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Abstract

Background: Alignment of amino acid sequences by means of dynamic programming is a cornerstone sequence
comparison method. The quality of alignments produced by dynamic programming critically depends on the
choice of the alignment scoring function. Therefore, for a specific alignment problem one needs a way of selecting
the best performing scoring function. This work is focused on the issue of finding optimized protein family- and
fold-specific scoring functions for global similarity matrix-based sequence alignment.

Findings: I utilize a comprehensive set of reference alignments obtained from structural superposition of
homologous and analogous proteins to design a quantitative statistical framework for evaluating the performance
of alignment scoring functions in global pairwise sequence alignment. This framework is applied to study how
existing general-purpose amino acid similarity matrices perform on individual protein families and structural folds,
and to compare them to family-specific and fold-specific matrices derived in this work. I describe an adaptive
alignment procedure that automatically selects an appropriate similarity matrix and optimized gap penalties based
on the properties of the sequences being aligned.

Conclusions: The results of this work indicate that using family-specific similarity matrices significantly improves
the quality of the alignment of homologous sequences over the traditional sequence alignment based on a single
general-purpose similarity matrix. However, using fold-specific similarity matrices can only marginally improve
sequence alignment of proteins that share the same structural fold but do not share a common evolutionary
origin. The family-specific matrices derived in this work and the optimized gap penalties are available at http://
taurus.crc.albany.edu/fsm.

Background
Pairwise alignment of amino acid sequences is a corner-
stone sequence comparison method used in a variety of
computational applications [1-4]. A mathematically rig-
orous and computationally efficient way of finding opti-
mal global [5] and local [6] alignments for a given pair
of sequences is provided by dynamic programming. The
outcome of a dynamic programming procedure applied
to align amino acid sequences critically depends on the
alignment scoring function used by this procedure [7,8].
Therefore, for a specific alignment problem one needs a
way of selecting the best performing scoring function
[7-9]. The traditional alignment scoring function most
commonly used in dynamic programming consists of an

amino acid substitution matrix and gap penalties [5,6].
Recently, several novel sequence alignment algorithms
have been developed that use scoring functions based
on Hidden Markov Models (HMMs) [9-15]. On one
hand, the probabilistic nature of these algorithms makes
them superior to the substitution matrix-based align-
ment. On the other hand, they require estimation of a
large number of transition and emission probabilities,
which makes obtaining reliable HMMs especially tricky
in the case of global alignments and small sequence
datasets [16,17]. Despite the advent of more sophisti-
cated alignment algorithms, global pairwise alignment
based on amino acid substitution matrices still remains
the well-established workhorse of sequence analysis. It is
widely used for basic sequence comparison tasks that
include the identification of structurally equivalent posi-
tions in homology modeling, which crucially depends on
the quality of alignment between the target and
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template sequences [3], and in popular multiple
sequence alignment algorithms, such as CLUSTAL [18]
and TCOFFEE [19]. Therefore, improving the quality of
substitution matrix-based global pairwise alignments is
an important step in improving other more complex
computational applications.
In substitution matrix-based alignment, matrix selec-

tion is the most important decision the user has to
make because once a matrix is selected the values of its
elements cannot be easily changed, unlike gap penalties.
Most amino acid substitution matrices are similarity
matrices based on the same underlying idea: they
attempt to account for the similarity between two
amino acids by computing how often these amino acids
occur in the equivalent sequence positions in related
proteins. It is assumed that if two amino acids i and j
are often observed in the equivalent positions, they have
similar biochemical properties and can be substituted
one for another in the course of protein evolution. The
differences between various similarity matrices are
mainly determined by what groups of protein sequences
are used to derive them and how the equivalent posi-
tions are defined. The mainstream matrices routinely
utilized in sequence comparison, such as BLOSUM [20]
and PAM [21], are obtained by counting the frequencies
of amino acid substitutions observed in the columns of
multiple sequence alignments of evolutionary related
proteins. As an alternative to using multiple sequence
alignments, one can count the frequencies of amino acid
substitutions observed in the structurally equivalent
positions of structurally similar (but not necessarily
sequence-similar) proteins [22-24]. In this case, the
structurally equivalent positions are identified by means
of a computational technique known as structural super-
position. Structural superposition detects the structu-
rally-equivalent regions in two protein structures by
using their geometrical properties only [25-28]. The
amino acid sequence alignment that corresponds to the
optimal structural superposition is generated after the
superposition is complete.
The advantage of structural superposition is that it

allows one to obtain high quality reference sequence
alignments for both distantly related homologous pro-
teins and for proteins that share the same structural
fold but no common evolutionary origin. Such struc-
ture-based reference alignments can be used not only to
derive amino acid similarity matrices but also to design
benchmarks for assessing the performance of sequence
alignment algorithms [29-33]. In a sequence alignment
benchmark, the quality of sequence alignments pro-
duced by a given alignment algorithm is assessed by
comparing them to the reference alignments and calcu-
lating the percentage of correctly aligned positions.
Typically, the average percentage of correctly aligned

positions is used to compare two or more alignment
algorithms and the algorithm with the highest average is
identified as the top-performing one. One problem with
such an approach based on a simple comparison of the
averages is that it lacks statistical testing and a larger
average can come at the expense of a larger variability,
especially in smaller datasets, thus not really reflecting a
statistically significant difference. Another common pro-
blem with benchmarking sequence alignment algorithms
is that it is usually performed on a large pooled
sequence dataset that contains many diverse protein
families. The use of pooled sequences leads to the loss
of family-specific information and may bias the results
towards the overrepresented protein families [7].
Virtually all existing amino acid similarity matrices are

general-purpose matrices, meaning that they were derived
by averaging substitution frequencies over many diverse
protein families that represent the entire protein universe.
General-purpose similarity matrices are required for such
task as a sequence database search because in this proce-
dure a query sequence is aligned with millions of diverse
database sequences. However, in tasks such as a global
sequence alignment only related sequences are typically
used and it is often known in advance which protein
family these sequences belong to. In such a case, even the
best general-purpose matrix may not perform equally well
on all protein families, because family-specific substitution
patterns were mostly averaged out. For instance, it has
been shown that amino acid similarity matrix derived for a
specific protein family tends to perform better on proteins
from this family than BLOSUM matrices [34,35]. The
recent advances in the experimental data acquisition have
provided a wealth of sequence and structural data that
allow us to obtain reference sequence alignments for
many diverse protein families and structural folds [33].
These reference alignments can be used to derive protein
family- and fold-specific similarity matrices and to conduct
family- and fold-specific performance evaluations.
In this work, I focus on the issue of finding optimized

amino acid similarity matrices for pairwise global
sequence alignment. I use a comprehensive set of refer-
ence sequence alignments to design a quantitative statis-
tical framework for evaluating the performance of
alignment scoring functions on protein family and struc-
tural fold levels and apply this framework to study the
utility of family- and fold-specific amino acid similarity
matrices for global sequence alignment. The results of
this work indicate that the quality of pairwise global
sequence alignment can be significantly improved by
using family-specific similarity matrices.

Dataset
I used the release 1.65 of the Sequence Alignment
Benchmark (SABmark) [33] to derive protein family-
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specific and fold-specific amino acid similarity matrices
and to evaluate the accuracy of pairwise sequence align-
ments obtained using different scoring functions. SAB-
mark is a large general-purpose “gold standard”
database specifically designed to evaluate the perfor-
mance of pairwise sequence alignment algorithms. It
consists of groups of the reference pairwise sequence
alignments obtained from the consensus structural
superposition of high-quality protein structures that
cover the entire SCOP database [36]. All sequences in
SABmark are divided into two sub-sets, “the Superfam-
ily” sub-set (SUP) and “the Twilight Zone” [37] sub-set
(TWI). Each SUP group contains homologous single-
domain protein sequences with low to moderate degrees
of sequence identity that belong to the same SCOP
super-family. Each TWI group contains single-domain
protein sequences that belong to the same SCOP fold
and share no detectable sequence similarities (meaning
that no significant similarities can be detected by
BLAST).

Derivation of group-specific amino acid similarity
matrices
The reference sequence alignments from each SABmark
group are used to derive a log-odds amino acid similar-
ity matrix specific for this particular group (referred to
as a family-specific matrix for an SUP group and as a
fold-specific matrix for a TWI group). The matrices are
derived using a modification of the approach suggested
by Henikoff and Henikoff [20]. Given a set of reference
pairwise sequence alignments from the SABmark group
k, the elements of the group-specific amino acid similar-
ity matrix Sk are calculated as follows:

sk(i, j) = 2 · log2
qk(i, j)
ek(i, j)

· wk + (1 − wk) · v(i, j) (1)

qk(i, j) =
fk(i, j)

nk
(2)

ek(i, i) = pk(i) · pk(i)

ek(i, j) = 2 · pk(i) · pk(j) for i �= j
(3)

pk(i) = qk(i, i) +

∑

j�=i
qk(i, j)

2
(4)

wk = 1 − 10
−

nk

8000 (5)

Where qk(i, j) and ek(i, j) are the observed and
expected frequencies of amino acid pair (i, j) in group k;
fk(i, j) is the total number of amino acid pairs (i, j) in

group k; pk(j) is the observed frequency of amino acid
type j in group k; nk is the total number of amino acid
pairs in group k; v(i, j) is the score for amino acid pair
(i, j) from the VTML200 matrix [38]. The value of the
constant, 8000, in Eq.5 was selected using a grid search
as a value that results in the best overall performance of
group-specific matrices.
In the final matrix, all elements sk(i, j) are rounded to

the nearest integer. In order to account for sparse data
in small SABmark groups, each element of the final
matrix Sk is calculated as the weighted combination of
the group-specific score and the general score from the
VTML200 matrix. As the total number of aligned amino
acid pairs increases, the contribution of the group-speci-
fic score increases, whereas the contribution of the
VTML200 score decreases. The VTML200 matrix is
used in Eq.1 because it is the best performing general-
purpose matrix (see ‘Analysis of general-purpose
matrices’ for details).

Matrix evaluation procedure
The main goal of this work is to compare the perfor-
mance of various amino acid similarity matrices. This
requires a quantitative framework for (1) evaluating the
quality of pairwise sequence alignments obtained using
a given similarity matrix, and (2) comparing how two
different similarity matrices perform when used to align
the same set of sequence pairs. The quality of a test
alignment between sequences i and j, Q(i, j), is evaluated
by comparing this alignment to the reference SABmark
structural alignment for the same pair of sequences, and
is quantified by the average of two alignment accuracy
measures, fD and fM [29]:

Q(i, j) =
fD(i, j) + fM(i, j)

2
(6)

fD(i, j) =
nI(i, j)
lR(i, j)

∗ 100% (7)

fM(i, j) =
nI(i, j)
lT(i, j)

∗ 100% (8)

Where nI(i, j) is the number of residue pairs aligned
identically in the test and the reference alignments; lR(i,
j) is the length of the reference alignment; lT(i, j) is the
length of the test alignment. If the value of Q(i, j) equals
100%, it means that the test alignment and the reference
alignment are identical. The test pairwise sequence
alignments were obtained by using the Needlman-
Wunsch algorithm [5] with the affine gap penalty func-
tion, G(m) = a + (m-1)*b, where m is the gap length, a
is the gap initiation penalty, and b is the gap extension
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penalty. Gap penalties were optimized for each group/
matrix as described below.
The performance of two given amino acid similarity

matrices, A and B, in the pairwise alignment of
sequences from a SABmark group k is analyzed by
means of the two-sided paired t-test. In this approach,
the pairs of sequences from group k are aligned using
matrix A and the alignment quality score, QA, is calcu-
lated for each pair using Eq.6. Then, the same sequence
pairs from group k are aligned using matrix B and the
alignment quality score, QB, is calculated for each pair.
After that, the distributions of alignment quality scores
QA and QB are compared using the two-sided paired t-
test. The outcome of the t-test is considered to be sta-
tistically significant if its p-value is less than 0.05. To
avoid over-fitting, the alignment quality scores are
obtained using a 3-fold cross-validation. In this proce-
dure, each SABmark group is randomly partitioned into
three non-overlapping sub-sets, with two sub-sets used
for training and the remaining sub-set used for testing.
The process is repeated three times, so that each sub-set
is used for testing once. In the case of a general-purpose
similarity matrix, “training” means optimizing gap penal-
ties for this matrix. In the case of a similarity matrix
specific for a SABmark group k, “training” means deriv-
ing the group-specific matrix itself and optimizing gap
penalties for this matrix. “Testing” means using the
matrix and optimized gap penalties obtained during the
training step to align sequences from the test sub-set.
During cross-validation, gap initiation, a, and gap exten-
sion, b, penalties for a given group k and a given simi-
larity matrix A are optimized using the following grid
search procedure: Sequences from the training set of
group k are aligned using matrix A, and all possible
combinations of integer gap penalties in range 1≤a≤50,
1≤b≤30 are tested; the combination (a, b) that results in
the highest average quality score is selected as the best
and is used with matrix A to align sequences from the
test set of group k.

Analysis of general-purpose matrices
In this section I compare the performance of existing
general-purpose amino acid similarity matrices using the
3-fold cross-validation evaluation protocol described in
the ‘Matrix evaluation procedure’ section. For this pur-
pose, I chose two most popular series of matrices
derived from multiple sequence alignments of evolution-
ary related sequences, the PAM matrices [21] and the
BLOSUM matrices [20], along with matrices derived
from structural superposition of remotely homologous
proteins, BC-STR [24] and STROMA [39], a matrix
derived by Gonnet et al [40], and the VTML200 matrix
[38]. The PAM matrices were chosen because they are
the oldest amino acid similarity matrices. The remaining

matrices were chosen because, at some point in time,
each of them was shown to be the top-performing
matrix compared to others available at the same time
period. The results of the pairwise comparison of the
matrices on the SUP (Super-family) and TWI (Twilight)
sub-sets are shown in Tables 1 and 2, respectively, and
can be summarized as follows. In general, the VTML200
matrix tends to show a superior performance on the
SUP groups. This is manifested by the largest number
of SUP groups on which VTML200 performs signifi-
cantly better when compared to other matrices. The
second best-performing matrix is BLOSUM50, which
ranks a little behind VTML200. The PAM family
matrices, which are the oldest matrices used in this test,
considerably underperform when compared to more
recent matrices. This observation is consistent with the
previously reported results [7,20]. No single general pur-
pose matrix clearly outperforms other matrices on the
TWI groups, the performance of VTML200 being simi-
lar to that of BLOSUM50/62 and BC-STR.
The results reported in Tables 1 and 2 indicate that

every tested matrix may perform significantly worse on
some groups, depending on what other matrix it is com-
pared to. This means that there is no single matrix that
universally outperforms all other matrices on all SAB-
mark groups. An important question is what are the
identities of the groups that account for the observed
differences, meaning if the same matrix is compared to
different matrices, does it tend to perform significantly
better/worse on the same set of groups or not? How-
ever, the results presented in Tables 1, 2 are for pairwise
comparisons in which only two matrices are compared
at a time and do not provide information about the
identity of the groups that account for the observed dif-
ferences. In order to answer this question, I conducted a
detailed analysis of the overlap between SUP groups
that account for significant differences observed in three
pairwise comparisons: BC-STR vs. VTML200, BC-STR
vs. BLOSUM50, and BLOSUM50 vs. VTML200. These
three matrices were chosen because they were derived
using different methodological approaches and source
datasets, and at different time periods. The results of
this analysis are summarized in the Vienn diagram
shown in Figure 1. The main point of this figure is that
the majority of groups do not overlap, which means that
the same matrix may perform significantly better/worse
on different groups, depending on what other matrix it
is compared to. The most likely explanation of this
observation is that the performance of each general-pur-
pose matrix is significantly biased towards a certain set
of protein families that were over- and under-repre-
sented in the dataset used to derive the matrix. When
two matrices are compared, they perform similarly on
families that were represented similarly in the two
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datasets used to derive these matrices, and differently on
families that were over-represented in one dataset and
under-represented in the other.

Analysis of family- and fold-specific matrices
In this section test the performance of the group-speci-
fic approach. In this test, a group-specific similarity
matrix is derived for each SABmark group according to
Eq.1 and compared to the general-purpose matrices
using the 3-fold cross-validation evaluation protocol
described in the ‘Matrix evaluation procedure’ section.
Only groups that have 10 or more reference alignments
were used in this test because in smaller groups the
total number of observed amino acid exchanges is not
sufficient to derive a meaningful group-specific matrix.
The results of this comparison on the SUP and TWI
sub-sets are shown in Table 3 and can be summarized
as follows. In the case of the SUP subset, the family-spe-
cific amino acid similarity matrices consistently tend to
outperform all general-purpose matrices. The fraction of
groups on which family-specific matrices perform signif-
icantly better ranges from 20.5% to 49.2%, depending on

which general purpose matrix they are compared to. For
instance, when the family-specific approach is compared
to the two top-performing general-purpose matrices,
VTML200 and BLOSUM50, it yields significantly better
alignments for 50 (20.5%) and 74 (30.3%) groups,
respectively, whereas VTML200 and BLOSUM50 pro-
duce significantly better alignments for only 5 (2%) and
6 (2.5%) groups, respectively. It is reasonable to expect
that when more reference alignments become available
for the under-represented SABmark families, the perfor-
mance of the family-specific approach can be improved
further. In the case of the TWI subset, the fold-specific
approach performs only slightly better than the
VTML200 matrix. This is not surprising because each
TWI group consists of proteins that share the same
fold, but do not share clear evolutionary relationships. It
has been shown previously that pairwise sequence align-
ment tends to perform poorly on such proteins from
the so-called “twilight zone” [37,41]. Thus, using protein
family-specific similarity matrices can significantly
improve the quality of alignment of homologous
sequences with low to moderate degrees of sequence

Table 1 The pair-wise comparison of general-purpose matrices on groups from the SUP sub-set

VTML GONN BL30 BL50 BL62 PAM120 PAM160 PAM250 BC-STR STRM

VTML 0;0 55;5 98;12 28;15 23;11 81;4 83;4 78;8 44;16 59;5

GONN 5;55 0;0 41;16 11;47 13;42 27;10 27;10 33;8 16;43 24;19

BL30 12;98 16;41 0;0 9;77 12;82 18;35 21;28 20;29 4;64 12;47

BL50 15;28 47;11 77;9 0;0 12;10 57;6 53;3 59;6 28;15 56;11

BL62 11;23 42;13 82;12 10;12 0;0 60;7 51;9 56;11 23;21 43;8

PAM120 4;81 10;27 35;18 6;57 7;60 0;0 9;15 20;19 6;53 12;31

PAM160 4;83 10;27 28;21 3;53 9;51 15;9 0;0 13;16 10;49 10;29

PAM250 8;78 8;33 29;20 6;59 11;56 19;20 16;13 0;0 11;52 10;35

BC-STR 16;44 43;16 64;4 15;28 21;23 53;6 49;10 52;11 0;0 37;9

STRM 5;59 19;24 47;12 11;56 8;43 31;12 29;10 35;10 9;37 0;0

Matrices shown: VTML - VTML200 [38], GONN - Gonnet et al [40], BL30/50/62 - BLOSUM30/50/62 [20], PAM120/160/250 [21], BC-STR [24], STRM - STROMA [39]. A
cell formed by the intersection of row i and column j shows the results of the pair-wise comparison of matrices (i, j), and contains two numbers: first is the
number of groups on which matrix i performs significantly better than j, second is the number of groups on which matrix j performs significantly better than i.

Table 2 The pair-wise comparison of general-purpose matrices on groups from the TWI sub-set

VTML GONN BL30 BL50 BL62 PAM120 PAM160 PAM250 BC-STR STRM

VTML 0;0 21;3 39;4 10;12 13;12 31;4 31;3 26;2 15;13 15;10

GONN 3;21 0;0 21;6 3;16 6;19 20;6 13;2 13;5 4;17 7;6

BL30 4;39 6;21 0;0 3;37 5;38 16;18 13;14 8;15 3;28 5;24

BL50 12;10 16;3 37;3 0;0 11;6 27;2 26;3 25;4 12;8 13;6

BL62 12;13 19;6 38;5 6;11 0;0 23;1 23;1 27;5 17;10 15;10

PAM120 4;31 6;20 18;16 2;27 1;23 0;0 11;10 12;12 2;25 6;18

PAM160 3;31 2;13 14;13 3;26 1;23 10;11 0;0 9;9 2;29 3;19

PAM250 2;26 5;13 15;8 4;25 5;27 12;12 9;9 0;0 4;24 5;17

BC-STR 13;15 17;4 28;3 8;12 10;17 25;2 29;2 24;4 0;0 11;5

STRM 10;15 6;7 24;5 6;13 10;15 18;6 19;3 17;5 5;11 0;0

Matrix names are the same as in Table 1. A cell formed by the intersection of row i and column j shows the results of the pair-wise comparison of matrices (i, j),
and contains two numbers: first is the number of groups on which matrix i performs significantly better than j, second is the number of groups on which matrix
j performs significantly better than i.
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identity, but using fold-specific matrices can only mar-
ginally improve sequence alignment of structurally-simi-
lar proteins from the “twilight zone”.
An important question is how similarities between

aligned sequences affect the performance of group-spe-
cific matrices. Do these matrices tend to perform better
than general-purpose matrices on groups that contain
many similar or many dissimilar sequences? In order to
answer this question, I calculated two parameters for
each SABmark group: (1) the average difference in the
quality score (Eq.6) between alignments obtained with
the group-specific matrix and with the VTML200
matrix, and (2) the average sequence identity. The scat-
ter plots of these parameters for the SUP and TWI sub-
sets are shown in Figures 2 and 3. The main point of
these plots is that there is no correlation between the
average difference in alignment quality score and the
average sequence identity in both SUP and TWI sub-

sets. This means that the group-specific approach tends
to perform better on proteins with both low and moder-
ate sequence identity.
Finally, I studied how the family-specific matrices dif-

fer from the original VTML200 matrix, and how the
family-specific matrices that perform better than
VTML200 differ from the family-specific matrices that
do not. The fold-specific matrices were not studied in
detail because they do not appear to improve alignment
quality significantly. First, the family-specific matrices
were compared to the original VTML200 matrix by
using the average difference between matrix elements,
D1(i, j):

D1(i, j) =

N∑

k=1
[sk(i, j) − v(i, j)]

N

(9)

Where sk(i, j) is the score for amino acid pair (i, j)
from the family-specific matrix k; v(i, j) is the score for
amino acid pair (i, j) from the VTML200 matrix; N is

Figure 1 The overlap between SUP groups that account for the
significant differences. The overlap between SUP groups that
account for the significant differences observed in three pair-wise
matrix comparisons: BC-STR vs. VTML200 (60 groups), BC-STR vs.
BLOSUM50 (43 groups), and BLOSUM50 vs. VTML200 (43 groups).

Table 3 The pair-wise comparison of group-specific matrices vs. general-purpose matrices.

VTML GONN BL30 BL50 BL62 PAM120 PAM160 PAM250 BC-STR STRM

FSM-SUP 50;5 86;1 120;5 74;6 63;0 106;3 110;4 114;3 67;7 93;0

FSM-TWI 15;2 20;1 41;3 21;9 19;4 36;0 37;1 35;0 21;4 24;1

Adaptive
FSM-SUP

35;6 70;2 103;7 50;9 45;3 90;4 96;4 98;4 60;14 73;1

Matrix names are the same as in Table 1. Abbreviations: FSM-SUP - family-specific matrices tested on groups from the SUP sub-set. FSM-TWI - fold-specific
matrices tested on groups from the TWI sub-set. Adaptive FSM-SUP - the adaptive family-specific matrix selection procedure tested on the groups from the SUP
sub-set. The results shown are for groups with 10 or more reference alignments (244 groups in the SUP sub-set, 131 groups in the TWI sub-set). A cell formed by
the intersection of row i and column j shows the results of the pair-wise comparison of matrices (i, j), and contains two numbers: first is the number of groups
on which matrix i performs significantly better than j, second is the number of groups on which matrix j performs significantly better than i.
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Figure 2 The scatter plot of the average difference in the
alignment quality score between the family-specific matrices
and the VTML200 matrix. Each dot represents one group from the
SUP subset. A positive value of the average difference indicates that
the family-specific similarity matrix performs better than VTML200.
The Pearson’s correlation coefficient calculated using the data
points from this plot is 0 (no correlation).
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the total number of family-specific matrices. The scatter
plot of the average distance D1(i, j) vs. the original
VTML score v(i, j) for all 210 amino acid pairs is shown
in Figure 4. This plot indicates that identical (WW, CC,
PP, YY, etc.) or similar (KR, YF, VI, DN, etc.) amino
acid pairs that receive high scores in VTML200 tend to
receive lower, but still positive, scores in the family-spe-
cific matrices. On the other hand, dissimilar amino acid
pairs (WE, FD, IG, YP, etc.) that receive low scores in
VTML200 tend to receive higher, but still negative,
scores in the family-specific matrices. The higher the

magnitude of the original VTML200 score, the more it
tends to be affected in the family-specific matrices.
Second, the family-specific matrices that perform sig-

nificantly better than VTML200 were compared to the
family-specific matrices that perform similarly to
VTML200 by using the difference between the average
matrix elements, D2(i, j):

D2(i, j) = BP(i, j) − SP(i, j) (10)

BP(i, j) =

NB∑

k=1
SBk(i, j)

NB

(11)

SP(i, j) =

NS∑

k=1
SSk(i, j)

NS

(12)

Where SBk(i, j) is the score for amino acid pair (i, j)
from the kth family-specific matrix that performs better
than VTML200; SSk(i, j) is the score from the kth family-
specific matrix that performs similarly to VTML200; NB
is the number of matrices that perform better than
VTML200; NS is the number of matrices that perform
similarly to VTML200. The family-specific matrices that
perform significantly worse than VTML200 were not
used because there were only 5 of them. To remove the
cases that show a trend toward statistical significance,
matrices that perform similarly to VTML200 were
defined as the ones that received the p-value greater
than 0.1 during the matrix evaluation procedure (156
matrices total).
The heat maps summarizing the values of the ele-

ments of matrices BP and D2 are shown in Figures 5, 6.
These heat maps indicate that the family-specific
matrices that perform significantly better than
VTML200 tend to follow the general rules and assign
positive scores to identical/similar pairs and negative
scores to dissimilar pairs (Figure 5). However, the differ-
ence between the family-specific matrices that perform
significantly better than VTML200 and those matrices
that do not is that the former tend to assign lower
scores to all identical pairs and to many similar pairs
(YF, IV, TS, KR, DN, ED, etc.), while assigning higher
scores to many dissimilar pairs (such as hydrophobic-
hydrophilic pairs) (Figure 6). Notably, most cysteine-
containing pairs, including CC, receive lower scores in
the family-specific matrices that perform significantly
better than VTML200, except for pairs CW, CF, and
CD. To summarize, the family-specific approach, on
average, tends to make the alignment of identical and
similar pairs less favorable and the alignment of dissimi-
lar pairs more favorable. These tendencies are particu-
larly profound in the family-specific matrices that
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Figure 3 The scatter plot of the average difference in the
alignment quality score between the fold-specific matrices and
the VTML200 matrix. Each dot represents one group from the TWI
subset. A positive value of the average difference indicates that the
fold-specific similarity matrix performs better than VTML200. The
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Figure 4 The scatter plot of the average difference between
the elements of the family-specific matrices and the VTML200
matrix. Each dot represents one amino acid pair (210 total). A
positive value of the average difference D1(i, j) (Eq.9) indicates that
amino acid pair (i, j) tends to receive a higher score in the family-
specific matrices compared to VTML200 and vice versa.
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perform significantly better than VTML200. In general,
these observations conform to the empirical expectation
that a good quality alignment of divergent members of
the same protein family must correctly align only a lim-
ited number of conserved core residues specific for this
family and accommodate a large number of amino acid
substitutions. This implies decreasing the scores for

certain identical/similar pairs and increasing the scores
for certain dissimilar pairs in the family-specific matrix.

Adaptive protein family-specific alignment
The analysis of the performance of the group-specific
matrices described above is based on the knowledge of
the group membership for each sequence used for test-
ing, meaning that a correct group-specific matrix is
always selected for each alignment by default. However,
in the real world we do not always know in advance
what particular family a given pair of homologous
sequences belongs to. How to select an appropriate
family-specific matrix in this case? I used BLAST [2]
sequence similarity search to design an adaptive align-
ment procedure that automatically selects an appropri-
ate family-specific similarity matrix for aligning a pair of
input sequences. In this approach, a given input
sequence is used as a query and the entire SUP subset
(except for the sequences used for testing) is used as a
sequence database to run a BLASTP search. If this
search returns one or more hits with E-value less than
0.05, then the family membership of the database
sequence with the smallest E-value is assigned to the
input sequence. For a pair of input sequences two inde-
pendent BLASTP searches are run, one for each
sequence, and a similarity matrix for aligning this pair is
selected using the following rules. If both sequences are
assigned to the same family k, then the family-specific
matrix k and the optimized gap penalties for this matrix
are used to align these sequences. If the sequences are
assigned to different families or if at least one sequence
is not assigned to any family because of the absence of
significant hits, then VTML200 (the best performing
general-purpose matrix) with the gap initiation penalty
of -15 and the gap extension penalty of -1 is used to
align these sequences. These default gap penalties were
determined by the grid search procedure as the best-
performing general-purpose combination for VTML200
- among all combinations tested, (-15,-1) results in the
highest average alignment quality score calculated for
the dataset that contains all SUP groups pooled
together.
The results of the assessment of the performance of

the adaptive alignment procedure on the SUP sub-set,
as determined by the 3-fold cross-validation, are shown
in Table 3. The procedure was not tested on the TWI
sub-set because sequences in this sub-set do not share
similarities that can be detected by BLASTP. Overall,
the adaptive procedure provides a correct family assign-
ment for 53.68%, no assignment for 46.31%, and incor-
rect assignment for 0.01% of all sequence pairs. One
potential direction for further improving the matrix
selection procedure is to use a sequence comparison
program which is more sensitive and specific than

Figure 5 The heat map of the elements of the matrix BP
(Eq.11). The cell (i, j) of the heat map represents the element BP(i, j)
(Eq.11). Red colors denote the positive values of BP(i, j). Green colors
denote the negative values of BP(i, j).

Figure 6 The heat map of the elements of the matrix D2
(Eq.10). The cell (i, j) of the heat map represents the element D2(i,
j) (Eq.10) multiplied by 10. Red colors denote the positive values of
D2(i, j). Green colors denote the negative values of D2(i, j).
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BLASTP. Nevertheless, even despite the observed
incomplete family assignments, the adaptive alignment
procedure significantly outperforms general-purpose
matrices. For instance, the adaptive procedure signifi-
cantly outperforms VTML200 on 35 (14.3%) families
and BLOSUM50 on 50 (20.5%) families. Thus, it can be
used for a completely automated alignment of homolo-
gous protein sequences using the proposed family-speci-
fic similarity matrices in the absence of a prior
knowledge of what specific protein family these
sequences belong to.

Conclusions
1. I utilized a large set of reference alignments obtained
from the structural superposition of homologous and
analogous proteins to design a quantitative statistical
framework for the comparative evaluation of the perfor-
mance of alignment scoring functions in the pairwise
global sequence alignment. This framework was applied
to study how the existing general-purpose amino acid
similarity matrices perform on individual protein
families and structural folds and to compare them to
the family-specific and fold-specific similarity matrices
derived in this work.
2. Among all the general-purpose matrices tested,

VTML200 is the best-performing one. It produces global
pair-wise sequence alignments most similar to the refer-
ence alignments derived from structural superposition.
However, the results of this work suggest that the per-
formance of each general-purpose matrix may be signifi-
cantly biased towards a certain set of protein families.
Even the top-performing general-purpose matrix cannot
universally outperform other matrices on all protein
families and all folds.
3. Using protein family-specific similarity matrices and

optimized gap penalties can significantly improve the
quality of alignment of homologous sequences com-
pared to the traditional sequence alignment based on a
single general-purpose similarity matrix. However, using
fold-specific matrices can only marginally improve
sequence alignment of proteins that share the same
structural fold but do not share a well-defined common
evolutionary origin.
4. I presented an adaptive alignment procedure that

automatically selects an appropriate amino acid similar-
ity matrix and optimized gap penalties based on the
properties of the sequences being aligned. This proce-
dure does not require a manual assignment of evolu-
tionary relationships and can be used for an automated
optimized alignment of homologous protein sequences
in the absence of a prior knowledge of what protein
family these sequences belong to. The current limitation
of the presented adaptive alignment procedure is that it
is directly applicable only to single-domain proteins or

to individual domains from multi-domain proteins. This
limitation will be addressed in the future.

Availability and requirements
The protein family-specific amino acid similarity
matrices derived in this work and the associated opti-
mized gap penalties, along with the optimized family-
specific gap penalties for the VTML200 and BLOSUM50
matrices, are available on-line at http://taurus.crc.albany.
edu/fsm.
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