Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2436–o2437. doi: 10.1107/S1600536811033307

2-[(E)-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-5-yl)imino­meth­yl]pyridinium chloride monohydrate

Irvin Booysen a, Muhammed Ismail a, Thomas Gerber b, Eric Hosten b, Richard Betz b,*
PMCID: PMC3200829  PMID: 22065128

Abstract

The title compound, C12H14N5O2 +·Cl·H2O, is the monohydrate of the hydro­chloride of an oxopurine-derived Schiff base in which protonation took place at the pyridine N atom. The organic cation is essentially planar (r.m.s. of all fitted non-H atoms = 0.0373 Å). In the crystal, N—H⋯O and N—H⋯Cl hydrogen bonds as well as C—H⋯O and C—H⋯Cl contacts connect the different entities into a three-dimensional network. The shortest centroid–centroid distance between two pyrimidine rings is 3.6364 (9) Å.

Related literature

For the development of radiopharmaceuticals, see: Gerber et al. (2011). For the crystal structure of the neutral organic parent ligand, see: Booysen et al. (2011a ). For the crystal structures of polymorphs of 6-amino-1,3-dimethyl-5-[(E-2-(methyl­sulfan­yl)benzyl­idene­amino]pyrimidine-2,4(1H,3H)-dione, see: Booy­sen et al. (2011b ,c ). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).graphic file with name e-67-o2436-scheme1.jpg

Experimental

Crystal data

  • C12H14N5O2 +·Cl·H2O

  • M r = 313.75

  • Orthorhombic, Inline graphic

  • a = 13.3797 (4) Å

  • b = 15.7975 (5) Å

  • c = 12.9998 (4) Å

  • V = 2747.71 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 200 K

  • 0.49 × 0.09 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.879, T max = 1.000

  • 24436 measured reflections

  • 3415 independent reflections

  • 2327 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.111

  • S = 1.03

  • 3415 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033307/dn2714sup1.cif

e-67-o2436-sup1.cif (23.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811033307/dn2714Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033307/dn2714Isup3.hkl

e-67-o2436-Isup3.hkl (167.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033307/dn2714Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H741⋯O90i 0.82 (2) 2.12 (2) 2.901 (2) 158 (2)
N4—H742⋯Cl1 0.94 (2) 2.29 (2) 3.1565 (16) 153 (2)
N5—H751⋯Cl1 0.90 (2) 2.19 (2) 3.0255 (16) 155 (2)
O90—H901⋯O1ii 0.89 (3) 2.01 (3) 2.874 (2) 164 (3)
O90—H902⋯Cl1 0.82 (3) 2.43 (3) 3.213 (2) 159 (3)
C5—H5A⋯Cl1iii 0.98 2.83 3.642 (2) 141
C9—H9⋯Cl1iv 0.95 2.71 3.5912 (19) 155
C10—H10⋯O1v 0.95 2.65 3.564 (2) 163
C12—H12⋯O2vi 0.95 2.37 3.294 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank Mrs Jaci Neale-Shutte for helpful discussions.

supplementary crystallographic information

Comment

Next to cardiovascular diseases, cancer has become one of the main fatal diseases in industrialized countries. Apart from classical surgery, chemo- and radiotherapeutic treatments have entered the arsenal of possible cures for certain types of cancer. All methods, however, suffer from their own set of problematic side-effects and, as a consequence, the development of radiopharmaceuticals – combining the advantages of chemotherapy as well as radiation methods while at the same time avoiding their unique respective undesired side-effects – has been a topic of research (Gerber et al., 2011). Tailoring and fine-tuning of the envisioned radiopharmaceuticals' properties such as lipophilicity and, in particular, inertness is of paramount importance with respect to possible future in vivo applications in contemporary medicine and requires sound knowledge about structural parameters of the ligands applied if a more heuristic approach in the synthesis is to triumph over pure trial-and-error as it is encountered in this specific field of coordination chemistry up to the present day. To allow for an assessment of changes in structural features upon coordination has taken place, the molecular and crystal structure of the title compound has been determined. Information about metrical parameters of the neutral compound (Booysen et al., 2011a) as well as other 6-amino-1,3-dimethyl-2,4(1H,3H)-dione-derived Schiff-base ligands (Booysen et al., 2011b; Booysen et al., 2011c) is apparent in the literature.

Protonation of the neutral organic ligand took place on the nitrogen atom of the pyridine moiety. The C=N bond is (E)-configured. Intracyclic angles in the protonated pyridine moiety cover a range of 117.73 (16)–123.66 (16) ° with the biggest angle on the protonated nitrogen atom and the smallest angle on the carbon atom bonded to the exocyclic substituent. The organic cation is essentially planar (r.m.s. for all its fitted non-hydrogen atoms = 0.0373 Å). The low puckering amplitude (τ = 2.2 °, r.m.s. for all its fitted and bonded non-hydrogen atoms = 0.0373 Å) of the non-aromatic heterocycle precludes a conformational analysis (Cremer & Pople, 1975) (Fig. 1).

In the crystal, hydrogen bonds as well as C–H···O and C–H···Cl contacs are observed whose range fall by about and more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating for the latter two types of interaction. The classical hydrogen bonds are supported by the protons of the water molecule as well as the amino group and have the chloride ion, the oxygen atom of the water molecule and the oxygen atom of the keto group located between the two methylated nitrogen atoms as acceptor. Two C–H···O contacts can be observed: the first one stemming from the C–H group in ortho-position to the protonated nitrogen atom in the pyridyl moiety and the keto group not acting as acceptor for a classical hydrogen bond and the second one between the C–H group in para position to the protonated nitrogen atom of the pyridyl moiety and the keto group that is already acting as acceptor for one of the classical hydrogen bonds. The two C–H···Cl contacts apply the vinylic hydrogen atom as well as one of the C–H groups present in the pyridyl moiety as donors. The chloride anion thus is pentacoordinate. A description of the classical hydrogen bonds in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) necessitates a DDDDD descriptor on the unitary level while the C–H···O as well as the C–H···Cl contacts can be described by means of a DDC11(9)C11(11) descriptor on the same level. In total, the entities of the title compound are connected to a three-dimensional network. The shortest intercentroid distance between two centers of gravity was found at 3.6364 (9) Å (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

The title compound was prepared by the reaction of (E)-6-amino-1,3- dimethyl-5-(pyridin-2-ylmethyleneamino)pyrimidine-2,4(1H,3H)- dione and trans-[ReOCl3(PPh3)2] in acetonitrile. The solution was filtered and single crystals suitable for the X-ray analysis were obtained from the mother liquor which was left in a fridge over several days.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms as well as the hydrogen atoms of the molecule of crystal water were located on a difference Fourier map and refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 0 -1]. For clarity, only hydrogen atoms participating in X—H···Y contacts are depicted. Blue dashed lines indicate classical hydrogen bonds, green dashed lines C–H···O contacts and yellow dashed lines C–H···Cl contacts. [Symmetry codes: (i) -x + 1/2, y + 1/2, z; (ii) -x + 1, y, -z + 1/2; (iii) -x + 1/2, y - 1/2, z; (iv) x + 1/2, y - 1/2, -z + 1/2].

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 0 -1] (anisotropic displacement ellipsoids drawn at 50% probability level). For clarity, only hydrogen atoms participating in X—H···Y contacts are depicted.

Crystal data

C12H14N5O2+·Cl·H2O F(000) = 1312
Mr = 313.75 Dx = 1.517 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 5575 reflections
a = 13.3797 (4) Å θ = 2.5–28.1°
b = 15.7975 (5) Å µ = 0.30 mm1
c = 12.9998 (4) Å T = 200 K
V = 2747.71 (15) Å3 Needle, brown
Z = 8 0.49 × 0.09 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 3415 independent reflections
Radiation source: fine-focus sealed tube 2327 reflections with I > 2σ(I)
graphite Rint = 0.053
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→17
Tmin = 0.879, Tmax = 1.000 k = −21→20
24436 measured reflections l = −17→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7712P] where P = (Fo2 + 2Fc2)/3
3415 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.22 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.75612 (9) −0.02776 (9) 0.13036 (10) 0.0310 (3)
O2 0.43377 (9) −0.11801 (8) 0.12425 (10) 0.0282 (3)
N1 0.63382 (10) 0.07221 (9) 0.12603 (11) 0.0222 (3)
N2 0.59510 (11) −0.07228 (9) 0.13227 (11) 0.0224 (3)
N3 0.36366 (10) 0.05754 (9) 0.12000 (11) 0.0201 (3)
N4 0.51074 (12) 0.17487 (10) 0.11875 (13) 0.0260 (3)
H741 0.5501 (17) 0.2148 (14) 0.1230 (14) 0.026 (5)*
H742 0.4432 (19) 0.1906 (15) 0.1194 (16) 0.040 (6)*
N5 0.18069 (11) 0.13375 (9) 0.11007 (12) 0.0246 (3)
H751 0.2352 (17) 0.1666 (15) 0.1123 (15) 0.034 (6)*
C1 0.46118 (12) 0.02987 (11) 0.12260 (12) 0.0194 (3)
C2 0.53451 (12) 0.09375 (11) 0.12252 (13) 0.0202 (3)
C3 0.66668 (13) −0.01110 (11) 0.12946 (13) 0.0224 (4)
C4 0.49100 (13) −0.05750 (11) 0.12589 (13) 0.0205 (3)
C5 0.71013 (14) 0.13949 (12) 0.12604 (18) 0.0344 (5)
H5A 0.7050 0.1723 0.0623 0.052*
H5B 0.7767 0.1140 0.1307 0.052*
H5C 0.6994 0.1769 0.1851 0.052*
C6 0.62944 (15) −0.16046 (12) 0.13966 (17) 0.0329 (5)
H6A 0.6593 −0.1777 0.0741 0.049*
H6B 0.5725 −0.1973 0.1554 0.049*
H6C 0.6794 −0.1652 0.1945 0.049*
C7 0.28582 (12) 0.00923 (11) 0.12190 (13) 0.0230 (4)
H7 0.2925 −0.0506 0.1257 0.028*
C8 0.18734 (13) 0.04871 (11) 0.11802 (13) 0.0221 (4)
C9 0.09840 (14) 0.00262 (12) 0.12149 (15) 0.0281 (4)
H9 0.1001 −0.0572 0.1288 0.034*
C10 0.00810 (15) 0.04423 (13) 0.11423 (16) 0.0332 (5)
H10 −0.0525 0.0130 0.1171 0.040*
C11 0.00552 (15) 0.13148 (13) 0.10267 (17) 0.0368 (5)
H11 −0.0564 0.1603 0.0951 0.044*
C12 0.09408 (14) 0.17558 (12) 0.10235 (16) 0.0315 (5)
H12 0.0938 0.2355 0.0967 0.038*
Cl1 0.31571 (3) 0.28729 (3) 0.11637 (4) 0.03282 (15)
O90 0.39829 (14) 0.33807 (11) 0.34015 (17) 0.0472 (4)
H901 0.350 (2) 0.373 (2) 0.359 (2) 0.063 (8)*
H902 0.393 (2) 0.326 (2) 0.279 (3) 0.082 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0182 (6) 0.0340 (7) 0.0406 (8) 0.0043 (5) 0.0002 (6) 0.0034 (7)
O2 0.0245 (7) 0.0204 (6) 0.0397 (8) −0.0011 (5) 0.0006 (6) −0.0014 (6)
N1 0.0162 (7) 0.0237 (7) 0.0267 (8) −0.0009 (6) 0.0007 (6) 0.0023 (7)
N2 0.0199 (7) 0.0202 (7) 0.0271 (8) 0.0037 (6) 0.0004 (6) 0.0006 (6)
N3 0.0189 (7) 0.0230 (7) 0.0184 (7) 0.0015 (6) 0.0006 (6) −0.0013 (6)
N4 0.0205 (8) 0.0209 (7) 0.0366 (9) −0.0011 (6) 0.0005 (7) 0.0001 (7)
N5 0.0193 (7) 0.0204 (7) 0.0342 (9) −0.0008 (6) −0.0009 (7) −0.0007 (7)
C1 0.0183 (8) 0.0210 (8) 0.0187 (8) 0.0012 (6) −0.0001 (7) 0.0005 (7)
C2 0.0185 (8) 0.0250 (8) 0.0170 (8) 0.0026 (7) 0.0005 (7) 0.0010 (7)
C3 0.0219 (8) 0.0280 (9) 0.0174 (9) 0.0035 (7) 0.0005 (7) 0.0019 (8)
C4 0.0207 (8) 0.0224 (8) 0.0183 (8) 0.0021 (7) 0.0002 (7) −0.0001 (7)
C5 0.0192 (9) 0.0264 (10) 0.0575 (14) −0.0036 (7) 0.0026 (9) 0.0057 (10)
C6 0.0263 (9) 0.0220 (9) 0.0505 (13) 0.0058 (7) −0.0019 (9) −0.0013 (9)
C7 0.0218 (8) 0.0227 (8) 0.0244 (9) 0.0020 (7) −0.0001 (8) −0.0010 (7)
C8 0.0213 (8) 0.0220 (8) 0.0229 (9) 0.0010 (7) −0.0018 (7) −0.0020 (7)
C9 0.0252 (9) 0.0220 (8) 0.0370 (11) −0.0016 (7) −0.0011 (9) −0.0005 (8)
C10 0.0210 (9) 0.0332 (10) 0.0455 (12) −0.0050 (8) 0.0005 (9) −0.0027 (10)
C11 0.0202 (9) 0.0298 (10) 0.0603 (15) 0.0047 (8) −0.0007 (9) −0.0005 (10)
C12 0.0260 (9) 0.0218 (9) 0.0467 (13) 0.0033 (8) 0.0011 (9) −0.0006 (8)
Cl1 0.0254 (2) 0.0196 (2) 0.0535 (3) 0.00017 (17) −0.0032 (2) −0.0015 (2)
O90 0.0466 (10) 0.0376 (9) 0.0575 (12) 0.0172 (8) −0.0031 (9) −0.0016 (8)

Geometric parameters (Å, °)

O1—C3 1.225 (2) C5—H5A 0.9800
O2—C4 1.225 (2) C5—H5B 0.9800
N1—C2 1.372 (2) C5—H5C 0.9800
N1—C3 1.388 (2) C6—H6A 0.9800
N1—C5 1.474 (2) C6—H6B 0.9800
N2—C3 1.361 (2) C6—H6C 0.9800
N2—C4 1.415 (2) C7—C8 1.459 (2)
N2—C6 1.470 (2) C7—H7 0.9500
N3—C7 1.291 (2) C8—C9 1.396 (2)
N3—C1 1.377 (2) C9—C10 1.379 (3)
N4—C2 1.321 (2) C9—H9 0.9500
N4—H741 0.82 (2) C10—C11 1.387 (3)
N4—H742 0.94 (2) C10—H10 0.9500
N5—C12 1.338 (2) C11—C12 1.374 (3)
N5—C8 1.350 (2) C11—H11 0.9500
N5—H751 0.90 (2) C12—H12 0.9500
C1—C2 1.407 (2) O90—H901 0.89 (3)
C1—C4 1.437 (2) O90—H902 0.82 (3)
C2—N1—C3 122.87 (15) N1—C5—H5C 109.5
C2—N1—C5 119.47 (15) H5A—C5—H5C 109.5
C3—N1—C5 117.66 (14) H5B—C5—H5C 109.5
C3—N2—C4 125.03 (14) N2—C6—H6A 109.5
C3—N2—C6 117.05 (14) N2—C6—H6B 109.5
C4—N2—C6 117.90 (14) H6A—C6—H6B 109.5
C7—N3—C1 125.19 (15) N2—C6—H6C 109.5
C2—N4—H741 125.9 (15) H6A—C6—H6C 109.5
C2—N4—H742 119.3 (14) H6B—C6—H6C 109.5
H741—N4—H742 114 (2) N3—C7—C8 118.36 (16)
C12—N5—C8 123.66 (16) N3—C7—H7 120.8
C12—N5—H751 114.9 (14) C8—C7—H7 120.8
C8—N5—H751 121.4 (14) N5—C8—C9 117.73 (16)
N3—C1—C2 115.66 (15) N5—C8—C7 119.18 (16)
N3—C1—C4 124.67 (15) C9—C8—C7 123.09 (16)
C2—C1—C4 119.67 (15) C10—C9—C8 119.75 (17)
N4—C2—N1 118.34 (16) C10—C9—H9 120.1
N4—C2—C1 121.85 (15) C8—C9—H9 120.1
N1—C2—C1 119.81 (15) C9—C10—C11 120.20 (18)
O1—C3—N2 122.31 (16) C9—C10—H10 119.9
O1—C3—N1 120.87 (16) C11—C10—H10 119.9
N2—C3—N1 116.82 (15) C12—C11—C10 118.85 (18)
O2—C4—N2 119.19 (15) C12—C11—H11 120.6
O2—C4—C1 125.12 (16) C10—C11—H11 120.6
N2—C4—C1 115.68 (15) N5—C12—C11 119.75 (18)
N1—C5—H5A 109.5 N5—C12—H12 120.1
N1—C5—H5B 109.5 C11—C12—H12 120.1
H5A—C5—H5B 109.5 H901—O90—H902 111 (3)
C7—N3—C1—C2 −178.39 (16) C6—N2—C4—O2 −1.7 (3)
C7—N3—C1—C4 1.2 (3) C3—N2—C4—C1 −4.0 (3)
C3—N1—C2—N4 −179.57 (16) C6—N2—C4—C1 177.82 (16)
C5—N1—C2—N4 0.3 (3) N3—C1—C4—O2 1.9 (3)
C3—N1—C2—C1 0.2 (3) C2—C1—C4—O2 −178.50 (17)
C5—N1—C2—C1 −179.93 (17) N3—C1—C4—N2 −177.63 (15)
N3—C1—C2—N4 −0.9 (2) C2—C1—C4—N2 2.0 (2)
C4—C1—C2—N4 179.47 (17) C1—N3—C7—C8 −179.65 (15)
N3—C1—C2—N1 179.36 (15) C12—N5—C8—C9 −2.0 (3)
C4—C1—C2—N1 −0.3 (2) C12—N5—C8—C7 177.56 (18)
C4—N2—C3—O1 −176.43 (17) N3—C7—C8—N5 1.6 (3)
C6—N2—C3—O1 1.8 (3) N3—C7—C8—C9 −178.81 (17)
C4—N2—C3—N1 3.9 (3) N5—C8—C9—C10 1.6 (3)
C6—N2—C3—N1 −177.86 (16) C7—C8—C9—C10 −177.98 (18)
C2—N1—C3—O1 178.46 (16) C8—C9—C10—C11 0.5 (3)
C5—N1—C3—O1 −1.4 (3) C9—C10—C11—C12 −2.3 (3)
C2—N1—C3—N2 −1.9 (3) C8—N5—C12—C11 0.3 (3)
C5—N1—C3—N2 178.23 (16) C10—C11—C12—N5 1.9 (3)
C3—N2—C4—O2 176.49 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H741···O90i 0.82 (2) 2.12 (2) 2.901 (2) 158 (2)
N4—H742···Cl1 0.94 (2) 2.29 (2) 3.1565 (16) 153 (2)
N5—H751···Cl1 0.90 (2) 2.19 (2) 3.0255 (16) 155 (2)
O90—H901···O1ii 0.89 (3) 2.01 (3) 2.874 (2) 164 (3)
O90—H902···Cl1 0.82 (3) 2.43 (3) 3.213 (2) 159 (3)
C5—H5A···Cl1iii 0.98 2.83 3.642 (2) 141.
C9—H9···Cl1iv 0.95 2.71 3.5912 (19) 155.
C10—H10···O1v 0.95 2.65 3.564 (2) 163.
C12—H12···O2vi 0.95 2.37 3.294 (2) 164.

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x−1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, −z; (iv) −x+1/2, y−1/2, z; (v) x−1, y, z; (vi) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2714).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Booysen, I., Hlela, T., Ismail, M., Gerber, T., Hosten, E. & Betz, R. (2011a). Acta Cryst. E67, o2289. [DOI] [PMC free article] [PubMed]
  4. Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011b). Acta Cryst. E67, o1592. [DOI] [PMC free article] [PubMed]
  5. Booysen, I., Muhammed, I., Soares, A., Gerber, T., Hosten, E. & Betz, R. (2011c). Acta Cryst. E67, o2025–o2026. [DOI] [PMC free article] [PubMed]
  6. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  7. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  10. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  11. Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033307/dn2714sup1.cif

e-67-o2436-sup1.cif (23.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811033307/dn2714Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033307/dn2714Isup3.hkl

e-67-o2436-Isup3.hkl (167.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033307/dn2714Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES