visual (ass) cortex 18/19 255 28 268 2 4.6/4.4

CP A,CP UA

1. prim. motor cortex 4 216 4 220 52 4.4/4.2

2. somatosen. ass.cortex 5 1470 38 228 58 7.8/7.9

3. DLPFC 9 785 48 40 8 5.1/4.8

4. DLPFC 45 903 38 22 8 5.0/4.7

5. medial frontal pole 10 203 8 60 34 4.5/4.3

6. insular cortex 43 220 38 26 24 5.3/5.0

7. cerebellum 809 22 252 244 5.6/5.3

FC A.CP UA

1. primary motor cortex 4 1366 234 222 52 5.4/5.1

2. cerebellum 433 12 256 220 5.4/5.1

FC A,CP UA

1. motor and somatosens. areas. 4,5,6 3333 36 226 60 8/7.1

2. insula 43 360 38 4 14 5.4/5.1

3. cerebellum 1191 222 52 226 7.0/6.4

NC R.L

1. motor and somatosens. areas 4,5,6 4618 238 234 60 14.0/.8

2. insula 43 622 236 220 16 5.5/5.2

3. cerebellum 14 254 218 11.4/.8

NC R,L

1. motor and somatosens. areas 4,5,6 4771 38 228 58 11.3/.8

2. insula 43 768 18 220 2 6.6/6.1

3. cerebellum 2029 212 254 222 11.1/.8

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level). Positive x, y, z coordinates (in mm)
indicate locations right, anterior and superior to the middle of the anterior commissure. CP = conversion paresis, FC = feigning controls, NC = normal controls,
A = Affected side, UA = Unaffected side, R = right side, L = Left side, BA = Brodmann area.
*Note that the data are unflipped. ‘Affected side’ can include both right and left hands in patients and feigners.
**Movement imagery showed no significant results at p = 0.001 for any of the groups.
doi:10.1371/journal.pone.0025918.t003
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to normal controls. In feigners, bilateral supramarginal gyrus and

left DLPFC were overactivated compared to normal controls.

C. Between-group contrasts in flipped data
Conditions showed a complex pattern of significant activation

(see Tables 5, 6, 7, and 8 and Figures 2, 3, 4, 5, and 6 for a

complete overview of all significant results). Note that Figure 6 also

contains activity significant at an uncorrected threshold of

p,0.001 T.3.14 (see Figures 1 and 6).

Movement execution in the affected hand. In patients

versus normal controls, increased activation was found ipsilateral

to the affected side in the premotor cortex, supramarginal gyrus

and cingulate cortex. Decreased activation was found in the

ipsilateral prefrontal cortex and contralateral precuneus (Table 5

and Figures 2 and 6). In feigners versus normal controls, increased

activation was found in the contralateral SMA and cingulate

motor cortex, and bilateral increases were seen in prefrontal areas

and supramarginal gyrus. In normal controls versus feigners,

decreased activation was found in the prefrontal areas, and

bilateral SMA, supramarginal gyrus and precuneus.

Movement execution in the unaffected side. Compared to

normal controls, patients showed increased activity in the

contralateral premotor cortex and ipsilateral medial cingulate

cortex, while decreased activation was found in the ipsilateral

posterior cingulate and supramarginal cortex (Table 6 and

Figure 3). In patients versus feigners, patients showed increased

activation in the ipsilateral frontal pole and a decrease in the

contralateral premotor cortex, frontal pole, and bilateral SMA,

supramarginal gyrus and cingulate motor cortex.

Movement imagery in the affected hand. Decreased

contralateral supramarginal activity was found in patients

compared to normal controls and decreased activations in the

ventral segment of the primary motor cortex (including the ventral

premotor cortex) and dorsal premotor cortex was found in patients

compared to feigners (Table 7 and Figure 4). FC showed increased

activity in SMA, supramarginal gyrus and prefrontal cortex

compared to normal controls.

Movement imagery in the unaffected hand. The

contralateral supramarginal gyrus was again decreased in patients

versus normal controls, and now also versus feigners (see Table 8

and Figure 5). In patients versus feigners, decreased contralateral

cingulate and ipsilateral SMA and prefrontal activity were found.

Moreover, compared to normal controls, feigners again showed

increased prefrontal and SMA, and now also precuneal activity.

D. Conjunction analyses
Conjunction analysis (see Table 9) revealed underactivation of

the ipsilateral ventral lateral prefrontal cortex during movement

execution, and decreased activity in the supramarginal gyrus

during movement imagery. This abnormal activity was specific for

patients compared to both normal controls and feigners. On the

other hand, patients and feigners both showed increases of

activation compared to normal controls in the ipsilateral premotor

cortex, supramarginal cortex and contralateral anterior cingulate

cortex (motor area) and superior temporal gyrus.

Discussion

The direct comparison (i.e. not controlled for within-subject

factors) of patients with feigners and normal controls reveals

meaningful and innovative neurophysiological results. The combi-

nation of different tasks, control groups and statistical comparisons

in the same dataset has resulted in a complex, but comprehensive,

pattern of results. Most importantly, this is the first report of

lateralized neurophysiological abnormalities, independent of wheth-

er patients had left- or right-sided paresis. A common neurophys-

iological view on conversion paresis can be extracted from this

interrelated pattern of results. Furthermore, the specific hypotheses

regarding specific neuroanatomical areas have been largely

confirmed. See below for a detailed discussion of the results.

Decreased prefrontal activation and willed action
The unintentional character of abnormal movement may be

illustrated by decreased prefrontal activation (BA 46), which is

Table 4. Cerebral activation in between-group comparisons in unflipped data: hemisphere-specific activation.

Left Right

Contrast* BA k x y z t/Z x y z t/Z

AEX**

CP.NC

1. anterior cingulate gyrus 32 446 28 20 42 4.3/4.2

FC.NC

1. supramarginal gyrus 40 309 256 242 38 4.2/4.2 54 42 46 4.0/3.8

FC.CP

1. DLPFC 46 278 44 40 22 4.5/4.3

2. supramarginal gyrus 40 257 54 240 46 4.3/4.2

AIM

FC.NC

1. primary somatosensory cortex 2 491 62 218 28 4.4/4.3

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level). Positive x, y, z coordinates (in mm)
indicate locations right, anterior and superior to the middle of the anterior commissure.
*CP = conversion paresis, FC = feigning controls, NC = normal controls, A = Affected side, UA = Unaffected side, BA = Brodmann area,
*CP = conversion paresis, NC = normal controls, FC = feigning controls;
**AEX = movement execution of the affected hand, AIM = movement imagery of the affected hand.
doi:10.1371/journal.pone.0025918.t004
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lateralized in the right hemisphere (analysis B). It is independent of

the side of paresis and has not been previously identified in

conversion paresis by within-group comparison [10,12]. This area

has been reported to be involved in willed action based on free

choice [5,6]. Activation in this area also correlates with severity of

trauma-related symptoms in Post Traumatic Stress Disorder

(PTSD) [30]. Our finding of decreased prefrontal activation may

seem at odds with the increased prefrontal activation reported by

others [10,12,14,15], but these effects should not be compared

directly. This because the prefrontal increases reported elsewhere

originated from within-group comparisons, which implied the

methodological impossibility of detecting hemisphere-specific

effects (see Introduction).

Also, when comparing the affected and unaffected side of

patients (Analysis A), prefrontal areas 9, 45 and 10 are under-

activated contralateral to the affected limb. This indicates

Table 5. Cerebral activation related to movement execution of the affected hand (left-sided patients and feigners were flipped).

contralateral
(left)

ipsilateral
(right)

Contrast* BA k** x y z t/Z x y z t/Z

CP,NC

1. frontal pole 10 209 28 64 2 5.6/5.3

2. ventral lateral prefrontal 45 364 50 38 14 4.4/4.3

3. precuneus 7 267 210 266 34 4.6/4.4

4. cerebellum IV–V 268 28 242 224 4.7/4.5

CP.NC

1. ventral premotor cortex 6 788 52 4 26 5.8/5.4

2. supramarginal cortex 40 233 56 246 28 5.7/5.4

3. superior temporal cortex 22 249 248 14 210 4.1/4.0 52 6 28 4.9/4.7

4. anterior cingulate gyrus 32 575 210 20 40 6.4/5.9 6 14 34 3.7/3.6

5. triangular cortex (inf frontal) 44 340 252 16 8 4.2/4.0

FC,NC

1. prim. somatosensory cortex 1 781 228 236 72 5.4/5.0

2. prim./sec. visual cortex 18/17 293 10 258 2 5.5/5.2

3. parahippocampal gyrus 222 216 213 212 4.5/4.3

4. cerebellum IV–V 610 22 232 224 5.9/5.5

FC.NC

1 a. suppl. motor cortex 6 9565**** 28 10 60 8.1/7.2

Including premotor cortex 6 9565 40 10 46

and superior temporal gyrus 22 9565 248 14 10

1 b. anterior cingulate gyrus 32 9565 26 18 40 7.8/6.9

2. DLPF 9 9565/515 234 46 24 6.1/5.7 32 38 28 5.6/5.3

3. sup. frontal operculum*** 44 9565/896 254 12 30 4.2/4.0 54 8 0 5.9/5.5

4. supramarginal gyrus 40 1334/3191 256 226 28 6.9/6.3 60 240 36 8.8/7.7

5. somatosensory ass. cortex 5 397 222 270 50 4.3/4.1 6 270 40 5.3/5.0

6. nucleus caudatus 534 28 4 10 4.8/4.6

CP,FC

1. supplementary motor cortex 6 677 212 8 70 6.3/5.8 4 8 66 6.2/5.7

2a. frontal pole 10 893 236 54 0 5.6/5.3 28 62 2 5.3/5.0

2b. vl prefrontal cortex 45 1944 42 38 16 5.3/5.1

2c. orbitofrontal cortex 47 1944 46 46 22 5.8/5.4

3. supramarginal cortex 40 299–913 252 244 48 4.5/4.3 52 248 46 5.6/5.2

4. precuneus 7 295 210 266 36 5.7/5.4 8 266 36 4.7/4.5

5. superior parietal cortex 7 299 232 274 44 4.3/4.1

6. frontal eyefields 8 316 28 34 36 4.8/4.7 10 40 46 5.3/5.0

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level). Positive x, y, z coordinates (in mm)
indicate locations right, anterior and superior to the middle of the anterior commissure.
*CP = conversion paresis, NC = normal controls, FC = feigning controls; BA = Brodmann area,
**k = contralateral/ipsilateral cluster extent, when separate clusters are involved;
*** = extending into insular cortex,
****large cluster contralateral
doi:10.1371/journal.pone.0025918.t005
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symptom-related prefrontal underactivation. We propose that

reduced prefrontal activity reflects the inability to perform

consciously willed actions as they were intended by conversion

paresis patients. However, this interpretation is at odds with the

findings of others using the same statistical comparison. For

example [10], described functional and effective connectivity

between increased dorsolateral prefrontal activation and sensori-

motor regions during motor imagery, which they interpreted as

part of heightened self-monitoring and action-planning. On the

other hand [13], described decreased prefrontal activation during

movement execution similar to our within-group results during

motor execution. It is important to consider the different types of

task used in the studies; the activity in prefrontal areas may be

increased in some behavioral tasks and decreased in others.

Table 6. Cerebral activation related to movement execution of the unaffected hand (left-sided patients and feigners were flipped).

contralateral
(left)

ipsilateral
(right)

Contrast* BA k** x y z t/Z x y z t/Z

CP,NC

1. posterior cingulate gyrus 23 883 220 254 8 6.2/5.7

2. inf parietal cortex/SG 40 357 248 242 26 5.1/4.8

3. prim/sec visual cortex 17/18 505 26 276 24 5.7/5.4

4. cerebellar vermis 35 216 248 226 4.2/4.0

CP.NC

1. ventral premotor cortex 6 226 54 4 16 5.6/5.3

2. anterior cingulate gyrus 32 212 210 20 40 5.1/4.9

FC,NC

1. cerebellum VII 221 28 262 248 4.6/4.4

Extending into vermis 221 16 260 42 4.2/4.0

FC.NC

1. dorsal premotor cortex 6 678 46 28 50 5.3/5.0

2a. supplementary motor cortex 6 2449 0 8 62 5.7/5.3

b. cingulate gyrus 32/24 2449 28 16 42 5.6/5.2 6 14 32 3.4/3.3

3. supramarginal gyrus 40 6224 52 242 50 7.5/6.7

4. frontal operculum 44 420 244 18 4 4.0/3.9

5. inferior frontal cortex 47 775 44 2 24 6.3/5.9

6. superior temporal gyrus 22 1505 236 50 12 6.6/6.0

CP,FC***

1a. Dorsal premotor cortex 6 36370 34 210 60 10.3/.8

b. supplementary motor cortex 6 36370 210 28 64 10.1/.8 8 24 72 10.2/i

c. supramarginal gyrus**** 40 36370 232 244 40 9.8/.8 34 240 52 10.7/.8

d. frontal pole 4 36370 10 222 76 7.4/6.7

e. prim. somatosensory cortex 3/2 36370 30 230 48 10.2/.8

f. superior temporal gyrus 22 36370 56 246 14 7.6/6.8

g. retrosubicular gyrus 48 36370 58 234 26 9.8/.8

h. anterior cingulate gyrus 24 36370 28 8 42 8.0/7.1 6 22 44 7.7/6.9

fusiform gyrus 37 884 246 266 4 7.3/6.6

posterior cingulate gyrus 23 273 212 226 38 6.3/5.9

CP.FC

1. frontal pole 10 256 26 60 2 4.8/4.6

2a.prim visual cortex 18 2005 26 264 10 5.0/4.8

b.sec visual cortex 17 2005 224 246 28 5.6/5.2

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level, k.200). Positive x, y, z coordinates (in
mm) indicate locations right, anterior and superior to the middle of the anterior commissure. BA = Brodmann area;
*CP = conversion paresis, NC = normal controls, FC = feigning controls;
**k = contralateral/ipsilateral cluster extent, when separate clusters are involved;
*** = large cluster contralateral;
****left supramarginal gyrus involved a separate cluster (kE = 5095).
doi:10.1371/journal.pone.0025918.t006
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Decreased parietal activation: a possible link between
psychological factors and motor control

Flipped data indicate decreased parietal activation contralateral

to the affected side, which was present in patients (analysis C)

during both movement (supramarginal gyrus and precuneus) and

imagery (supramarginal gyrus). In addition, unflipped data

analysis reveal a right-sided decrease in supramarginal gyrus

activation, independent of the side of symptoms (analysis B). It is a

hemisphere-specific feature of conversion paresis, irrespective of

symptom side, and we suggest that it reflects a major indicator of

functional deficit in conversion paresis.

Underactivation of the supramarginal gyrus was previously

reported by [12] in a patient with conversion paresis of the leg.

The supramarginal gyrus is known to contribute to the integration

of movement in relation to environmental and body information.

With regard to purposeful hand movements, the supramarginal

gyrus has been described as playing a pivotal role in prehension

[31–33], which reflects its position at higher levels in the cerebral

organization of movement. Prehension involves the incorporation

of body scheme information and externally perceived shapes in the

formation of adequate motor programs. Indeed, right supramar-

ginal gyrus activity has been reported to increase after body

scheme information was manipulated through stimulation of the

median nerve in a single patient with conversion paresis.

Moreover, this reaction was associated with a reduction of

symptoms [34].

Lesions of the supramarginal gyrus are related to neurological

conditions [35] such as visuo-spatial and ideomotor apraxia. These

neurological disorders involve an unconscious and therefore

unintentional inability to translate conscious motor plans into

adequate movements, and a neglect of part of the environmental

space and body scheme information.

We therefore propose that decreased supramarginal gyrus

activity reflects impaired interaction of bodily scheme information

and environmental cues, resulting in ineffective movement

initiation.

The contralateral precuneus is underactivated in the affected

hand in patients, specifically during movement execution (analysis

C) and also present when comparing intentional with uninten-

tional paresis. This indicates that it is not the result of abnormal

movement in general, but may be specific for the unintentional

nature of conversion paresis. In this respect, increased precuneus

Table 7. Cerebral activation related to movement imagery on the affected hand (left-sided patients and feigners were flipped).

contralateral
(left)

ipsilateral
(right)

Contrast* BA k** x y z t/Z x y z t/Z

CP,NC

1. supramarginal gyrus 39/40 388 250 238 26 5.8/5.4

CP.NC

No significant results

FC.NC

1. supplementary motor cortex 6 597 28 214 58 4.9/4.6 12 28 60 5.0/4.8

2. supramarginal gyrus 40 3817 52 232 36 8.6/7.5

3. angular gyrus 39 214 44 276 212 4.4/4.3

4. a DLPFC*** 9 240 30 44 36 6.2/5.8

b DLPFC*** 9 418 36 16 46 4.7/5.5

5. pars triangular 45 311 52 2 4 5.3/5.0

6. primary somatosensory cortex 2 416 258 224 28 5.3/5.0

7. somatosensory ass. cortex 5 328 236 244 64 5.8/5.4

FC,NC

No significant results

CP,FC

1. primary motor cortex 4 208 52 0 6 5.5/5.2

2. dorsal premotor cortex 6 390/310 214 8 70 5.1/4.8 12 4 68 5.4/5.1

3. somatosensory ass cortex 5 1389 238 244 64 6.9/6.3

4. superior temporal gyrus 22 1730 62 242 18 7.6/6.9

5. associative visual cortex 19 306 234 276 32 5.2/4.9

FC.NC

No significant results

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level). Positive x, y, z coordinates (in mm)
indicate locations right, anterior and superior to the middle of the anterior commissure. BA = Brodmann area,
*CP = conversion paresis, NC = normal controls, FC = feigning controls;
**k = contralateral/ipsilateral cluster extent, when separate clusters are involved;
*** = two separate clusters.
doi:10.1371/journal.pone.0025918.t007
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activation in feigners (during imagery of unaffected hand

movement) may reflect the opposite effect, i.e. increased attention

to intended movement. Decreased precuneus activation in conver-

sion paresis may provide an important link with psychological

mechanisms accompanying intentionality.

In a review on the precuneus [36], four behavioral correlates of

precuneus activity based on fMRI and PET findings were

described: episodic memory, self-processing, consciousness, and

spatial attention or visuo-spatial imagery. The latter, spatial

attention and visuo-spatial imagery, would be consistent with the

abnormal preparatory processes described above. In our data,

however, reduced precuneus activation is not present during

imagery. Other precuneus functions therefore deserve attention.

Its posterior part (in conjunction with the cingulate cortex and

prefrontal regions) has been implicated specifically in the retrieval

of autobiographic memories (episodic memory), but not in

semantic memory in general. Furthermore, the anterior precuneus

and the interconnected medial prefrontal regions are implicated in

self-processing tasks. For example, the precuneus is activated when

subjects are required to judge between self-relevant and self-

irrelevant traits. Finally, the precuneus is involved in conscious-

ness: it shows increased activation during a default conscious

resting state (that decreases during goal-directed behavior) and

during alternative states of consciousness such as slow-wave sleep,

rapid-eye movement sleep, hypnotic state [37,38], pharmacolog-

ically induced general anesthesia and persistent vegetative state.

Failing autobiographic memory, personal disintegration and

altered states of consciousness (hypnoses) were described in the first

theories of conversion disorder [2,39]. With these conditions,

patients are reluctant in the retrieval of episodic memories, show

lack of self-insight or personal integration (i.e. dissociative

symptoms) and with respect to their level of consciousness they

show states comparable to hypnosis. In current neurocognitive

models of conversion disorder, some scientists still use the concepts

of hypnosis [40], autobiographic memory and dissociation [3].

Contrary to our results, a n = 1 study comparing conversion

paresis to hypnotically induced paresis and normal movement by

normal controls showed increased precuneal activation contralat-

eral to the affected side [17]. This was absent when using the

unaffected limb. This finding was based on a within-group

comparison during execution, and was not replicated by our data,

in which no abnormal precuneal activation was found in the

Table 8. Cerebral activation related to movement imagery on the unaffected hand (left-sided patients and feigners were flipped).

contralateral
(left)

ipsilateral
(right)

Contrast* BA k** x y z t/Z x y z t/Z

CP,NC

1. supramarginal gyrus 40 297 246 234 26 4.8/4.6

CP.NC

No significant results

FC,NC

No significant results

FC.NC

1. supplementary motor cortex*** 6–8 5036 52 22 4 4.7/4.5

2. a DLPFC*** 9 274 246 240 58 5.5/5.2

b DLPFC*** 46 436 26 36 24 5.5/5.1

3.frontal eye fields 8 478 26 24 52 5.3/5.1

4. middle temporal gyrus 215 21 254 238 26 5.5/5.2

5. insula 43 242 32 232 8 4.5/4.3

6. precuneus 7 242 52 232 36 7.0/6.3

7. retrosplenial cingulate gyrus 29 263 22 242 12 5.3/5.0

CP,FC

1. cingulate gyrus and SMA**** 6/32 14542 210 24 64 8/7.1

2. DLPFC 45/46 340 56 8 0

3. DLPFC 46 751 36 40 28

4. parietal/occipital cortex 19–40 8489 220 282 214 7/6.4

including supramarginal gyrus 40 8489 246 234 228

5. insula 43 1025 40 212 212 5.1/4.9

CP.NC

No significant results

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level). Positive x, y, z coordinates (in mm)
indicate locations right, anterior and superior to the middle of the anterior commissure. BA = Brodmann area,
*CP = conversion paresis, NC = normal controls, FC = feigning controls;
**k = contralateral/ipsilateral cluster extent, when separate clusters are involved;
*** = activation spreads bilateral and included frontal eye fields;
****spreads bilaterally.
doi:10.1371/journal.pone.0025918.t008
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within-group contrast. A possible explanation for this inconsisten-

cy may be the type of task. While another study [22] used a go-no

go task including a preparation cue, we did not use any cues. The

authors made a distinction between (1) hypnotic states that were

induced without specific suggestion, which was related with

reduced precuneus activity, and (2) hypnotic states induced by

specific suggestion and related with increased activity. They

elegantly stated that the precuneus may be involved in the

envisioning of future events from a first-person perspective. This

theory can be applied both to a failure of conscious internal

Figure 2. Schematic summary of significant clusters (P,0.05, whole-brain corrected at cluster level; k.200) in between-group
comparisons (flipped data): movement execution in the affected hand (analysis C). + = significantly more activated than -.
doi:10.1371/journal.pone.0025918.g002

Figure 3. Schematic summary of significant clusters (P,0.05, whole-brain corrected at cluster level; k.200) in between-group
comparisons (flipped data): movement execution in the unaffected hand (analysis C). + = significantly more activated than -.
doi:10.1371/journal.pone.0025918.g003
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Figure 4. Schematic summary of significant clusters (P,0.05, whole-brain corrected at cluster level; k.200) in between-group
comparisons (flipped data): movement imagery in the affected hand (analysis C). + = significantly more activated than -.
doi:10.1371/journal.pone.0025918.g004

Figure 5. Schematic summary of significant clusters (P,0.05, whole-brain corrected at cluster level; k.200) in between-group
comparisons (flipped data): movement imagery in the unaffected hand (analysis C). + = significantly more activated than -.
doi:10.1371/journal.pone.0025918.g005

Abnormal Parietal Function in Conversion Paralysis

PLoS ONE | www.plosone.org 14 October 2011 | Volume 6 | Issue 10 | e25918



control over motor function (decreased precuneus function in

conversion paresis) and to intensified unconscious – but internal –

control over motor function (increased precuneus activity during

hypnosis). The authors suggested that the precuneus may be part

of a network at work in self-monitoring processes. In this respect,

the precuneus may be involved in the disturbed unintentional

internal representations and memories related to the self.

Our results and the current theories on the role of the precuneus

in conversion paresis seem to imply that the precuneus is not

specifically involved in conversion paresis, but that it may be

involved in other types of conversions disorder as well. However,

most motor conversion symptoms are difficult to study with

neuroimaging techniques, since excessive movement interferes

with data acquisition in fMRI. Nevertheless, conversion tremor

has been studied using fMRI in 8 patients [41]. Interestingly, in

that study the precuneus was part of an abnormal functional

network and was interpreted as part of the psychological

experience underlying the involuntary character of conversion

movements. In conversion conditions with both involuntary

additional movement (tremor) and lack of movement (paresis),

impaired precuneus activation thus appears to play a role.

In patients with PTSD, decreased precuneus activity was

recently identified during the resting state and was interpreted as

reflecting altered self-perception and consciousness [30]. More-

over, the severity of trauma-related symptoms correlated with

posterior cingulate/precuneus and right DLPFC (BA 46) connec-

tivity (see above for BA 46 in conversion paresis). We propose that

decreased precuneus functioning in conversion disorder is elicited

by overwhelming personal experiences, such as psychological

trauma. However, the reverse could also be true. Pre-existing

underactivation of the precuneus may cause patients to react

differently to psychological trauma. But if this were the case, one

would expect to find decreased precuneus activity independent of

symptoms and symptom lateralization. Our data should have

shown this in unflipped data and imagery conditions, but this is

not the case. This may imply that precuneus underactivation is

associated with the process of psychological trauma manifesting

into overt physical symptoms.

Cingulate cortex, premotor cortex and SMA: different
movement preparation in patients and feigners

Abnormal parietal and prefrontal function in the higher stages

of motor control may result in abnormal function in the later

stages of motor control, i.e. motor areas and cingulate cortex.

Conjunction analysis (D) suggests that patients and feigners both

show abnormal movement preparation, but explorative compar-

isons (analysis B) – not controlled for within-subject factors –

Figure 6. Significant hemisphere-specific cerebral activation patterns during movement execution in the affected hand for
patients, feigners, and normal controls. Unflipped data for movement execution in the affected hand is shown for (A) patients versus normal
controls, (B) feigners versus normal controls and (C) feigners versus patients. Figures were created with MRIcron, template Ch2better.nii.gz., without
restriction of number of voxels. X-coordinates (in mm) for each saggital section are listed below. Numbers indicate clusters that were significant at
cluster-level (P,0.05, whole-brain corrected at cluster level; k.200). Note that this Figure also displays activity (not numbered) significant at an
uncorrected threshold, to preserve explorative qualities of the study. A: Increased activation in patients versus normal controls (red, t = 3.16 to yellow,
t = 5). B: Increased activation in feigners versus normal controls (red, t = 3.16 to yellow, t = 5). C: Increased activation in feigners versus patients (red,
t = 3.16 to yellow, t = 5). 1 = medial cingulate cortex, 2 = supramarginal gyrus, 3 = dorso lateral prefrontal cortex. L = left, R = right.
doi:10.1371/journal.pone.0025918.g006
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suggest they do so in different ways: we found different movement

preparation correlates in patients compared to feigners during

abnormal movement. Patients showed increased premotor activa-

tion, while feigners showed increased pre-SMA activation.

The cerebral activation patterns of patients and feigners suggest

a difference between the groups with respect to (a) the degree of

free selection of movement in space compared to normal

movement and (b) the degree of internal versus externally guided

abnormal movement. Note that both patients and feigners

received paced instructions on movement from the experimenters

and were therefore externally guided by the experimenter. However,

both groups moved abnormally and therefore did not follow the

instructions on the screen, while the normal controls did. This

resulted in a larger ‘freedom of space’ in movement output in both

patients and feigners. In conversion paresis, this is believed to be

caused by an unidentified unintentional process, while feigners

intentionally produce abnormal movement. These differences in

intentionality and subsequent internal initiation of movement may

be explained by differences between feigners and conversion

paresis in the preparation phase of movement. Patients showed

increased premotor activity. This may indicate a greater

preparatory effort required to initiate movement compared to

normal controls. Interestingly, the increase in premotor activity

was ipsilateral during movement execution in the affected hand,

and contralateral during movement execution in the unaffected

hand. Since data were flipped, this does not indicate the presence

of a hemisphere-specific effect, but it does indicate increased

premotor activation contralateral to the affected hand, regardless

of which hand was moving. In contrast, the SMA is specifically

overactive in feigners compared to normal controls (see also [14]).

Although results are not consistent [42] and should not be

oversimplified [43], it has been proposed that the (pre-)SMA is

relatively more involved in learning internally guided movements,

while the premotor cortex is thought to be more involved in

externally guided movements [44,45].We therefore propose that

increased pre-SMA activation in feigners suggests that they were

more internally driven to alter their movements of the ‘affected’

hand compared to patients.

Contrary to expectations, the previously reported anterior

cingulate overactivation was not found in our within-group

comparisons of the affected and unaffected side before the

threshold was substantially lowered. The different nature of our

assigned task may be relevant here, since previous work studied

imagery of hand rotation (see also [10]), sensory processing [15] or

motor preparation [12] rather than actual movement, as in the

present study. In more general terms, the early theories on active

inhibition of motor commands by cingulate overactivation have

not been supported by consistent cumulative evidence throughout

different paradigms and subjects. Recently, a high-impact study on

feigned paresis and hypnotically induced paresis also reported no

evidence for active inhibition of motor commands mediated by

cingulate overactivation [17]. Another study of cingulate over-

activation revealed inconsistencies between neuroanatomical

function and the interpretation of initial neuroimaging results in

conversion paresis [20].

In our data (analysis C), we found increased activity of the medial

part of the cingulate cortex – referred to by [46] as the cingulate

motor zone – in both patients and feigners.

According to a subdivision of cingulate areas proposed by [7,8],

this area is referred to as the aMCC. The aMCC is involved in

complex arm movements, and is consistently activated in relation

to the internal selection of movement [46]. Previous results

comparing fixed movements with freely selected movements

indicated that increased aMCC activation is present [5] during

the free selection of a target in external space (environmental target) in

comparison to a cued target in space. Our patients and feigners had

greater freedom in the selection of movement compared to normal

controls since they were unable to follow exact instructions, or

feigned this inability, while the controls followed the instructions.

In our data, this result is not specific for conversion paresis but is

also present in feigners. We therefore propose that cingulate

overactivation reflects a similar phenomenon in both intentional

Table 9. Cerebral activation in conjunction analysis (left-sided patients and feigners were flipped).

contralateral
(left)

ipsilateral
(right)

Contrast* BA k x y z t/Z x y z t/Z

Movement execution of the affected hand

CP,NC & CP,FC

1. ventral lateral prefrontal 45 265 48 38 14 4.4/4.2

CP.NC & FC.NC

1. premotor cortex 6 204 40 210 46 4.5/4.3

2. supramarginal cortex 40 233 56 246 28 5.7/5.4

3. anterior cingulate cortex 32 548 210 20 10 6.4/5.9

4. superior temporal cortex 22 232 248 14 210 4.1/4.0

Movement imagery on the unaffected hand

CP,NC & CP,FC

1. supramarginal gyrus 40 206 246 234 28 4.7/4.5

Coordinates refer to the voxels of maximum activation within significant clusters (P,0.05, whole-brain corrected at cluster level). Positive x, y, z coordinates (in mm)
indicate locations right, anterior and superior to the middle of the anterior commissure. BA = Brodmann area, k = cluster extent, CP = conversion paresis, NC = normal
controls, FC = feigning controls.
*All other contrasts within the four conditions did not show significant results.
doi:10.1371/journal.pone.0025918.t009
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and unintentional paresis, which is related to abnormal movement

output (made in external space).

Limitations
The findings discussed above are based on a rather unconven-

tional methodological approach. The explorative character of this

study was used to reveal cerebral activation patterns that remained

hidden in previous studies for reasons described in the Introduc-

tion. However, this explorative approach entails its own

methodological issues, such as the problems of multiple compar-

isons in relatively small sample sizes. In this section, we discuss

these limitations.

Multiple comparisons. When performing four types of

statistical comparisons with three groups and four task

conditions, the problem of multiple comparisons inevitably

appears. We attempted to minimize the chance of Type I errors

by only reporting results significant at cluster level (see below) and

by limiting the discussion and interpretation of our results to those

significant clusters that were relevant to the initial hypotheses.

Although we are keenly aware of the increased chance of Type I

errors in this study, we believe that our results are a crucial step in

understanding conversion disorder. The aim of this study was to

explore the commonalities in previous studies – despite the diverse

methodology – in order to formulate a more general hypothesis

about the neurophysiological mechanisms of this disorder. The

methodology used in our study minimizes the risk of Type II

errors, such as we detected in previous research. This is also

important in such a complex and poorly understood

neuropsychiatric condition. However, we certainly emphasize

the need for a second round of research with experimental designs

that formally test the findings in our study.

Small sample sizes. Due to the narrow inclusion criteria

needed to perform adequate neuroimaging contrasts, we were only

able to include 9 patients. The small sample size of the patient

group decreases power. This group contained both right- and left-

sided paresis, which further complicated the sample. One could

argue that non-parametric analyses are needed (in unflipped data)

to exclude the possibility that outliers have influenced the results.

However, by applying a model that included both subgroups in

each comparison, we have attempted to increase the power by

limiting the influence of individuals. An additional problem with

small sample sizes is the high error variance. We addressed this

problem by pooling the error variance of all 43 subjects together to

increase the power. Furthermore, inspection of individual results

did not reveal any relevant outliers. To deal with the small sample

sizes, we used a 265 ANOVA in analyses A and B with unflipped

data. A problem with flipped data is that it is assumed that right-

and left-sided paresis will show identical effects – i.e. equal

variances (see the Introduction for other reasons to perform

analyses with unflipped data). We allowed for a possibly different

effect size for left- and right-affected groups (at the cost of two

degrees of freedom) by initially defining five groups instead of

three. (Note that this minimizes error variance.) Therefore, two-

way between-group ANOVA was used. Factor 1 (group) contained

five levels (normal controls, right feigners, left feigners, right

patients and left patients), and factor 2 (condition) contained four

levels (Execution affected, Execution unaffected, Imagery affected,

Imagery unaffected). Note that this ANOVA design does not

implicate that five groups were used separately, with even smaller

sample sizes of only 4, 5, 6 or 7 subjects per group. When contrasts

were defined, left- and right-sided groups were merged to limit the

number of comparisons. Thus, in all four types of statistical

analyses (A, B, C, D), three groups were included, with group sizes

n = 22 for normal controls, n = 13 for feigners and n = 9 for

patients.

Complex set of results. The inclusion of three groups, four

tasks and four types of statistical analyses resulted in a large

amount of data, which has been complex to analyze. We therefore

decided to describe a selection of anatomical areas (in the Results

and Discussion) based on the hypotheses described in the

Introduction. However, a complete overview of significant

activity (P,0.05, whole-brain corrected at cluster level; k.200)

is shown in the Tables for readers who are interested in more

explorative data. Moreover, Figures 1 and 6 display activity that is

significant at an uncorrected threshold (p,0.001).

Different task instructions. Patients and feigners received

different instructions and performed different tasks. For example;

patients tried to move, but could not do so adequately, while

feigners tried not to move adequately. Also, compared to patients,

the feigners were performing a dual task. One could argue that

these differences influenced the fMRI results. Indeed, these

differences between the groups limit the interpretation of our

results. But the explorative character of this study has also

generated highly interesting hypotheses for future research. For

example, an important difference between feigning and conversion

paresis is the lack of self-agency [47] and mismatch detection.

While the feigners are indeed moving abnormally, they are doing

so with an intact motor plan, consistent proprioceptive feedback

and therefore have matching information at the comparator

region, which leads to an intact sense of agency for their feigned

movement. In contrast, the conversion paresis patient has an intact

motor plan, but proprioceptive feedback is inconsistent with the

action they are attempting to perform. Therefore a mismatch at

the comparator region (right temporoparietal junction) [48] may

occur. Although we reported underactivation in the right parietal

lobe (as did Voon et al. [41]), and not the increased activation that

might be expected in the case of mismatch, the question of agency

should be addressed in future research.

Analyses B, C, and D compared the affected sides of different

groups, but without controlling for experimental confounds such

as differences in anxiety or depression, medication or illness

duration. This design was used to isolate the cerebral correlates of

these aspects, even though some experimental psychologists regard

them as confounds. After all, one of these ‘confounds’ probably

contains the unique feature of conversion disorders, which is not

present in feigners or hypnotically induced paresis. By under-

standing this aspect, we increase our understanding of the etiology

of the disorder. The current results show cerebral areas that are

related to the general differences between groups, which may

indeed be factors such as depression. In combination with current

knowledge of the functional neuroanatomy, and within a

theoretical framework [3], these results have led to a description

of an initial, tentative neurophysiological model of conversion

disorder.

Conclusions: a neurophysiological view of conversion
disorder

In the case of conversion paresis, we propose that decreased

supramarginal activation reflects the development of paresis rather

than other conversion symptoms, resulting in subsequent abnor-

mal, internally generated, movement initiation processes. These

processes may, in turn, be reflected by abnormal motor

preparation in the premotor cortex and cingulate cortex.

Decreased prefrontal activity may reflect the unintentional nature

of conversion paresis in combination with the precuneus.

Symptoms appear to be produced unintentionally due to

impaired willed action. Further research that includes attention

Abnormal Parietal Function in Conversion Paralysis

PLoS ONE | www.plosone.org 17 October 2011 | Volume 6 | Issue 10 | e25918



for precuneal functioning is warranted and should reveal an

interesting relationship between psychological and physical

symptoms.

We conclude by presenting a hypothetical and integrative

neurophysiological view on the neurophysiological substrates of

conversion disorder based on current findings about conversion

paresis. After all, different types of conversion disorder may share

a similar neurophysiological background, and it remains unclear

why patients develop different types of symptoms. First, we

propose that decreased precuneus activity may be a result of the

unintentional influence of psychological stressors and should

therefore be causally related to the development of all forms of

conversion symptoms. Second, specific forms of conversion

disorder might show matching cerebral correlates. Our observa-

tions of decreased activity in the supramarginal gyrus appear to fit

clinical and theoretical knowledge on motor preparation, in

combination with other structures within the hierarchical

organization of motor control. We therefore propose that the

supramarginal gyrus is responsible for the particular type of

conversion reaction studied here: conversion paresis. Studies on

other forms of conversion symptoms appear to support this idea.

Other types of conversion symptoms probably include additional

brain areas that are functionally associated with the specific

symptom. Indeed, somatosensory cortical activity is decreased in

conversion sensory loss [49,50] and the visual cortices show

reduced activity in psychogenic visual loss [51]. Also, in one out of

four studies available on other types of conversion disorder,

symptom-associated decrease of posterior parietal areas has been

reported [49] (note that two out of four reports used ERP and

ROI analysis that did not include the precuneus, while the fourth

paper is unclear about the contrasts that were used).
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