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Abstract
Effects of vitamin D on the immune system have been recognized for over thirty years and
stemmed in part from analysis of the dysregulated vitamin D metabolism associated with
granulomatous diseases. However, it is only in more recent years that a role for interaction
between vitamin D and normal immune function has been proposed. As with the original studies,
the basis for this new perspective on immunmodulation by vitamin D stems from studies of
vitamin D metabolism by immune cells. In particular, induction of the vitamin D-activating
enzyme CYP27B1 in monocytes via pathogen recognizing receptors has highlighted an entirely
new function for vitamin D as a potent inducer of antibacterial innate immune responses. This has
prompted a new potential role for vitamin D in protecting against infection in a wide range of
tissues but has also prompted revision of the parameters for adequate vitamin D status. The
following review describes some of the key developments in innate immune responses to vitamin
D with particular emphasis on the role of key metabolic enzyme as determinants of localized
immune activity of vitamin D.
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1. Introduction
Non-classical responses to vitamin D have been recognized for more than a quarter of a
century ago since various neoplastic cell lines were shown to exhibit specific binding for the
active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) [1,2]. Subsequent studies
showed that this interaction between 1,25(OH)2D and its cognate nuclear receptor, the
vitamin D receptor (VDR), promoted antiproliferative and prodifferentiation responses in
cancer cells [3,4]. These data highlighted an entirely new facet of vitamin D action distinct
from its effects on calcium homeostasis and bone metabolism. The range of non-classical
responses to vitamin D was then extended to include actions on cells from the immune
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system [5,6]. This stemmed initially from the observation that some patients with the
granulomatous disease sarcoidosis present with elevated circulating levels of 1,25(OH)2D
and associated hypercalcemia [7,8]. In these patients the high serum 1,25(OH)2D arises from
elevated activity of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1).
However, in contrast to normal subjects where 1α-hydroxylase activity is classically
localized in the kidney, the increased production of 1,25(OH)2D in granulomatous disease
patients involves expression of CYP27B1 in disease-associated macrophages [9–11].
Studies carried out at about the same time showed that VDR expression is common to
macrophages, T-lymphocytes (T-cells), B-lymphocytes (B-cells) and other cell types from
the immune system [12,13]. Based on these observations it was concluded that the immune
system has the potential to synthesize 1,25(OH)2D and elicit intracrine or paracrine
responses from immune cells expressing the VDR [14].

Subsequent studies showed that dysregulation of 1,25(OH)2D synthesis was not restricted to
sarcoidosis but was a common feature of many granulomatous disorders and some forms of
cancer [15]. In a similar fashion, studies in vitro showed that it was possible to potently
regulate a range of immune cell functions using 1,25(OH)2D or its synthetic analogs [16,17].
Despite these advances, the extent to which vitamin D could act as a physiological regulator
of normal immune responses remained elusive, even though expression of CYP27B1 was
reported in a diverse array of non-classical target tissues [18]. A breakthrough in the link
between vitamin D physiology and normal immune function occurred five years ago with
the first studies linking vitamin D and antibacterial activity in monocytes. The crucial
feature of this new perspective on vitamin D and immunology arose from the ability of
monocyte pathogen recognition receptors (PRR) to trigger localized metabolism of the
precursor form of vitamin D, 25-hydroxyvitamin D (25OHD). The resulting synthesis of
1,25(OH)2D was sufficient to promote intracrine activation of VDR responses, and
concomitant induction of innate immune responses. In view of the fact that 25OHD is the
major circulating form of vitamin D, these observations provided a clear potential link
between vitamin D status (serum 25OHD) and the efficacy of immune response. The aim of
the current review will be to detail these developments with specific emphasis on the role of
vitamin D metabolism as the central component of the interface between vitamin D and the
immune system.

2. Vitamin D metabolism and innate immunity
The innate immune system is the body’s first line of the defence against pathogenic
challenge, and occurs in an immediate and non-specific manner. Innate immune response to
infection involves the complement system, antibacterial responses by neutrophils and
macrophages, but also incorporates antigen presentation to lymphocytic cells from the
adaptive or acquired immune system. Accumulating evidence indicates that vitamin D is
involved in regulating various components of the innate immune system, and may therefore
be a key environmental determinant of human responses to infection [19]. The initial data
linking vitamin D and innate immunity arose from studies of vitamin D metabolism, and in
particular the vitamin D-activating enzyme CYP27B1. In a classical renal setting, expression
and activity of CYP27B1 is regulated in a sensitive fashion by endocrine factors associated
with calcium and phosphate homeostasis such as parathyroid hormone and fibroblast growth
factor 23 [20]. However, similar factors do not appear to play a role in regulating extra-renal
activity of CYP27B1. Instead, elucidation of a distinct mechanism linking monocyte
CYP27B1 and pathogen-sensing provided a major breakthrough in our understanding of the
link between vitamin D metabolism and innate immunity.

Monocytes and macrophages are crucial members of the innate immune compartment, being
able to both phagocytose pathogens, and sense the pathogen-associated molecular patterns
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(PAMPs) expressed by these pathogens. The latter is achieved by means of pathogen-
recognition receptors (PRR), such as toll-like receptors (TLRs), that are expressed by many
cells types including monocytes [21,22]. To date ten functional TLRs have been identified in
humans and twelve in mice, with each receptor responding to specific PAMPs from a wide
range of microbes that include bacteria, viruses, parasites and fungi [22]. Commonly studied
TLRs include TLR2 which responds to Gram-positive bacteria and mycobacteria, TLR4
which responds to Gram-negative bacteria and TLR3 which responds to the double-stranded
RNA associated with viral infections [21]. Although TLRs are intimately associated with
innate monocyte responses to infection they have been detected on a wide range of cell
types, including other immune cells such as dendritic cells and lymphocytes. Consequently
it is now clear that pathogen recognition and associated immune responses are a common
feature of many tissues notably those at so-called barrier sites in the body [22].

Cells such as monocytes are able to utilize TLRs to promote appropriate innate immune
responses to pathogens internalized by phagocytosis, thereby limiting the potential for
damage to the host cell by the pathogen. In 2006 studies to identify the spectrum of genes
regulated in response to sensing of Mycobacterium tuberculosis (M. tb) by monocytic
TLR2/1 showed specific induction of CYP27B1 and VDR [23]. These data suggested an
intracrine system by which locally synthesized 1,25(OH)2D can bind to endogenous VDR
and regulate monocyte gene expression. Potential targets for this intracrine response include
the antibiotic protein cathelicidin (LL37) which is a direct transcriptional target for the
1,25(OH)2D-VDR complex [24,25]. Functional analyses showed that following M. tb-TLR
2/1 activation both 1,25(OH)2D and 25OHD induced expression of LL37 in macrophages,
and that this was coincident with enhanced killing of M. tb [23]. These observations
indicated that induction of monocyte LL37 involves TLR2/1 activation of CYP27B1 and
VDR, but nevertheless may ultimately depend on the concentration of available 25OHD to
support the intracrine induction of bacterial killing. Naturally-occurring variations in serum
25OHD levels have been shown to correlate with monocyte LL37 [26]. As a consequence,
individuals with vitamin D-insufficiency (low serum 25OHD) will be less able to support
monocyte induction of LL37 [23,26], and may therefore be at greater risk of infection.
Conversely, supplementation of vitamin D-insufficient individuals in vivo has been shown
to improve TLR-mediated induction of monocyte LL37 [26], and may therefore help to
protect against infection.

The description of a TLR-mediated mechanism for induction of CYP27B1 and VDR
provided a completely new perspective on the relationship between vitamin D and the
immune system. However, it is important to recognize that vitamin D-mediated monocyte
killing of M. tb was initially described many years ago in studies that used 1,25(OH)2D
rather than 25OHD to enhance bacterial killing [27]. In this instance the effect of vitamin D
was enhanced by addition of the cytokine interferon γ (IFNγ) indicating that other immunity
pathways may be involved in regulating the monocyte vitamin D system. For example,
expression of CYP27B1 is known to be induced by other TLR ligands such as
lipopolysaccharide (LPS), which binds to TLR4 [26]. The precise mechanism by which
TLR2/1 and TLR4 enhance transcription of VDR and CYP27B1 has yet to be fully defined.
Studies using monocytic cell lines have shown that JAK-STAT, p38 MAP kinase, and NF-
κB pathways are involved in stimulating CYP27B1 expression in the presence of either
TLR4 ligand LPS, or IFNγ [28]. The pathways associated with CYP27B1 induction by TLR
ligands alone remain unclear, although recent studies using monocytes treated with a TLR2
ligand have shown that the cytokine interleukin-15 (IL-15) can act as a potential
intermediary in promoting localized activity of CYP27B1 [29]. Elevated expression of IL-15
is frequently associated with inflammatory diseases, notably the granulomatous disease
sarcoidosis [30]. In view of the fact that over-production of 1,25(OH)2D is frequently
observed in patients with granulomatous diseases [31], it is possible that IL-15-mediated
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induction of CYP27B1 provides a link between vitamin D as a regulator of normal innate
immune responses, and the pathological dysregulation of 1,25(OH)2D production associated
with some inflammatory diseases.

The vitamin D steroidogenic system is unique in that it includes a dedicate feedback control
enzyme 24-hydroxylase (CYP24A1), which generates less active 24-hydroxylated
metabolites from 25OHD or 1,25(OH)2D (see Figure 1). Expression of CYP24A1 is induced
primarily by its main substrate, 1,25(OH)2D, and in monocytes locally synthesized
1,25(OH)2D stimulate CYP24A1 in concert with the intracrine induction of LL37 [23]. Thus
CYP24A1 may be a key determinant of monocyte responses to 25OHD, by converting
1,25(OH)2D to less active 1,24,25-trihydroxyvitamin D (1,24,25(OH)3D) [32]. The
importance of this is underlined by recent studies showing that the cytokine IL-4 promotes
24-hydroxylase activity in monocytes and in doing so attenuates TLR2/1-mediated
intracrine induction of LL37 expression by 25OHD [33]. This effect contrasted with IFNγ
which enhanced the intracrine vitamin D responses. Given that IFNγ is a marker of the T-
helper (Th)1 subset of T-cell immune responses, whilst IL-4 is produced by Th2 T-cells,
these data suggest that the two different types of T-cell adaptive immune activity have
opposing effects on vitamin D metabolism [33]. By utilizing these cytokine-specific
mechanisms for regulation of vitamin D activation and catabolism, vitamin D may therefore
be an as yet unrecognized coordinator of the interface between the innate and adaptive
immune function. The link between these two arms of the immune system is an important
determinant of immune responses to pathogens such as M. tb, which cannot be eradicated by
the innate immune system alone. As expected, the monocyte 24-hydroxylase activity
induced by IL-4 was shown to be dependent on the CYP24A1 enzyme. However, treatment
with the cytokine did not increase monocyte expression of mRNA for CYP24A1. Instead the
cytokine suppressed expression of CYP24A1 and several other cytokines with putative
capacity for 24-hydroxylation [33]. Thus, it is possible that IL-4 enhanced 24-hydroxylase
activity in monocytes is due to indirect suppression of a competitor enzyme to CYP24A1.

Although induction of 24-hydroxylase activity is crucial to the efficacy of intracrine activity
of vitamin D, monocytes and macrophages also express a truncated form of CYP24A1 in
which the N-terminal mitochondrial targeting sequence of the protein is spliced out [34].
Despite being metabolically inactive, the CYP24A1 splice variant (CYP24-SV) retains its
steroid binding domain and can therefore bind substrates such as 1,25(OH)2D or 25OHD,
without being metabolically active. The abundant expression of CYP24-SV in monocytes/
macrophages provides an explanation for the relatively low levels of 24-hydroxylase activity
observed in these cells. Thus the conventional role of CYP24A1 in catalyzing catabolism of
1,25(OH)2D to 1,24,25(OH)3D may be less important in macrophages relative to other
1,25(OH)2D target cells, with CYP24A simply acting as an alternative to VDR as a binding
site for the active form of vitamin D (see Figure 1). Binding to not catabolic CYP24-SV
rather than conventional CYP24A1 may also explain the accumulation of 1,25(OH)2D
levels, and concomitant lack of catabolism that is characteristic of macrophages associated
with granulomatous disease (see Introduction). However, molecular modeling suggests that
the substrate preference in CYP24-SV is switched from 1,25(OH)2D to 25OHD [35]. In this
way CYP24-SV may be more important as a modulator of 25OHD, rather than 1,25(OH)2D,
availability, thereby limiting substrate binding to CYP27B21. This has the advantage of
being metabolically economical, particularly in cells such as monocytes where intracrine
conversion of 25OHD to 1,25(OH)2D is the pivotal mechanism for vitamin D action. The
precise manner by which CYP24-SV contributes to the effects of vitamin D on innate
immunity remains to be determined, and it is interesting to note that the upregulation of 24-
hydroxylase activity reported for IL-4-treated monocytes did not involve any differential
regulation of CYP24-SV [33].
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3. Alternative target cells for antibacterial activities of vitamin D
A wide range of cell types express PRRs and have the potential to initiate innate immune
responses to infection. In addition to monocytes and macrophages, granulocytic cells such as
neutrophils are the most abundant of all the leukocytes and therefore form the first line of
response to infection. Initial reports of 1,25(OH)2D-induced LL37 expression in vitro
indicated that this response occurred in neutrophils as well as monocytes [24]. Neutrophils
express VDR but, unlike monocytes, there is no clear evidence that they express a functional
CYP27B1 enzyme. Consequently, these cells may only exhibit systemic responses to
1,25(OH)2D. Nevertheless, the relative abundance of neutrophils suggests that they are
likely to be the major source of circulating LL37 [36]. This is supported by the observation
of an association between serum LL37 and levels of 1,25(OH)2D (but not 25OHD) in
patients with chronic kidney disease [37]. Paradoxically, in patients with sepsis where there
neutrophil numbers are increased, low circulating levels of LL37 have been shown to
associated with low serum 25OHD [38].

Induction of LL37 by vitamin D metabolites has been reported for a variety of human cell
types outside the classical immune system These include bronchial epithelial cells [39],
myeloid cell lines [25], and decidual [40], and trophoblastic cells of the placenta [41].
Although the underlying molecular mechanism for 1,25(OH)2D-induced LL37 expression is
similar in all of these cell types, the mechanism for localized metabolism of 25OHD may
vary from one tissue to another. For example, normal human keratinocytes express relatively
low levels of TLR2 and are therefore less sensitive to PAMPs than monocytes [42].
However, following epidermal wounding, transforming growth factor-beta is released from
the keratinocytes and acts in a paracrine fashion to stimulate CYP27b1 expression in
adjacent cells. The resulting localized accumulation of 1,25(OH)2D in turn enhances TLR
expression, thereby increasing keratinocyte sensitivity to PAMPs and subsequent production
of antimicrobial LL37 [42]. Another cell type, vascular endothelial cells, play a major role in
the innate immune activation during infections and sepsis [43]. Human microvessel
endothelial cells (HMEC) treated with 1,25(OH)2D showed inhibited LPS activation of NF-
κB and expression of IL-6 and IL-8 [43]. This suggests that 1,25(OH)2D plays a role in
LPS-induced immune activation of endothelial cells during Gram-negative bacterial
infections, and supports a potential role for vitamin D as an adjuvant in the treatment of
Gram-negative sepsis.

In other cell types antibacterial responses to vitamin D may occur in a non-infectious setting.
Recent studies by our group using vitamin D-deficient mice show suppressed colonic
expression of angiogenin-4, an antimicrobial protein produced primarily in Paneth cells
which acts as a key regulator of tissue invasion by enteric bacteria [44]. Given that aberrant
innate immune handling of the microbiota has been implicated as an initiator of the tissue
inflammation associated with some types of inflammatory bowel disease [45], it is tempting
to speculate that effects of vitamin D in protecting against this disease may involve the
induction of innate antibacterial responses to enteric bacteria. This effect of vitamin D on a
gastrointestinal antibacterial activity appears to be more specifically associated with tissue
responses to the abundant commensal bacteria that make up the enteric microbiota.
Responses to pathogenic enteric bacteria are more likely to involve conventional
antibacterial proteins such as cathelicidin or DEFB4. The induction of these innate immune
factors by colonic epithelial cells is variable and may require specific tissue
microenvironments or TLR-mediated signaling to be effective [46,47].
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4. Alternative antibacterial targets for vitamin D
The induction of LL37 transcription by 1,25(OH)2D occurs following interaction of the
liganded VDR with a consensus vitamin D response element (VDRE) within the proximal
promoter of the LL37 gene [24,25]. VDR interaction with the LL37 gene promoter is
observed in humans and apes, as well as New World and Old World primates. However,
other non-primate mammals such as mice lack the appropriate LL37 proximal promoter
VDRE and do not appear to induce the antibacterial protein in response to 1,25(OH)2D [25].
The VDRE associated with vitamin D-induced hCAP expression in primates, arose through
incorporation of an Alu short interspersed element (SINE) which placed this gene under the
control of the VDR [48]. Over the subsequent 50–60 million years this genetic modification
has presumably provided an innate immune advantage. Primates, such as Homo sapiens,
would have originally lived in a vitamin D-enriched state due to relatively high levels of
exposure to ultra violet (UV) light, which stimulates the production of vitamin D from 7-
dehydrocholesterol in the skin. Under these conditions, vitamin D-induced antimicrobial
function may have conferred significant advantages in combating infectious disease. By
contrast, other mammals, such as mice, with less routine exposure to UV light would have
benefited less from SINE incorporation of a VDRE into genes encoding antimicrobial
proteins.

A VDRE is also present in the proximal promoter of the human gene for beta-defensin 2
(DEFB4) [24]. However, induction of DEFB4 expression by 1,25(OH)2D alone is far less
striking than observed with LL37 [24]. Instead studies using squamous cell carcinoma cells
[24] and monocytes [49] indicate that cooperation with nuclear factor kappa B (NF-κB) is
required for 1,25(OH)2D-VDR-induced transcription of DEFB4. This effect is mediated via
NF-κB response elements adjacent to the DEFB4 gene promoter VDRE [50]. Promotion of
NF-κB signaling in this fashion may involve factors such as inflammatory cytokines [24,49],
but alternative pathogen recognition mechanisms may also be involved. Treatment of a
variety of cell types with 1,25(OH)2D potently induces expression of nucleotide-binding
oligomerization domain containing 2 (NOD2) [51], an intracellular PRR which binds the
bacterial cell membrane product muramyl dipeptide (MDP) [52]. Acting via NOD2, MDP
promotes NF-κB activity in a similar fashion to that observed for cytokines, and studies in
vitro have shown that combined treatment with 1,25(OH)2D and MDP synergistically
induces expression of DEFB4 [51]. Thus, the induction of antimicrobial activity by vitamin
D is not restricted to TLR-mediated signaling and direct vitamin D-induced transcription of
LL37. Instead other PRRs and antibacterial proteins, as well as cooperative immune
signaling pathways may also be involved.

LL37 and DEFB4 appear to be crucial factors in mediating antibacterial response to
pathogens such as M. tb in primates [29]. However, in non-primate mammals such as mice
the picture is less clear. The lack of appropriate gene proximal promoter VDREs in
equivalent genes for LL37 and DEFB4 suggests that these unlikely to be targets for vitamin
D in non-primates. However, vitamin D may also regulate other innate immune responses to
infection. Previous studies have shown that monocytes infected with M. tb in the presence of
1,25(OH)2D produce high levels of bacteriocidal superoxide anions [53]. Another reactive
oxygen species nitric oxide (NO) is also produced by monocytes [54]. The latter is known to
be a particularly important mechanism for bacterial killing in mice [55], and it is therefore
possible that this alternative antibacterial pathway compensates for the lack of vitamin D-
mediated induction of LL37/DEFB in mice. Indeed, it is interesting to note that
1,25(OH)2D-induced suppression of M. tb growth in monocytes has been linked to the
production of NO in both mice [56] and humans [56,57].

Lagishetty et al. Page 6

Mol Cell Endocrinol. Author manuscript; available in PMC 2012 December 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Vitamin D-mediated innate immunity in primates and non-primates may also extend beyond
the simple induction of antibacterial factors. Initiation of intracellular bacterial killing
following permeabilization of microbial cell membranes requires the fusion of
antimicrobial-enriched lyzosomes with phagocytic vacuoles [58]. Recent studies indicate
that this process also involves autophagy, a eukaryotic mechanism that utilizes
encapsulation of organelles or cell proteins in a double-membrane autophagosome prior to
fusion with lysosomes. Degradation of the autolysosomal contents is a fundamental feature
of cytosolic homeostasis [59], but autophagy may also be involved in cellular response to
infection [60,61]. Importantly, monocyte autophagy appears to be a key component of
1,25(OH)2D-induced responses to infection with M. tb [62], with autophagy responses to
TLR2/1 activation being associated with induction of an intracrine vitamin D system [63].
To date studies of vitamin D-mediated autophagy have focused on the role of this
mechanism in human monocytes, but similar activity may also be a feature of innate
immunity in mice.

5. Dendritic cells and antigen presentation
Innate immune responses to infection are not restricted to antibacterial activity in
monocytes, neutrophils and other cells that encounter pathogens. As outlined above,
adequate immune management of infectious agents such as M. tb requires cooperation with
the adaptive immune system. In order to this, lymphocytes need to be exposed to antigen
from the pathogen. The most potent antigen-presenting cells (APCs) are dendritic cells
(DCs), which act as the primary initiators of T cell-mediated immunity. They are broadly
divided into 2 groups based on their origin: Myeloid (mDCs) and plasmacytoid (pDCs)
which express different types of cytokines and chemokines and seem to exert
complementary effects on T-cell responses, with mDCs being the most effective APCs [64]
and pDCs being more closely associated with immune tolerance [65]. DCs isolated from
lymphatic tissue were shown to express VDR [66], and subsequent studies showed that
1,25(OH)2D acted to attenuate antigen presentation by these cells [67]. 1,25(OH)2D3 [68]
and its synthetic analogs [69] have also been shown to inhibit the maturation of monocyte-
derived DCs, thereby suppressing their capacity for antigen presentation. This provided a
mechanism by which vitamin D could act to promote immune tolerance, and further studies
showed that 1,25(OH)2D-suppression of DC maturation was associated with concomitant
enhancement of suppressor or regulatory T-cells (Treg) [70].

The link between vitamin D, DC maturation and tolerogenesis was underlined by
observation that DCs express CYP27B1 in a similar fashion to macrophages [71,72], with
expression and activity of the enzyme increasing as DCs differentiate towards a mature
phenotype [71]. The simultaneous expression of VDR by DCs provided an intracrine system
similar to that observed in monocytes, with 25OHD suppressing DC maturation and
associated antigen presentation [71]. The precise manner by which the 1,25(OH)2D
synthesized by DCs is able to influence DC phenotype, antigen presentation and T-cell
function has yet to be defined and may involve, intracrine (DC maturation) or paracrine
(direct effects on VDR-expressing T-cells) mechanisms [19,73]. At the intracrine level
1,25(OH)2D appears to preferentially regulate mDCs, suggesting that the key effect of
vitamin D in this instance is to suppress activation of naive T cells. APC secretion of
cytokines that are crucial for recruitment and activation of T-cells is also influenced by
1,25(OH)2D. Immunostimulatory IL-12 is inhibited by 1,25(OH)2D in DCs and other APCs
[74]. IL-12 stimulates the development of Th1 T-cells and inhibits the development of Th2
T-cells, supporting the role of vitamin D in promoting a shift from Th1 to Th2 [75].
Conversely, DCs treated with 1,25(OH)2D show enhanced expression of the
immunosuppressive cytokine IL-10 which opposes the Th1-driving effects of IL-12 [74,76].
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Other factors secreted by APCs that are also regulated by 1,25(OH)2D include prostaglandin
E2 [77].

The ability of vitamin D to influence antigen presentation underlines its potential as a key
intermediary between the innate and adaptive immune systems. As outlined in section 2, this
may involve the modulation of vitamin D-mediated innate immune responses by cells from
the adaptive immune system. However, it is important to recognize that the synthesis of
1,25(OH)2D by innate immune cells may conversely affect adaptive immune responses (see
Figure 1). In vitro, 1,25(OH)2D has been shown to preferentially inhibit Th1 cells associated
with cellular immunity [75], whilst simultaneously promoting Th2 cells, a subset of T-cells
associated with humoral (antibody)-mediated immunity [78,79]. However, the in vivo
significance of this is unclear as studies using immune cells from the VDR gene knockout
mouse indicate that these animals have reduced (rather than the predicted elevated) levels of
Th1 cells [80]. More recently, the T-cell repertoire has been expanded to include another T-
cell lineage distinct from Th1 or Th2 cells. Termed Th17 cells because of their capacity to
synthesize interleukin-17 (IL-17) [81,82], Th17 cells play an essential role in combating
certain pathogens but may also cause tissue damage and inflammation [83,84]. Studies of
animal models of inflammatory disease have shown that treatment with 1,25(OH)2D reduces
expression of IL-17 [85], whilst CYP27B1 gene knockout has been linked to elevated levels
of this cytokine [86]. Thus, it possible that vitamin D exerts some of its effects on
inflammation and autoimmune disease through the regulation of Th17 cells. In contrast to
Th1, Th2 and Th17 cells, Tregs act as suppressor T-cells and treatment with 1,25(OH)2D
alone can promote their differentiation [87]. Preferential induction of Tregs is a pivotal
mechanism linking vitamin D and adaptive immunity, with potential beneficial effects for
autoimmune disease and host-graft rejection [88–90]. As outlined above, the effects of
1,25(OH)2D on Treg development may be mediated by the induction of tolerogenic DCs
[70], but direct effects on T-cells may also be important [91,92].

6. Innate immunity related diseases
Historically, vitamin D-deficiency was defined primarily by presence of the bone disease
rickets (osteomalacia in adults). However, more recent studies have suggested that sub-
optimal vitamin D status may occur even in the absence of rachitic bone disease. A new
term - vitamin D ‘insufficiency’ – has been proposed in which serum levels of 25OHD are
sub-optimal (< 75 nM) without necessarily impacting on skeletal homeostasis [93]. Because
circulating levels of 25OHD are a direct reflection of vitamin D status, this may vary
significantly in populations depending on individual access to vitamin D either through
exposure to sunlight or through dietary intake. As a result of these new parameters for
vitamin D status, a consensus statement from the 13th Workshop on Vitamin D concluded
that vitamin D insufficiency was a worldwide epidemic. The key question now being
considered is what is the physiological and clinical impact of global vitamin D insufficiency,
particularly for non-classical effects such as immunomodulation? Epidemiology has
highlighted possible links between vitamin D insufficiency and a variety of human diseases
[93]. The final section of the review will detail some of the diseases related to innate
immune function that may be influenced by variations in vitamin D status.

Epidemiological studies in many countries have suggested an association between vitamin D
deficiency or insufficiency and the incidence and progression of tuberculosis TB. Three
prospective studies [94,95] and three case-control studies [96–98] have been carried out in
different populations, including Whites and Indian in UK, African in Kenya, Thai in
Thailand, Chinese in Hong Kong, Gujarati Hindus resident in London, Indian in India. In
each case vitamin D levels were shown to be significantly lower in pulmonary and/or extra-
pulmonary TB patients (16.0 nmol/L ~ 39.75 nmol/L) compared to matched healthy control
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populations (27.25 nmol/L ~ 95.5 nmol/L). After a systematic review and meta-analysis it
was concluded that low serum vitamin D levels are associated with higher risk of active TB
[99]. A cohort study to assess the association between vitamin D deficiency and TB
progression in Pakistan found that low vitamin D levels were associated with a 5-fold
increased risk for progression to active TB in healthy household contacts with TB patients
[100].

Host genetic variation may also contribute to the individual susceptibility to TB. Single
nucleotide polymorphisms (SNPs) of VDR gene have become a target for investigation,
since these inherited variations have been linked to VDR activity and subsequent
downstream vitamin D-mediated effects [101]. Meta-analysis of 23 case-control or cohort
studies from Asia and Africa/South America indicates that among Asians, the FokI ff VDR
genotype showed a pronounced positive association with TB (OR 2.0) [101]. By contrast,
the BsmI bb genotype showed a significant inverse association with TB (OR 0.5), and
marginally significant associations were observed for TaqI and dApaI SNPs [101]. None of
the SNPs were significantly related to TB among Africans or South Americans.

Vitamin D supplementation has also been used as a potential treatment strategy for TB
[102–105]. In one report, a single oral dose of 2.5 mg vitamin D prior to testing, suppressed
the growth of M. tb in patient blood samples [106]. Other studies have shown that adjunct
vitamin D supplementation (0.25 mg vitamin D/day) of TB patients receiving conventional
therapy for the disease reduced the time for sputum smear conversion from acid fast bacteria
(AFB) positive to AFB-negative status [104]. Inherited variations in the vitamin D system
may also influence patient responses to supplemental vitamin D. Recent reports of a UK
population with TB, showed that vitamin D supplementation had only a limited overall
effect in promoting sputum conversion [107]. In this study 146 TB patients were initially
assessed at baseline and shown to be predominantly vitamin D-insufficient (95–98% of
patients with serum levels of 25OHD less than 75 nM), with almost half the patients being
profoundly vitamin D-deficient (60% of patients with serum levels of 25OHD less than 20
nM). Each patient was randomized to either 2.5 mg vitamin D3 (100,000 IU) or placebo on
day 0, 14, 28 and 42 of standard TB therapy. Patients receiving supplementary vitamin D
showed a 5-fold increase in serum levels of 25OHD compared to placebo patients but this
resulted in only a moderate improvement in the time to sputum conversion. However, a
significant improvement in sputum conversion time was observed in vitamin D
supplemented patients with the tt genotype of the Taq1 polymorphism of the VDR gene
[107]. These studies underline the increased risk of low vitamin D status in TB patients but
also suggest that therapeutic benefits of vitamin D supplementation may be influenced by
patient genetic variation.

The impact of variations in other key vitamin D genes such as CYP27B1 on innate immune
responses to vitamin D supplementation has still to be determined. However, a link between
TB and the gene for serum vitamin D binding protein (DBP) gene, originally referred to as
group-specific component (Gc), has been reported [108]. Specifically the Gc2 allele was
shown to be associated with active TB, but only in a cohort with extremely low vitamin D
status [109]. DBP SNPs have also been linked to risk of serum vitamin D-insufficiency, the
overall conclusion being that these gene variations can act as an inherited determinant of
serum vitamin D status by influencing the serum concentrations of DBP [110]. However,
gene variants that influence the binding affinity of DBP for vitamin D metabolites may also
play a role in modulating the bioavailability of 25OHD to target cells such as monocytes
[111]. Data from our laboratory have shown that antibacterial responses to 25OHD are more
pronounced in the presence of low affinity forms of DBP [112]. This suggests that the
intracrine machinery required for induction of antibacterial responses in monocytes is
dependent on the availability of ‘free’ rather than DBP-bound 25OHD. In this way inherited
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variations in DBP may influence both the circulating levels of DBP and 25OHD, as well as
the bioavailability of 25OHD to target tissues.

As outlined above, serum levels of 25OHD have also been linked to sepsis [38], a whole-
body inflammatory response caused by systemic immune response to microbial infection
[113,114]. A serious medical condition, severe sepsis leads to multiple organ failure,
circulatory collapse and disseminated intravascular coagulation (DIC). Treatment with
1,25(OH)2D has been reported to be effectively protecting against DIC in a rat model [115].
The anti-DIC effect of vitamin D was as effective as more conventional therapies suggesting
a possible role for vitamin D in the treatment of DIC [115].

Epidemiology has also linked low serum 25OHD with increased incidence or poor control of
asthma, respiratory infection and chronic obstructive pulmonary disease (COPD) [116–119].
Inflammation is crucial to the pulmonary dysfunction in COPD, with matrix
metalloproteinases (MMPs) being key factors in this process [120]. Vitamin D
supplementation has been shown to significantly reduce the MMP-9 levels [121]. SNPs in
the vitamin D-binding protein (DBP) have also been linked to COPD [122–124], with low
affinity forms of DBP protecting against COPD [122]. Vitamin D may also play a role in
upper respiratory infection, particularly as seasonal variations have been reported for
infections such as influenza [125]. At a therapeutic level, protective effects of vitamin D
supplementation have been described for colds and influenza [126], and this is endorsed by
the ability LL37 to exhibit antiviral as well as antibacterial properties [127].

Recent studies have demonstrated expression of CYP27B1 and VDR in the human urinary
bladder, with 25OHD being converted to 1,25(OH)2D in bladder epithelial cells [128]. This
study also showed that 25OHD and 1,25(OH)2D can significantly enhance production of
LL37 from the urinary bladder epithelium during uropathogenic E. coli infection [128]. In
this way vitamin D status may influence susceptibility to urinary tract infection [129].
Vitamin D deficiency is also associated with bacterial vaginosis [130,131]. This, and the
presence of an intracrine antibacterial system in placental cells [41,132], suggests a role for
vitamin D in protecting against infection during pregnancy [133].

7. Conclusions
The last five years have witnessed a sea-change in our perspective on how vitamin D
interacts with the immune system. Prominent new data have shown that the expression and
activity of vitamin D metabolizing enzymes is central to normal immune responses,
providing a mechanism for localized metabolism of 25OHD to 1,25(OH)2D at sites of
infection. Unlike its renal endocrine counterpart, the vitamin D metabolic machinery within
the immune system is exquisitely dependent on the availability of substrate 25OHD – in
other words the vitamin D status of any individual. Thus, impaired serum levels of 25OHD
associated with vitamin D-insufficiency may lead to dysregulation of immune responses.
Although this has consequences for both the innate and adaptive arms of the immune
system, much recent attention has focused on antibacterial actions of vitamin D where
intracrine coordination of monocyte CYP27B1 and VDR appears to be a central feature of
innate immunity. Further characterization of vitamin D metabolism and innate immunity
will be crucial in supporting a broader role for vitamin D in maintaining human health. At a
basic science level, more information on the mechanisms that underpin immune regulation
of enzymes such as CYP27B1 and CYP24A1 is required. Likewise, almost all of the current
data on how vitamin D can influence innate immune function has stemmed from studies of
human cells. A limited number of animal models have been utilized with varying results
[42,44,134,135], and future studies will need to improve this significantly. Finally, at a
patient level more clinical trials are needed to determine how vitamin D affects infection in
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vivo, and whether the levels of vitamin D required to do this are the same as those required
for classical skeletal functions of vitamin D.
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Figure 1. Vitamin D metabolism and innate immune responses
Metabolism of 25-hydroxyvitamin D (25OHD) to 1,25-dihydroxyvitamin D (1,25(OH)2D)
by monocytes and the intracrine regulation of antibacterial activity (DEFB4/LL37
production and autophagy), antigen presentation (decreased HLA-DR, CD83 and CD86) and
T-cell (Th1, Th2, Th17 and Treg) function (solid arrows). Effects of toll-like receptor
(TLR)-mediated response to pathogens such as Mycobacterium tuberculosis (M. tb), and
associated cytokine effects on monocyte vitamin D metabolism are show by dashed lines.
Effects of cytokines and NOD2 intracellular pathogen recognition on nuclear factor-κB (NF-
κB) enhancement of vitamin D-receptor (VDR)-retinoid X receptor (RXR)-mediated
transcription of antibacterial factors are shown as solid gray lines.
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