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Abstract
Recent advances in next-generation sequencing technologies facilitate the detection of rare
variants, making it possible to uncover the roles of rare variants in complex diseases. As any
single rare variants contain little variation, association analysis of rare variants requires statistical
methods that can effectively combine the information across variants and estimate their overall
effect. We here propose a novel Bayesian generalized linear model for analyzing multiple rare
variants within a gene or genomic region in genetic association studies. Our model can deal with
complicated situations that have not been fully addressed by existing methods, including issues of
disparate effects and non-functional variants. Our method jointly models the overall effect and the
weights of multiple rare variants and estimates them from the data. This approach produces
different weights to different variants based on their contributions to the phenotype, yielding an
effective summary of the information across variants. We evaluate the proposed method and
compare its performance to existing methods on extensive simulated data. The results show that
the proposed method performs well under all situations and is more powerful than existing
approaches.
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Introduction
It has been a well-established hypothesis that the genetic etiology of common (or complex)
human diseases is determined by both common and rare genetic variants [Bodmer and
Bonilla 2008; Schork, et al. 2009]. Although genome-wide association studies (GWAS),
which have thus far focused on common variants (with minor allele frequency (MAF) >
~5%) in the human genome, have successfully identified hundreds of novel disease-
associated variants, these common variants explain only a small proportion of heritability for
most diseases, motivating interest in finding the ‘missing heritability’ [Eichler, et al. 2010;
Manolio, et al. 2009]. Rare variants have been naturally speculated as one of the most
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important sources of missing heritability [Cirulli and Goldstein 2010; Eichler, et al. 2010;
Manolio, et al. 2009]. Several studies have already shown that rare variants play an
important role in genetic determination for some diseases [Ahituv, et al. 2007; Azzopardi, et
al. 2008; Cohen, et al. 2006; Cohen, et al. 2004; Ji, et al. 2008; Nejentsev, et al. 2009;
Romeo, et al. 2007; Romeo, et al. 2009]. Recent advances in next-generation sequencing
technologies facilitate the detection of rare variants, making it possible to uncover the roles
of rare variants in complex diseases.

As a single rare variant contains little variation owing to low MAF (< 0.5 or 1%), statistical
methods that test variants individually provide insufficient power to detect causal rare
variants. Therefore, association analysis of rare variants requires sophisticated methods that
can effectively combine the information across variants and test for their overall effect
[Manolio, et al. 2009]. Several approaches have been developed to analyze rare variants,
including the Collapsing, Simple-Sum, and Weighted-Sum methods [Li and Leal 2008;
Madsen and Browning 2009; Morris and Zeggini 2010; Price, et al. 2010]. These methods
summarize multiple rare variants by weighting them equally [Li and Leal 2008; Morris and
Zeggini 2010] or on the basis of estimated standard deviation [Madsen and Browning 2009]
or functional prediction [Price, et al. 2010]. As we show in this study, however, these
existing methods actually implicate assumptions about the relative effect sizes of individual
variants (for example, the Simple-Sum method implicitly assumes that the genetic effects of
individual variants are identical) and thus can be suboptimal if the data do not follow the
implicit assumptions.

There are complications that the existing methods have not addressed yet. First, multiple
rare variants detected in a gene or region may affect phenotype in either direction (i.e., some
are disease-causing and others are disease-protective) [Cohen, et al. 2004; Manolio, et al.
2009]. If these rare variants are simply pooled, the existing methods will fail, because the
effects of the variants can cancel each other and thus the true signal is lessened. Second,
sequencing uncovers both functional and non-functional variants, and treating them equally
may reduce association. The ideal solution to these problems is to separately combine
disease-causing and protective variants or scale the allele counts of all variants in the same
association direction and to exclude non-functional variants from the analysis. However,
accurately determining which variants are disease-causing or protective and which are
responsible for a given phenotype represent a massive task and are not always feasible
[Manolio, et al. 2009]. Therefore, statistical methods that can deal with these complications
are required.

Here we introduce a novel Bayesian hierarchical generalized linear model for analyzing
multiple rare variants within a gene or genomic region in association studies. Although our
method can deal with various phenotypes, we demonstrate its performance with a binary
disease trait as in population-based case-control studies. Rather than predetermining the
weights of variants as previous methods, our approach jointly models the overall effect and
the weights of multiple rare variants and estimates them from the data. This could produce
different weights to different variants based on their contributions to the phenotype, yielding
an effective summary of the information across variants. We use extensive simulations to
evaluate the proposed method and compare its performance to existing methods. The results
show that the proposed method performs well under all situations and is more powerful than
existing approaches.
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Methods
Bayesian Model of Multiple Rare Variants

Suppose that a population-based association study consists of n unrelated individuals,
phenotyped for a binary disease trait yi (i.e., if diseased, yi = 1; otherwise, yi = 0), and
genotyped for m rare variants in a candidate gene or functional genomic region. We denote
the genotypes of variant j by AjAj, Ajaj or ajaj, where aj is the minor allele with the observed
frequency pj < 1%. The relation between the disease status and the genotypes of m rare
variants can be expressed by a generalized linear regression

[1]

where the link function h is the logit or probit function, μ is the intercept, βj is the main
effect for the jth variant, and xij is the main-effect predictor for the ith individual at the jth
variant. For an additive model, xij = 0, 1, or 2 for AjAj, Ajaj or ajaj, and for a dominant
model, xij = 0 or 1 for AjAj or Ajaj and ajaj, respectively. For a rare variant, the additive
model is approximately equivalent to the dominant model because the frequency of ajaj is
extremely low.

The association between the disease and the variants may be examined by testing βj = 0, j =
1, ⋯, m. For rare variants, however, such an analysis is underpowered because a single
variant explains very low genetic variation and typically is undetectable. Under the additive
model and Hardy-Weinberg equilibrium, for example, the genetic variance of the jth variant

is , equal to 9.5 × 10−3 when the frequency pj and the odds ratio
exp(βj) equal 1% and 2, respectively. A solution would be to create a “genetic score” that
combines information across multiple rare variants for each individual. The genetic score is
then treated as a single predictor, allowing us to detect the overall association of the variants
with the disease. We construct the genetic score as a linear function of the separate main-

effect predictors, i.e., , and set up a generalized linear model:

[2]

In this model, the common coefficient β represents the overall effect for the m rare variants,
and the αj’s can be interpreted as the relative effects or weights of the individual variants. To
investigate the overall association, we test the hypothesis β = 0.

Instead of presetting αj’s as in existing methods, it would be better to estimate them from the
data. But we cannot simply use classical framework (i.e., setting uniform distributions on the
αj’s), since this would result in a nonidentifiable model and thus be equivalent to estimating
a separate coefficient for each of the variants [Gelman 2004; Gelman and Hill 2007].
However, we can set up an informative prior for the αj’s, so that the model is identifiable.
We use the Student-t distribution for the αj’s:

[3]
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with the scale sα set to a low value such as 0.5 [Gelman, et al. 2008]. This prior distribution
constrains αj’s to be fairly close to the prior mean μj’s, but allows for different values. An

alternative prior is to use the normal distribution with a fixed variance, i.e.,  [Gelman
and Hill 2007]. However, we prefer the Student-t distribution because it estimates the

variances  from the data and thus may better deal with disparate effects. The prior means
μj can be specified as the relative importance of the individual variants based on our prior
knowledge or initial analysis (see Discussion). In this study, we incorporate no prior
information into the model by setting μj = 1 for all j = 1, ⋯, m. We found that the method is
fairly robust to any small changes for the scale sα (for example, from 0.2 to 0.8).

The common coefficient β usually can be estimated classically. However, low allelic
frequencies can yield very small variance Var(Ti), for which the classical procedure often
results in numerically instable estimate. To overcome this problem, we use a weakly
informative prior to constrain β in a reasonable range. Following Gelman et al. [Gelman, et
al. 2008], we place a Student-t distribution with center 0, degree of freedom 1 and scale 2.5
on β:

[4]

Computation
Our Bayesian generalized linear model can be fitted using Markov chain Monte Carlo
(MCMC) algorithms that fully explore the joint posterior distribution of the parameters by
alternatively sampling each parameter from its conditional posterior distribution. However,
it is desirable to have a faster computation that provides a point estimate (i.e., the posterior
mode) of β and αj’s and their standard errors (and thus the p-values) by maximizing the
marginal posterior p(β, α1,⋯,αm, μ | y, X). Such an approximate calculation has been
routinely applied in statistical practice [Gelman, et al. 2008]. We develop our algorithm by
modifying the standard iterative weighted least squares (IWLS) for fitting classical
generalized linear models. We have implemented these computations by altering the glm
function in R (the general statistical package) that fits classical generalized linear models.

Our algorithm simultaneously estimates the parameters αj’s and β using an iterative
procedure. We initialize the algorithm by setting β to the value estimated from the Simple-
Sum method or setting α1 = ⋯ = αm = 1. Then, at each step of the algorithm, we first update
αj’s conditional on the current estimate β̂ by using the modified IWLS algorithm of Yi and
Banerjee [Yi and Banerjee 2009] and Yi et al. [Yi et al. 2010] to fit the hierarchical
generalized linear model:

[5]

We then update β conditional on the current estimates α̂j’s by fitting the hierarchical model
using the modified IWLS algorithm [Yi and Banerjee 2009; Yi et al. 2010]:

[6]
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Instead of doing a full iterative weighted least squares for each of these two models, we can
perform one step of weighted least squares at each iteration, thus taking less computer time
to ultimately achieve convergence by not wasting time getting hyper-precise estimates at
each step of the algorithm. We apply the criterion in the glm function to assess convergence,

i.e.,  are deviances at the tth iteration
for the models [4] and [5], respectively, and ε is a small value (say 10−8). In practice our
algorithm converges rapidly. At convergence of the algorithm, we obtain all the outputs
produced by the glm function, including the latest estimate β̂, their standard deviations and
the p-values for testing β = 0.

Relationship with existing methods
The basic procedure of rare variant analysis is to construct a weighted combination (genetic

score) of m rare variants, , that summarizes the information across the variants
for each individual i, and then estimate the association between the phenotype yi and the
genetic score Ti using a generalized linear model, h(Pr(yi = 1)) = μ + Tiβ, or other testing
statistics. Our method differs from existing methods in estimating the weights αj’s (along
with the overall effect β) from the data using a hierarchical modeling framework rather than
simply presetting them to fixed values. This would produce higher weights for more
‘important’ variants.

Presetting the weights αj’s to different values results in different existing methods: 1) If α1 =

⋯ = αm = 1, we have  and thus the method is the Simple-Sum [Han and Pan 2010;

Morris and Zeggini 2010]; 2) If we take , where I(x) is an indicator variable
taking 1 if x > 0, and 0 otherwise, the method becomes the Collapsing approach [Li and Leal
2008]; 3) If αj = 1/sd(xij | yi = 0), j = 1,⋯·, m, where sd(xij | yi = 0) is the estimated standard
deviation of xij in unaffected individuals, the model is similar to the Weighted-Sum
approach [Madsen and Browning 2009]; 4) If setting αj to the posterior probability of being
functional for each variant j, Ti corresponds to that of Price et al. [Price, et al. 2010]. These
posterior probabilities can be calculated using bioinformatics tools such as PolyPhen
[Adzhubei, et al. 2010; Price, et al. 2010].

From the above procedure, we can see that the term αjβ actually corresponds to the genetic
effect βj of the jth variant. With the fixed weights, therefore, the individual genetic effect βj
is proportional to the corresponding weight αj. This important result reveals the underlying
assumptions of the existing methods. The Simple-Sum method implicates that the effects of
all variants are identical; obviously, this is an unrealistic assumption. The Weighted-Sum
method first standardizes the main-effect predictors and then assumes identical coefficients
for all variants in the standardized model. This corresponds to the implicit assumption βj ∝
1/sd(xij | yi = 0). The approach of Price et al. [Price, et al. 2010] implicitly assumes that the
effect of a variant is proportional to the posterior functional probability. Therefore, all the
existing methods implement pooling of multiple rare variants according to certain
assumptions about the genetic effects of variants. Although powerful in certain situations,
these methods can be inefficient if the underlying assumption is not true. In contrast, the
proposed method does not require any assumptions about the relative importance of
individual variants and thus could be more robust than the existing methods.
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Simulations and Comparison with existing methods
We use extensive simulations to evaluate the proposed approach and to compare the
proposed method with five existing methods, the Collapsing, Simple-Sum, Weighted-Sum,
and All-Variants (i.e., jointly fitting all variants) and Single-Variant (i.e., fitting one variant
at a time).

Bayesian versions of existing methods
Although various testing statistics have been proposed for the existing Collapsing, Simple-
Sum and Weighted-Sum methods [Han and Pan 2010; Li and Leal 2008; Madsen and
Browning 2009; Price, et al. 2010], we implement these methods using logistic regressions:

with  for the Collapsing,  for the Simple-Sum, and

 for the Weighted-Sum. The All-Variants method jointly estimates the
individual effects of all variants:

and the Single-Variant separately estimates the effects of individual variants:

These logistic regressions can be non-identifiable when the variance Var(Ti) or Var(xij) is
small [Li and Leal 2008]. We overcome this problem by placing the weakly informative

prior [Gelman, et al. 2008], .
We fit these models using the modified IWLS algorithm of Yi and Banerjee [Yi and
Banerjee 2009] and Yi et al. [Yi et al. 2010]. This improves the performance of these
previous approaches and has the advantage of always producing stable estimates.

Simulation design
We consider different combinations of the factors that may affect the performance of the
methods:

a. Sample size: We simulate n = 500, 1000 and 2000 individuals with an equal
number of affected and unaffected;

b. Number of rare variants: We simulate m = 20, 40, and 80 rare variants;

c. Minor allelic frequencies and genotypes: We sample m variants independently
because correlation between rare variants is low [Pritchard 2001; Pritchard and Cox
2002]. For the jth variant, we sample the minor allelic frequency (MAF) pj
uniformly from the region [0.001, 0.01], as variants with MAF < 0.001 would be
indistinguishable in our presumed sample sizes. Assuming the Hardy-Weinberg
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equilibrium for each variant, we thus generate the genotypes from the multinomial

distribution: ;

d. Genetic model: We evaluate our method using the additive genetic model for each
variant. For rare variants, the additive model is approximately equivalent to the
dominant model, and detection of recessive effects requires extremely large sample
[Li and Leal 2008].

e. Number of functional variants and genetic effects: For m = 20, 40 and 80, we set all
the variants to be functional or randomly sample 40% of the simulated variants as
non-functional. For each functional variant, we simulate the odds ratio exp(βj) to be
1 (for type I error rate) or uniformly from the region [1.05, ORu] (for power
analysis). To ensure that the overall effect of all variants is reasonably low, we
determine the upper bound ORu by controlling the total liability heritability, which

approximates  (as derived in the next paragraph),
where pave is the average minor allelic frequency, mf is the number of functional
variants, and exp(βave) is the average odds ratio, equal to (1.05 + ORu)/2. For

example, ORu = 2.0 when mf = 40 and . We consider the total liability

heritability  from 0.7% to 8%. Finally, we consider the most complicated case in
which the effects of the functional rare variants are in opposite directions; for each
functional variant, we first simulate the odds ratio exp(βj) uniformly from the
region [1.05, ORu], and then change the sign of βj with the probability of 0.3 or 0.5.

Given the coefficients βj and the genotypic codes xij, we can simulate the disease phenotype
yi using two methods. The first method is to directly sample yi from the binomial

distribution: . This procedure is repeated until we obtain n/2 affected
and n/2 unaffected individuals. The second is to use the latent-data formulation of the

logistic regression; the logistic model  is equivalent to the model,

, yi = 1 ⇔ wi > c (see Gelman and Hill [Gelman and Hill 2007]). Thus,
we first sample n latent normal phenotype wi and then set n/2 individuals with the 50%
largest wi as affected (i.e., yi = 1) and the other n/2 individuals as unaffected. The latent-data
formulation allows us to calculate the proportion of the latent-data variance explained by the
variants, i.e., the liability heritability [Wray, et al. 2010],

. As described above, this formulation can be
used to control the total heritability when we simulate the coefficients βj.

For each set of parameters, 1000 replicated datasets are simulated, and each is analyzed
using our hierarchical model approach and the Collapsing, Simple-Sum, Weighted-Sum,
All-Variants and Single-Variant methods. For each analysis, we use the additive genetic
model. We calculate power to detect overall association β = 0 at significance levels of α =
0.001 and α = 2.5×10−6. These thresholds correspond to candidate gene studies [Price, et al.
2010] or a genome-wide study of about 20,000 fairly independence human genes [Madsen
and Browning 2009], respectively. We also examine type I error rate at a significance level
of α = 0.05. For the All-Variants and Single-Variant methods, the overall association is
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examined by testing whether at least one βj = 0 for all j = 1, ⋯, m, and for simplicity we do
not adjust the significance level for multiple testing. Therefore, we overestimate the power
for the All-Variants and Single-Variant methods.

Results
Type I error rate

As shown in Figure 1, the type I error rates are well controlled for the proposed method and
the Collapsing, Simple-Sum, and Weighted-Sum methods. The proposed method slightly
inflates the type I error rate when n = 500 and m = 20. However, there is no constant trend
that the proposed method generates higher type I error rate than those of the previous
methods. The type I error rates for the All-Variants and Single-Variant methods are
unacceptably high, and significantly increases with increasing number of variants, indicating
the need for multiple-testing correction.

Analysis of functional variants
We first investigated powers of the methods for the relatively simple scenario in which all
rare variants are functional and affect disease risk in the same direction. As shown in
Figures 2 and 3, the results for different sample sizes, different numbers of rare variants and
different liability heritabilities display similar patterns of empirical powers. A notable result
is that the proposed method is consistently more powerful than the other methods. Because
our method estimates the weights of multiple variants from the data, our model fits the data
better and generates a genetic score that better summarizes the information across the
variants. Thus the proposed method improves the power to detect the overall association
between rare variants and disease.

As expected, the power drastically increases with the sample size and the total liability
heritability explained by the variants. These relationships hold rather generally for the
methods that we examined. Given sample size and total liability heritability, the power
slightly decreases with the number of variants. This is likely the results that more variants
generate a lower upper bound ORu of odds ratios for individual effects (thus smaller
individual effects) and thus their information may be more difficult to be summarized. Our
simulations showed that with small sample sizes (n = 500, 1000) the All-Variants and
Single-Variant methods have no power to detect the association between rare variants and
disease. These are expected because these methods test for the effects of single variants each
of which has little variation. For larger sample size (n = 2000), the powers of the All-
Variants and Single-Variant methods go up at the significance level of α = 0.001 with no
multiple-testing correction, but rapidly decrease to near zero with a more stringent
significance level (Figure 3).

Our results showed that some of the previous methods produce similar power as the
proposed method in some situations, masking the real difference between these methods. To
investigate whether the proposed method provides any advantages in these situations, we
calculated the median value of p-values for simulation replicates with p-value < 0.001. A
notable outcome of this analysis is that the proposed method uniformly yields much lower p-
values than the previous methods (Figure 4). This finding indicates that our method usually
provides stronger evidence of association if the variants really influence the disease.

Inclusion of nonfunctional variants
Nonfunctional variants do not contribute to disease-risk. Therefore, inclusion of
nonfunctional variants in the analysis introduces noisy variation in the model and may
influence the performance of the methods. Our simulations showed that the power decreases
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when nonfunctional variants are included (Figures 5 and 6). This is true for all the methods
that we examined. However, we found that the previous methods lose more power than the
proposed method. This probably results from the fact that the previous methods use equal or
inappropriate weights for functional and nonfunctional variants, thereby ineffectively
summarizing the information across the multiple rare variants. In contrast, our method
estimates weights from the data and thus can set lower or even zero weights to nonfunctional
variants, providing a better genetic score.

Although the power decreases with inclusion of nonfunctional variants, the general
conclusions obtained earlier still hold. The proposed method is uniformly more powerful
(Figures 5 and 6) and generates much lower p-values than the previous methods (Figure 7).

Analysis of rare variants with opposite effects
We finally investigated empirical power of the methods in the complicated scenario in
which the effects of the functional rare variants influence disease in opposite directions.
With 30% (70%) of functional variants increasing (decreasing) disease risk, the previous
methods have some power to detect the association when sample size is large (n = 2000)
(Figure 8). But the power rapidly decreases with a more stringent significance level (Figure
9). For the worst case where 50% (50%) of functional variants increase (decrease) disease
risk, the Collapsing, Simple-Sum, and Weighted-Sum methods have no power to detect the
association even when sample size and odds ratios are large. These results are expected
because these methods simply pool all variants together, using equal weights for disease-
causing and disease-protective variants. Therefore, the information across multiple rare
variants is cancelled and the true association signal is completely hidden. As expected, the
All-Variants and Single-Variant methods perform similarly as the previous cases that we
studied.

The most striking finding of this study is that our method is still powerful even when
multiple rare variants have opposite effects on disease risk (Figures 8 and 9). This
remarkable feature is certainly the result of the unique property of the proposed method. Our
method estimates weights from the data and thus yields different weights for disease-causing
and protective variants, avoiding cancellation of individual-variant variation. Compared to
the simpler case, however, for this complicated case the proposed method is less powerful
and is more sensitive to the number of variants. This is expected because the increasing
complexity certainly reduces the accuracy of statistical inference.

Discussion
The Bayesian method developed here includes innovative and attractive features in both
modeling and computation steps. The proposed hierarchical model treats the weights as
parameters, not only obviating the choice of them but also allowing for better combination
of multiple variants. The key to this approach is the use of an appropriate model for the
weights, so that the overall coefficients and the weights are identifiable [Gelman 2004;
Gelman and Hill 2007]. The proposed algorithm extends the standard procedure for fitting
classical generalized linear models in the general statistical package R to our Bayesian
model, leading to the development of stable and flexible software. Although a fully
Bayesian computation that explores the posterior distribution of parameters provides more
information, our mode-finding algorithm quickly produces all results as in routine statistical
analysis. Our method is directly applicable to candidate gene association studies and has the
potential to be applied to large-scale exome sequencing or whole-genome resequencing data.
Furthermore, the hierarchical generalized model framework and the computational strategy
developed here can deal with various types of continuous and discrete phenotypes and any
generalized models.
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We describe our Bayesian method by setting the same prior means for all variants. This
means that our model assumes no hypothesis on the relative effect size of rare variants. The
motivation for this prior specification is that our understanding of the role of rare variants in
common disease is far from complete and thus any assumptions may not be always
appropriate. However, recent empirical and theoretical studies have suggested that effect
size may correlate with the frequency distribution or the functional credibility of rare
variants [Ahituv, et al. 2007; Madsen and Browning 2009; Ng, et al. 2009; Price, et al. 2010;
Pritchard 2001]. These relationships can be easily incorporated into our Bayesian model by
modifying the prior means for variants. By doing so, our approach has the additional
advantage of accounting for uncertainties about these relationships in the hierarchical
modeling.

There are several ways in which our method may be extended. First, for simplicity, we have
not considered the issue how to determine which variants to be combined. The approach
proposed by Li and Leal [Li and Leal 2008] that pools variants below a fixed allele
frequency threshold (say, 1%) and separately models other variants can be easily applied to
our model. A recently proposed method uses a variable allele-frequency threshold, which
also can be incorporated into our model [Price, et al. 2010]. Second, we have focused on
rare variants in a gene or region, but complex diseases are usually influenced by multiple
genes and environmental factors and their interactions. Our hierarchical model can be easily
extended to include environmental factors as covariates and jointly analyze all rare variants
in multiple genes using a separate genetic score for each gene. In principle, we can extend
the proposed model to include gene-environment and gene-gene interactions by defining an
overall coefficient and a genetic score for each interaction. However, it would be interesting
to investigate statistical power for detecting interactions in analysis of rare variants. Third,
rare variants tend to have occurred more recently and therefore population stratification
should be adequately controlled when analyzing rare variants [Eichler, et al. 2010]. We can
infer population substructure from sufficient data and then incorporate them into our model.
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Figure 1.
Type I error rates of the proposed method, Collapsing, Simple-Sum, Weighted-Sum, All-
Variants and Single-Variant methods at the 5% level with the number of variants m = 20, 40,
and 80 and the number of individuals n = 500, 1000, and 2000. The dashed horizontal line is
the nominal 0.05 level.
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Figure 2.
Empirical powers of the proposed method (○), Collapsing (Δ), Simple-Sum (+), Weighted-
Sum (×), All-Variants (◇) and Single-Variant (▽) methods at significance level of α =
0.001. n and m represent the numbers of individuals and rare variants, respectively. The total
liability heritabilities are 0.7, 1, 3, 5, or 8%. The numbers at the bottom line are the
corresponding upper bounds ORu of the odds ratios. All of the simulated variants are
functional, and affect phenotype in the same direction.
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Figure 3.
Empirical powers of the proposed method (○), Collapsing (Δ), Simple-Sum (+), Weighted-
Sum (×), All-Variants (◇) and Single-Variant (▽) methods at significance level of α =
2.5×10−6. n and m represent the numbers of individuals and rare variants, respectively. The
total liability heritabilities are 0.7, 1, 3, 5, or 8%. All of the simulated variants are functional,
and affect phenotype in the same direction.

Yi and Zhi Page 14

Genet Epidemiol. Author manuscript; available in PMC 2011 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Median of P-values (rescaled as -log10P) for the proposed method (○), Collapsing (Δ),
Simple-Sum (+), and Weighted-Sum (×) methods for replicates with P-value < 0.001. n and
m represent the numbers of individuals and rare variants, respectively. The total liability
heritabilities are 0.7, 1, 3, 5, or 8%. All of the simulated variants are functional, and affect
phenotype in the same direction.
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Figure 5.
Empirical powers of the proposed method (○), Collapsing (Δ), Simple-Sum (+) and
Weighted-Sum (×), All-Variants (◇) and Single-Variant (▽) methods at significance level
of α = 0.001. n and m represent the numbers of individuals and rare variants, respectively.
The total liability heritabilities are 0.7, 1, 3, 5, or 8%. The numbers at the bottom line are the
corresponding upper bounds ORu of the odds ratios. 60% of the simulated variants are
functional, and affect phenotype in the same direction.
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Figure 6.
Empirical powers of the proposed method (○), Collapsing (Δ), Simple-Sum (+) and
Weighted-Sum (×), All-Variants (◇) and Single-Variant (▽) methods at significance level
of α = 2.5×10−6. n and m represent the numbers of individuals and rare variants,
respectively. The total liability heritabilities are 0.7, 1, 3, 5, or 8%. 60% of the simulated
variants are functional, and affect phenotype in the same direction.
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Figure 7.
Median of P-values (rescaled as -log10P) for the proposed method (○), Collapsing (Δ),
Simple-Sum (+), and Weighted-Sum (×) methods for replicates with P-value < 0.001. n and
m represent the numbers of individuals and rare variants, respectively. The total liability
heritabilities are 0.7, 1, 3, 5, or 8%. 60% of the simulated variants are functional, and affect
phenotype in the same direction.
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Figure 8.
Empirical powers of the proposed method (○), Collapsing (Δ), Simple-Sum (+), Weighted-
Sum (×), All-Variants (◇) and Single-Variant (▽) methods at significance level of α =
0.001. n and m represent the numbers of individuals and rare variants, respectively. The total
liability heritabilities are 0.7, 1, 3, 5, or 8%. The top (bottom) pattern shows the analyses
that 30% (50%) of the functional variants affect phenotype in the opposite direction.
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Figure 9.
Empirical powers of the proposed method (○), Collapsing (Δ), Simple-Sum (+), Weighted-
Sum (×), All-Variants (◇) and Single-Variant (▽) methods at significance level of α =
2.5×10−6. n and m represent the numbers of individuals and rare variants, respectively. The
total liability heritabilities are 0.7, 1, 3, 5, or 8%. The top (bottom) pattern shows the
analyses that 30% (50%) of the functional variants affect phenotype in the opposite
direction.
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