Analysis of a cloned colicin Ib gene: complete nucleotide sequence and implications for regulation of expression

Jennifer M.Varley and Graham J.Boulnois¹

ICI/University Joint Laboratory and ¹Department of Microbiology, University of Leicester, Leicester LE1 7RH, UK

Received 15 June 1984; Revised 2 August 1984; Accepted 14 August 1984

ABSTRACT

The complete nucleotide sequence of a 2,971 base pair *Eco*RI fragment carrying the structural gene for colicin Ib has been determined. The length of the gene is 1,881 nucleotides which is predicted to produce a protein of 626 amino acids and of molecular weight 71,364. The structural gene is flanked by likely promoter and terminator signals and in between the promoter and the ribosome binding site is an inverted repeat sequence which resembles other sequences known to bind the LexA protein. Further analysis of the 5' flanking sequences revealed a second region which may act either as a second LexA binding site and/or in the binding of cyclic AMP receptor protein. Comparison of the predicted amino acid sequence of colicin Ib with that of colicins A and E1 reveals localised homology. The implications of these similarities in the proteins and of regulation of the colicin Ib structural gene are discussed.

INTRODUCTION

Colicin Ib is a proteinaceous antibiotic, encoded by the plasmid Collb, which kills sensitive cells by depolarisation of the cytoplasmic membrane (1). Amongst a population of Collb⁺ bacteria only a small proportion produce colicin Ib, as expression of the structural gene (cib) is normally repressed (2,3). The cib gene is one of several genes including other colicin genes (2,3,4,5,6), genes involved in DNA repair, in mutagenesis and in prophage induction (for review see Little and Mount, ref 7) whose expression is induced as a consequence of damage to DNA resulting in initiation of the so-called "SOS response". Expression of all of these genes is thought to be repressed by the binding of the product of the chromosomal lexA gene to an operator sequence that has been termed the SOS box. As a consequence of DNA damage a specific protease activity of the RecA protein is activated and this protease cleaves the bound LexA protein allowing induction of gene expression (7). In addition to control of regulation of expression of colicin genes at this level, physiological studies have suggested that regulation of some colicin genes, including colicin Ib, may also be modulated by catabolite repression (2). DNA sequence analysis of some colicin genes has also identified likely

target sites for the binding of the cAMP receptor protein (5).

A population of Collb⁺ bacteria are protected against the toxic effects of the colicin by an immunity protein (8). The colicin Ib immunity protein is coded by a plasmid gene closely linked to *cib* (9), but its mechanism of action is unclear. The immunity protein encoded by Collb protects bacteria only from the killing effects of colicin Ib and not from any other colicins (10). However, spontaneously occurring mutations to colicin resistance can readily be isolated and these usually lack the *cir* gene product, an outer membrane protein that acts as a receptor for colicins Ia, Ib and V (11).

This communication reports the analysis of a cloned colicin Ib gene, determination of its nucleotide sequence and study of its expression. The DNA fragment which has been cloned encodes a complete functional colicin Ib structural gene, but not the gene for the immunity protein. The colicin Ib gene is 1,881 base pairs (bp) in length and encodes a polypeptide with a predicted molecular weight (M_{Γ}) of 71,364. The structural gene is preceded by a classical promoter sequence and by a DNA sequence closely resembling the SOS boxes of several other genes regulated in a manner similar to *cib*. In addition, the sequence analysis revealed a second potential SOS box that is approximately 100 bp 5' of the postulated promoter.

MATERIALS AND METHODS

Bacterial strains, plasmids and phage

Plasmid pLG281 has been previously described (12) and comprises a single EcoR1 fragment from Collbdrd-1 inserted into the unique EcoR1 site in the plasmid vector pBR325 (13). RB308 (F⁺, deoC, lacY, thyA) was obtained from Roger Burton. DS410 (minA, minB, ara, xy1, mtl, azi, thi) (14) was used as the source of minicells. JM103 (15), M13mp8 (16, 17) and BW97 (18) are as described.

General methods

Bacteria were routinely cultivated in Luria broth supplemented with tetracycline $(20\mu g/ml)$ and ampicillin $(50\mu g/ml)$ where appropriate. The procedure for the isolation of $\gamma-\delta$ insertions was as described (19, 20). The test systems for colicin production and immunity have been described previously (10).

DNA methodologies

Plasmid DNA was purified either as described by Wilkins *et al.* (21) or on a mini-scale as described by Holmes and Quigley (22).

Restriction endonucleases and other DNA modifying enzymes were obtained

from Bethesda Research Laboratories and were used according to the manufacturers instructions.

Minicells and SDS polyacrylamide gel electrophoresis

Minicells were purified from DS410 harbouring the appropriate plasmid and labelled with ³⁵S-methionine (1000 Ci/mmol; Amersham International, PLC) as described (21). Conditions for gel electrophoresis (23) and fluorography (24) have been described.

Shotgun cloning and dideoxy sequencing

Randomly sheared fragments of the EcoRI insert in pLG281 were generated using DNAse1 as described by Anderson (25). Dideoxy sequencing was carried out as described by Sanger *et al.*(26).

RESULTS

Restriction map and phenotypic properties of pLG281

A map of the cutting sites for a number of different enzymes has been determined and the results are summarised in Fig. 1. The cleavage sites for *PstI*, *SphI*, *ClaI*, and *HindIII* which lie in the cloned DNA were located by performing double digests with either *Bam*HI or *Eco*RI. Plasmid pLG281, as well as conferring on *E. coli* ampicillin (Ap^R) and tetracycline (Tc^R) resistance (vector determinants) also directs the synthesis of colicin Ib. *E. coli* W3110 harboring this plasmid were not killed by colicins Ia, Ib, or V, but were sensitive to colicin B (12). The relationships between this pattern of colicin resistance and true colicin immunity will be discussed below.

Localisation of the coding sequence for colicin Ib on pLG281

The *cib* gene carried on pLG281 was located with respect to the restriction map by the isolation and mapping of γ -5 insertions that abolished colicin Ib production. Plasmid pLG281 was introduced by transformation into strain RB308

Figure 1 Restriction map of the insert in pLG281. E, P, C, S and H mark the cutting sites for the restriction endonucleases EcoRI, PstI, ClaI, SphIand HindIII respectively. The numbered arrows denote the position of the γ - δ insertions in pLG281 that abolish colicin Ib production. The arrow shows the origin and direction of transcription of the vector gene for chloramphenicol transacetylase.

Figure 2 Minicell analysis of pLG281 and selected γ -5 insertion mutants. Tracks contained extracts of minicells from DS410 harbouring pLG281 (lane A) and insertion mutants 11 (lane B), 10 (lane C), 5 (lane D) and 2 (lane E). In the left margin can be seen the migration positions of molecular weight standards expressed in KDa.

which carries the F plasmid, a transformant was mated with BW97 and Tc^R , Ap^R transformants were selected. These arose by transposition of the γ - δ element from the F plasmid to pLG281 resulting in the formation of a cointegrate plasmid which, following transmission to the recipient, is resolved generating a γ - δ insertion into the recombinant plasmid (19). Insertion mutants were screened for their inability to produce colicin Ib. Plasmid DNA from these was partially purified and the site of γ - δ insertion mapped by cleavage with SalI. The sites of the insertions that inactivated colicin Ib structural gene was about 1.6 kb. The limits of the *cib* gene as defined by this procedure were 1.0 and 2.6 co-ordinates on the map (see Fig 1).

Polypeptides made in minicells by pLG281 and $\zeta-\delta$ insertions.

Plasmids such as pBR325 and its derivatives readily segregate into chromosome-free minicells providing a convenient system for the identification of plasmid-encoded polypeptides. Plasmid pLG281 and selected γ - δ insertions were introduced into the minicell-producing strain DS410, minicells were purified and their proteins were labelled with ⁹⁵S-methionine. Labelled polypeptides were analysed by polyacrylamide gel electrophoresis (PAGE) and autoradiography. The results (Fig. 2) demonstrate that γ - δ insertions that abolish the ability of pLG281 to direct the synthesis of colicin Ib prevent the production of a polypeptide with an apparent molecular weight (M_{Γ}) of about 64,000 daltons. The reported figure for purified colicin Ib is 78,000 daltons (27). Mutant plasmids carrying insertions 11, 10 and 5 encode novel polypeptides of M_{Γ} 56,000, 55,000 and 28,000 respectively which are assumed to be truncated versions of colicin Ib. This would suggest that the *cib* gene is transcribed from left to right on the map presented in Fig. 1, the colicin promoter presumably lying between the left hand *Eco*RI site and the site of the γ -6 insertion number 1. This interpretation was confirmed by the DNA sequence analysis presented below.

The complete nucleotide sequence of the colicin Ib gene and its control elements

The nucleotide sequence of the EcoRI fragment cloned in pBR325 to yield pLG281 was determined by the shotgun cloning and sequencing strategy (25). DNA from both strands was sequenced at least two times from independent phage isolates except for one short region outside the coding region for colicin Ib (see below), where the unambiguous sequence of one strand only was determined. The complete DNA sequence of the cloned EcoRI fragment is presented in Fig. 3. The total length of the cloned EcoRI fragment is 2971 bp and a search for open reading frames in the sequence revealed several substantial possible coding sequences. Only one of these was of sufficient length to be the coding sequence for colicin Ib (Fig.3). Several lines of evidence point to this being the gene for colicin Ib. Firstly, the position of the section of DNA coding for this large polypeptide matches the limits of the structural gene for colicin Ib as determined by γ - δ insertion into pLG281 (see Fig.1). Secondly, the predicted size of the protein, 71,364 daltons, is between the figure of 64,000 obtained by minicell analysis (Fig. 2) and of 78,000 obtained from gel electrophoresis (27). Thirdly, the amino acid content of the polypeptide predicted from the nucleotide sequence closely resembles that determined for the purified colicin Ib protein as determined by Konisky (27, table 1). Finally the predicted amino acid sequence of the polypeptide reveals that the N-terminal residue is serine (assuming clipping of the methionine) which has been shown to be the case for colicin Ib (27). Analysis of the DNA sequences flanking the putative gene reveals the expected control sequences for the initiation of transcription (28) and translation (29, 30), and a TGA termination codon followed by an inverted repeat sequence which is probably also involved in the termination of transcription (31) (see Fig. 3). Between the putative promoter sequences and the ribosome binding site is an inverted

10	20	30	40	50	60	70	80	90	100	110	120
I leG i nAsnAspTł	FGTyLeuPro	GluGluSerI	LeCysSerPh	eArgPheLeu	TrpArgSerT	hrSerValAs	spAspAlaVal	GinlieHisi	FrpAllaAsnGl	yAsnileGin	Vaille
AATTCAGAACGACAC	TGGCCTGCCA	GAAGAAAGCA	TATGTTCTTT	CAGATTTTTA	TGGCGCAGCA	CATCTGTCGA	NGATGCTGTG	CAAATTCACI	GGGCGAACGG	TAATATTCAG	GTCAT
TTAAGTCTTGCTGTC	ACCGGACGGT	CTTCTTTCGT	ATACAAGAAA	GTCTAAAAAT	ACCGCGTCGT	GTAGACAGC1	ACTACGACAC	GTTTAAGTG/	ACCCGCTTGCC	ATTATAAGTC	CAGTA
130	140	150	160	170	180	190	200	210	220	230	240
ArgProValArgG	ylieSerlie	AsnGlyGluA	I aG I nG I yG I	y I leArgPro	Protyrtrpv	allieLeuAl	aPheCysArg	SerAlaAsp(SiyArgilei	eCysSerGlu	GlyTyr
CAGACCTGTGCGGGG	GATCAGTATT	AATGGTGAAG	CGCAGGGCGG	AATACGTCCC	CCTTACTGGG	TTATTCTTGC	TTTTTGCCGG	AGTGCCGAT(SGCAGAATCAT	CTGCAGTGAA	GGGTA
GTCTGGACACGCCCC	CTAGTCATAA	TTACCACTTC	GCGTCCCGCC	TTATGCAGGG	GGAATGACCC	AAT#:\GAACE	GAAAAACGGCC	TCACGGCTA(CCGTCTTAGTA	GACGTCACTT	CCCAT
250	260	270	280	290	300	310	320	330	340	350	360
AlaHisAlaLeuT;	vrGI nLeuThr	CysProValP	ProValAspSe	rLysLeuGiu	ArgAsnThrL	euThrAlaLe	suLeuAsnVal	A I aSer Trpl	LeuLysArgLy	vsProGiyThri	ProGiu
TGCTCATGCTCTTTA	MTCAACTGACA	TGTCCGGTGC	CTGTGGACAG	CAAACT66AA	CGAAACACGC	TCACTGCTC1	TCTGAATGTG	GCCAGC TGG(CTTAAAAGAAA	GCCAGGTACG	CCGGA
ACGAGTACGAGAAA	AGTTGACTGT	ACAGGCCACG	GACACCTGTC	GTTT6ACCTT	GCTTTGTGCG	AGTGACGAG	VAGACTTACAC	CGGT CGACC(GAATTTTCTT1	CGGTCCATGC	GGCCT
370	380	390	400	410	420	430	440	450	460	470	480
LeuSerLeuGluAn	SProLeuPhe	AspThrGluV	ValTyrValAs	nGlyGluLys	LysTyrVall	euProAspPf	NelleValThr	AlaArgAlaf	PraAspG1yLy	sThrA1aArg	ValVal
ATTAAGTCTGGAAAA	GCCCCTGTTT	GATACAGAAG	ITTATGTTAA	TGGTGAAAAG	AAATATGTAC	TGCCGGATTI	ICATTGTCACA	GCAAGGGCT(CTGACGGAAA	GACGGCCAGA	GTGGT
TAATTCAGACCTTTO	CGGGGGACAAA	CTATGTCTTC	AAATACAATT	ACCACTTTTC	TTTATACATG	ACGGCCTAA/	NGTAACAGTGT	CGTTCCCGAG	GACTGCCTT1	CTGCCGGTCT	CACCA
490	500	510	520	530	540	550	560	570	580	590	600
IleGluThrMetG	LyTyrGluAsp	SerAspTyrC	SysAlaArgLy	sSerArgGIn	HisthrGlyM	letLysGini	IeGiyVaiLeu	HisthrAspf	ProProLysTr	pLeuAspAsn	AspHis
CATCGAAACGATGGG	ATATGAAGAC	AGTGATTACT	GCGCGAGAAA	ATCCAGGCAG	CATACCGGCA	TGAAGCAGA1	ITGGTGTTCTG	CATACCGAT(CACCGAAATO	GCTGGATAAC	GATCA
GTAGCTTTGCTACC	CTATACTTCTG	TCACTAATGA	CGCGCTCTTT	TAGGTCCGTC	GTATGGCCGT	ACTTCGTCT/	VACCACAAGAC	GTATGGCTA(GGTGGCTTTAC	CGACCTATTG	CTAGT
610 ProProPheLysL; TCCCCCTTTTAAGA/ AGGGGGAAAATTCT	620 vsHisMetTyr VACATATGTAC ITGTATACATG	630 GlyValPheM GGTGTTTTTA CCACAAAAAT	640 letHisLeuAr ITGCATCTCAG ACGTAGAGTC	650 gTyrTer GTACTGAGAT CATGACTCTA	660 ATTTTGTGGC ITAAAACACCG	670 TCAGTTCTG1 AGTCAAGAC/	680 IAACTTTTCCC ATTGA <u>AAAGGG</u>	690 GTAACATTGI <u>CATTGI</u> AACA	700 Ictgttgtta(Ngaca <u>acaate</u>	710 GGGAAAGTCCI GCCCTTTCAGG	720 GGTTT CCAAA
730	740	750	760	770	780	790	800	810	820	830	840
TTGTATTGCACCAG/ AACATAACGTGGTC	NGAATACCCAG ICTTATGGGTC	acteteatec T <u>Gacactace</u>	TGCCACAGTG ACGGTGTCAC "SOS BOX?	tcagcaggct <u>Agtcgtcc</u> ga "	TTCTGAACGG AAGACTTGCC	TATAACACC/ ATATTGTGG1	IGAAGTACAAT	ATGATAATT/ TACTATTAA1	ACTATCATTAA IGATAGTAATT	ATCTTGACAT TAG <u>AACTGT</u> A -35	gccat Cggta
850	860	870	880	890	900	910	920	930 Maria	940	950	960
TTTCTCCTTAATAA AAAGAGGAATT <u>ATT</u> -11	ATTAGTACTGT (AATC <u>ATGACA</u>)	ATATGTATCO TATACATAGE "SOS	ATATACGTAA T <u>ATATGCATT</u> BOX"	GCAGTTAATT <u>CGTCAA</u> TTAA	GTAAACAAAA	CCTCAGAGG/ GGAGTCTCC1	ntgaaggagat Iact <u>tcct</u> cta SD	ACCGAATGT(TGGCTTACAE	CTGACCCTGTA SACTGGGACA1	CGTATTACAA CGTATAATGTT	ATCCC
970	980	990	1000	1010	1020	1030	1040	1050	1060	1070	1080
GiyAlaGiuSerLeo	GlyTyrAspS	erAspGlyHi	sGlulleMet	AlaValAspI	TeTyrValAs	inProProArg	WalPheHisG	LythrProPr	oAlaTrpSer	SerPheGlyA	snLys
GGTGCAGAATCGCTG	GGATATGATT	CAGATGGCCA	TGAAATTATG	GCCGTTGATA	ITTATGTAAA	CCCTCCACG1	GTCGATGTCT	TTCATGGTAG	CCCGCCTGCA	TGGAGTTCCT	TCGGG
CCACGTCTTAGCGAG	CCTATACTAA	GTCTACCGGT	ACTTTAATAC	CGGCAACTAT	AAATACATTT	GGGAGGTGC/	ACAGCTACAGA	AAGTACCATG	GGGGCGGACGT	ACCTCAAGGA	AGCCC
1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	1190	1200
ThrileTrpGiyGi	AsnGluTrpV	alAspAspSe	rProThrArg	SerAsplieG	HulysArgAs	plysGiuiie	ThrAlaTyrL	ysAsnThrLe	SuSerAlaGir	GinLysGiuA	snGlu
AACAAAACCATCTGO	GGTGGAAACG	AGTGGGTCGA	IGATTCCCCA	ACCCGAAGTG	ATATCGAAAA	AAGGGACAAC	GAAATCACAG	CGTACAAAA/	ACACGCTCAGO	GCGCAGCAGA	AAGAG
TIGTTTTGGTAGACO	CCACCTTTGC	TCACCCAGCT	ACTAA6666T	TGGGCTTCAC	TATAGCTTTT	TTCCCTGTTC	CTTTAGTGTC	GCATGTTTTT	IGTGCGAGTCO	GCGCGTCGTCT	TTCTC
1210 AsnGluAsnLysArg AATGAGAATAAGCG TTACTCTTATTCGCA	1220 ThrGluAlaG TACTGAAGCTG TGACTTCGAC	1230 LyLysArgLe GAAAACGCCT CTTTTGCGGA 100	1240 uSerAlaAla TTCTGCGGCA AAGACGCCGT	1250 I leAlaAlaA ATTGCTGCAA TAACGACGTT	1260 rgGluLysAs GGGAAAAAGA CCCTTTTTCT	1270 pG1uAsnThr TGAAAACACA ACTTTTGTG1	1280 LeuLysThrL CTGAAAACAC GACTTTTGTG	1290 euArgAlaGi TCCGTGCCGC AGGCACGGCC	1300 yAsnAlaAsp GAAACGCAGAT CTTTGCGTCTA	1310 AlaAlaAspi GCCGCTGATA CGGCGACTAT	1320 LeThr TTACA AATGT
1330 ArgGinGiuPheArg CGACAGGAGTTCAG/ GCTGTCCTCAAGTC1	1340 JLeuLeuG I nA ICTCCTGCAGG GAGGACGTCC	1350 I aG I uLeuAr CAGAGCTGAG GTCTCGACTC	1360 9GluTyrGly AGAATACGGA TCTTATGCCT	1370 PheArgThrG TTCCGTACTG AAGGCATGAC	1380 iulleAlaGi AAATCGCCGG TTTAGCGGCC 150	1390 yTyrAspAla ATATGATGCC TATACTACGE	1400 NLeuArgLeuH CTCCGGCTGC GAGGCCGACG	1410 isThrGluSe ATACAGAGAG TATGTCTCTC	1420 PrArgMetLeu SCCGGATGCTG CGGCCTACGAC	1430 IPheAlaAspA ITTTGCTGATG IAAACGACTAC	1440 LaAsp CTGAT GACTA
1450	1460	1470	1480	1490	1500	1510	1520	1530	1540	1550	1560
SerLeuArgileSer	ProArgGluA	LaArgSerLe	ulleGiuGin	AlaGluLysA	rgGInLysAs	pAlaGinAsr	AlaAspLysL	ysAlaAlaAs	SpMetLeuAla	IGTUTYrGTUA	rgArg
TCTCTTCGTATATCT	CCCCGCGAGG	CCAGGTCGTT	AATCGAACAG	GCTGAAAAAC	GGCAGAAGGA	TGCGCAGAAO	GCAGACAAGA	AGGCCGCTG/	ATATGCTTGC1	IGAATACGAGO	GCAGA
AGAGAAGCATATAGA	GGGGCGCTCC	GGTCCAGCAA	TTAGCTTGTC	CGACTTTTTG	CCGTCTTCCT	ACGCGTCTTG	GGTCTGTTCT	TCCGGCGACT	IATACGAACG4	ICTTATGCTCG	CGTCT
1570 LysGiyIieLeuAs; AAAGGTATTCTGGAC TTTCCATAAGACCTE	1580 ThrArgLeuS ACGCGGTTGT ITGCGCCAACA	1590 erGluLeuGl CAGAGCTGGA GTCTCGACCT	1600 uLysAsnGlyl AAAAAATGGO TTTTTTACCG	1610 GiyAlaAlaL GGGGCAGCCC CCCCGTCGGG	1620 euAlaValLe TTGCCGTTCT AACGGCAAGA	1630 uAspAlaGir TGATGCACA/ ACTACGTGT1	1640 nG I nA I aAr gL NCAGGCCCGTC IGTCCGGGCAG	200 1650 euLeuG1yG TGCTCGGGC/ ACGAGCCCG1	1660 InGinThrArg NGCAGACACGO ICGTCTGTGCC	1670 AsnAspArgA GAATGACAGGG CTTACTGTCCC	1680 Ialle CCATT GGTAA 250

1690	1700	1710	1720	1730	1740	1750	1760	1770	1780	1790	1800
SerGiuAlaArgAsni	ysLeuSerSe	rValThr6lu	SerLeuLysTi	hrAlaArgAsi	nAlaLeuThri	ArgAlaGluG	InGinLeuThi	GinGinLys/	AsnThrProAs	ip61yLysThr	lle
TCAGAGGCCCGGAAT	AACTCAGTTO	GGTGACGGAA	TCGCTTAAGA	CGGCCCGTAA	TGCATTAACC	AGAGCTGAAC	AACAGCTGAC	SCAACAGAAAA	ACACGCCTG	CGGCAAAACG	ATA
ASTOTOOSSCOTTA	TTGAGTCAAS	CLACTGEETT	AGCGAATTCT	SCCEGECATT	ACGTAATTGG	TCTCGACTTG	TTGTCGACTG	GITGICITI	TETECEEACT	GCCGTTTTGC	TAT
1010	1920	1070	1840	1850	1840	1870	1880	1890	1900	1910	1920
1010	1020	-Co-Co-The	AcolicCon1	inua ilia i Ca	-CluArePee	AnaPhaAlaC	luThallel u	liaTheThe	Ser AlaVal II	eAsoAsoAro	412
ValberProblinLys	nerrobiyar	goerger inr	ASTCATTOTA	TTOTTOTOAC	TO: 985PFF0	ACCTTTCCCC		511010F10F	ACCECCETCA	CCATAACCCI	
GITTULLUBAAAAA		IILAILAALA	AAICAIICIA	1101101040	IGGIGAICCO						CCT
CAAAGGGGACTITIT	AGGCCCCGE	AAGTAGTIGT	1146144641	AALAALALIL	ALLALIABBL	ILLAAALGGL	LAIGUIAIII	1146161166	ILGEBEEABII	10CTA1100CP	1001
		300									
1930	1940	1950	1960	1970	1980	1990	2000	2010	2020	2030	2040
AsnLeuAsnTyrLeu	.euThrHisSe	erGlyLeuAsp	TyrLysArgA	snlieLeuAs	nAspArgAsn	ProValValT	hrGluAspVa	lGiuGiyAsp	LysLysIleT	yrAsnAlaGlu	JVal
AACCTGAATTATCTT	TGACCCATTO	CGGTCTGGAC	TATAAACGCA	ATATTCTGAA	TGACCGGAAT	CCGGTGGTGA	CAGAGGATGT	GGAAGGTGAC	AAGAAAATTTI	ATAATGCTGA/	NGTT
TTGGACTTAATAGAA	GACTEGETAAC	GCCAGACCTG	ATATTTGCGT	TATAAGACTT	ACTEGCCTTA	GGCCACCACT	GTCTCCTACA	CCTTCCACTG	TTCTTTTAAA	TATTACGACTI	rcaa
					350						
2050	2060	2070	2080	2090	2100	2110	2120	2130	2140	2150	2160
AlaGiuTenAsolusi	euAre61eA		AlaArnAsol	velleTheSe	eAlaGluSee	AlalieAsoS	erAlaAroAs	nAsnVal Ser	AlaAraThrA	an GluGini ve	sHi s
COTCAATECEATAAC	TTACCCCAACI	ATTECTTEAT	CCCACAAATA	ΔΑΑΤΓΑΓΓΤΓ	TECTEAATET	CCCATAAATT	LUCLUSTON	TAACGTCAGT			TAT
CEACTTACCETATTC	ATCCCCTTC	TAACCAACTA	CCCTCTTTAT	TTTACTCCAC	ACCACTTACA	CCCTATTTAA	CCCCCTCTTT	ATTCCACTCA	CCTCTTCTT	TACTICITY	CTA
CONCITACCCIATIO	MIGLUSTIC		CONTENTED	TTTMGTOGMG	ACONCITAON			400		MULTERING	
						0070		400			
2170	2160	2190	2200	2210	2220	2230	ZZAU	2250	2260	2270	2280
AlaAsnAspAlaLeu	AsnAlaLeuLi	euLysGluLys	GluAsnlieA	rg5er61nLe	uAlaAspile	AsnalnLysl	leAlaGluGl	ulysArglys	ArgAsp6iul	leAsnHetVa	Ly5
GCAAATGACGCTCTT	AATGCCCTGT	TGAAGGAAAAA	GAGAATATCC	GTAGCCAGCT	TECTEACATE	AATCAGAAAA	TAGCTGAAGA	GAAAAGAAAA	agggatgaaa	TAAATATGGT	aaag
CGTTTACTGCGAGAA	TTACEGEACA	ACTICCTITI	CTCTTATAGG	CATCGGTCGA	ACGACTGTAG	TTAGTCTTTT	ATCEACTTCT	CTITICITI	TCCCTACTTT	ATTTATACCA	TTTC
											450
2290	2300	2310	2320	2330	2340	2350	2360	2370	2380	2390	2400
AspAlalleLysLeu	ThrSerAspP	heTvrAraThr	lieTvrAspG	iuPheGivLy	sGinAlaSer	GluLeuAlaL	vsGluLeuAl	aSerValSer	GinGivivsG	In HelvsSe	-Val
GATECCATAAAACTC	ACCTCTGATT	TCTACAGAACE	ATATATCATC	AGTTCGGTAA	ACAAGCATCC	GAACTTECTA	ASSAGETESE	TTCTGTATCT	CAAGEGAAAC	AGATTAAGAG	atat
CTACEGTATITICAG	TEGAGACTAA	AGATGTCTTGC	TATATACTAC	TCAACCCATT	TETTOETAGE	CTTCAACCAT	TECTEGACE	AACACATACA	GTTCCCTTTC	TCTAATTCTC	
CINCOLINITIAN	- conone ma				Tarreathad	ici i annicani	recreances	nnanun (nan		icination of the	пспс
2440	2420	2470	2//8	2/50	200	0/30	2/00	2/00	05.00	~~ • •	-
2410	2420	24-50	2440	2450	2460	2470	2400	2470	2500	2510	2520
AspaspalaLeuAsn	AlarheAspL	ysPheArgAsr	nAsnLeuAsnL	ysLys i yr As	in 1 leGi nAsp	ArghetAlai	leSerLysAl	aLeu6IuAIa	lleAsnGlnV	alHisfletAl	aGlu
GAIGAIGCACIGAAC	GUITTIGATA	ATTCCGTAAT	AATCTGAACA	AGAAATATAA	CATACAAGAT	CECATEECCA	TTTCTAAAGC	CCTGGAAGCT	ATTAATCAGG	TCCATATGGC	ggag
CTACTACGTGACTTG	CGAAAACTAT	TTAAGGCATTA	ATTAGACTTGT	TCTTTATATI	GTATGTTCTA	GCGTACCGG1	AAAGATTTCG	GGACCTTCGA	TAATTAGTCC	AGGTATACCG	CCTC
		500									
2530	2540	2550	2560	2570	2580	2590	2600	2610	2620	2630	2640
AsnPheLysLeuPhe	SerLysAlaP	heGi yPheThr	GiyLysVall	leGluArgTy	rAspValAla	ValGiuLeuG	inLysAiaVa	LysThrAse	AsnTreAreP	roPhePheVa	ILvs
AATTTTAAGCTGTTC	AGTAAGGCAT	TTGGTTTTACC	GGAAAAGTTA	TTGAACGTTA	TGATGTTGCT	GTEGAETTAC	AAAAGGCTGT	AAAAACGGAC	AACTGGCGTC	CATTTTTTGT	AAAA
TTAAAATTCGACAAG	TCATTCCGTA	AACCAAAATGO	CCTTTTCAAT	AACTTGCAAT	ACTACAACG	CACCTCAAT	TTTTCCGACA	TITTISCOT	TTGACCGCAG	GTAAAAAAAAA	TTTT
					550						
2650	2660	2670	2680	7490	2700	2710	2720	2730	274.0	2750	2740
i au Giu Saal au Al a	AlaCluAnaA	1 aAL aGes AL	UNITLANS	LOID LoAl sOLaCa	ulla Matia	CITL - 01		2130 C1.0Labla	11-11-4-14	2130	2100
		TECTTCACCA		CCCCCCTTTT	COTCATCOTC	019107770\	algivilere	OGIVENEALS	lielieneta	laAlavalse	rala
CAACTTACTCACCCT	CCTCCTTCTC	CACCAACTCC	NGI TACAGCAT		COLLAIGUIG	BBBAALLLL I	APPRIATIC	bbb I I I I bLA	ALIALIAIGG	C66C1616A6	IGCG
GAACTTAGTGACCGT	usicentite	GACGAAG1CG1	ICAAIGICGTA	LLCGCAAAAG	ogradiación	LUTTGGGGA	ATCCATAAGA	CUCAAAACGT	TAATAATACC	GCCGACACTC	acgc
								600			
2770	2780	Z790	2800	2810	2820	2830	2840	2850	2860	2870	2880
LeuValAsnAspLys	PhelleGluG	InValAsnLys	sLeulieGlyl	leTer							
CTTGTTAATGATAAG	TTTATTGAGC	AGGTCAATAAA	ACTTATTGGTA	TCTGACACAT	AATGATGCCC	TTTCATTTC	CTGAAAGGGC	TTTGCAGAGT	ATAAAAATTA	AGTAAATGGC	AACC
GAACAATTACTATTC	AAATAACTCG	TCCAGTTATTI	GAATAACCAT	AGACTGTGT	TTACTACGE	AAAGTAAAA	GACTTTCCCC	AAACGTCTCA	TATTTTTAAT	TCATTTACCG	TTGG
2890	2900	2910	2920	2930	2940	2950	2960	2970	2980	2990	3000
									- /00	-//4	2000

Figure 3 The complete nucleotide sequence of the *Eco*RI fragment cloned in pBR325 to give pLG281. The nucleotides are numbered to correlate with Fig. 1. Amino acid numbering starts with the methionine and is shown below the nucleotide sequence. The predicted polypeptide sequence of the open reading frame at the 5' end of the *Eco*RI fragment is also shown, the amino acids are not numbered. Inverted repeats which are probably involved in termination of transcription of the two genes are shown by arrows. The SOS box, Pribnow box (-10) and RNA polymerase recognition site (-35) for colicin Ib are underlined. SD is the potential ribosome binding site and the second region which may bind LexA protein or be implicated in catabolite repression is also marked (SOS box?).

repeat sequence that bears strong similarities to known LexA protein binding sites and that are thought to be involved in the regulation of the expression of genes modulated by the SOS response. Figure 4a shows a comparison of the sequence of the presumed colicin Ib SOS box with those of other sequenced SOS boxes. It is interesting to note that to the 5' side of the proposed promoter is a region that contains three sequences with CTG inversely repeated at their ends, that may have the potential to bind LexA protein (see Fig. 4a and b). In addition to bearing certain similarities to the SOS box consensus sequence, this region also has a sequence that also resembles the consensus sequence for the cyclic AMP repressor protein (CRP) binding site (Fig 4b, ref 32).

In addition to the region of pLG281 encoding the structural gene for colicin Ib, there are several other substantial open reading frames. One of these is shown on figure 3. This large open reading frame may encode the 216 C-terminal amino acids of a gene transcribed in the same direction as colicin

a)	Colicin A	TA <u>CTG</u> TATATAAACACATGTGAATATATA <u>CAG</u> T1	(6) 7				
	Colicin Ib 1	TA <u>CTG</u> TATATGTATCCATATACGTAAG <u>CAG</u> TT					
	Colicin E1	TG <u>CTG</u> TATATAAAAC <u>CAG</u> TG (33)					
	Cloacin DF13	TA <u>CTG</u> TGTATATATA <u>CAG</u> TA (5)					
	sulA	TA <u>CTG</u> TACATCCATA <u>CAG</u> TA (37)					
	recA	TA <u>CTG</u> TATGAGCATA <u>CAG</u> AT (39)					
	lexA 1	TG <u>CTG</u> TATATACTCA <u>CAG</u> CA (40,41)					
	lexA 2	AACTGTATATACACCCAGGG (40,41)					
	uvrA	TA <u>CTG</u> TATATTCATT <u>CAG</u> GT (42)	·				
	uvrB	AA <u>CTG</u> TTTTTTTTTTTTC <u>CAG</u> TA (38)					
	uvrD	AT <u>ctg</u> tatatatacc <u>cag</u> ct (43)					
	Consensus	TACTGTATATACATACAGTt					
		t cc a					
b)	Consensus CRP binding site	AANTGTGANNTNNNNCANATTNNNN	(32)				
	Colicin Ib 2	GACTGTGATGCTGCCACAGTGTCAGCAGGC					
		11	11bp				
		12	2bp				

Figure 4 a) A comparison of the nucleotide sequences of known operators involved in LexA binding. Colicin Ib 1 is the SOS box marked in Fig. 3. The SOS boxes are aligned with respect to the 5' CTG (underlined in each case). The 3' CAG is also underlined (see text for further details). A consensus sequence has also been listed and has been derived from all the SOS boxes sequenced to date. References are given the right of each sequence.

b) The sequence of the second region 5' of the *cib* gene (marked SOS box? in Fig 3) which may be involved in LexA binding. The three repeats which have CTG inverted repeats are underlined and the number of bases between the inverted repeats are given to the right. The CRP binding site consensus sequence is also shown (32) for comparison with this region.

Ib, the promoter region and N-terminal coding sequences not being carried on the *Eco*RI fragment cloned. There are other open reading frames on the fragment but of more dubious significance for one or other of the following reasons. Firstly, we have found no evidence of polypeptides other than colicin Ib produced by pLG281 (Fig. 2). Secondly, several of the large open reading frames have no recognisable regulatory sequences flanking them. Finally, the amino acid composition of some are highly abnormal.

DISCUSSION

The complete nucleotide sequence of a 2971bp EcoRI-generated fragment that carries the colicin Ib structural gene has been determined. Examination of the sequence (Fig.3) reveals several large open reading frames, only one of which has the characteristics expected of the colicin Ib structural gene. This would encode a polypeptide with the same amino acid composition as colicin Ib (Table 1) with a predicted M_r of 71,364.

Expression of the colicin Ib gene is controlled at the level of transcription by the *lexA* gene product (2). Examination of the sequences preceding the coding sequence for colicin Ib (Fig 3) reveals an inverted repeat which may be the operator sequence for the colicin Ib gene, involved in binding the *lexA* gene product, since it closely resembles other elements that

Amino acid residue	Predicted from nucleotide sequence	Reported (27)
Lysine	50	60
Histidine	7	9
Arginine	46	50
Cysteine	0	0
Aspartic acid	43	{92
Asparagine	43	
Threonine	34	33
Serine	41	30
Glutamic acid	46	{84
Glutamine	26	
Proline	15	21
Glycine	30	38
Alanine	75	87
Valine	32	31
Methionine	9	8
Isoleucine	39	44
Leucine	51	59
Tyrosine	13	16
Phenylalanine	20	23
Tryptophan	6	8

Table	1.	Amino	acid	composition	of	colicin	Ib
10010		UW THO	ucru	composición	01	0011011	

have been shown to bind LexA protein (Fig.4a). The sequence is longer than that found in some other systems in which the consensus is CTG (N_{10}) CAG, but it is shorter than that identified for colicin A (6). However when both the colicin A and the colicin Ib SOS boxes are aligned with others identified to date in such a way that the 5' CTGs are coincident, a CAT aligns with the 3' CAG found in all other SOS boxes (Fig 4a). The sequences which are in between the CTG repeats in the SOS boxes are also conserved (Fig 4a) and both the colicin A and the colicin Ib sequences are similar. We cannot yet rule out the possibility that the SOS boxes for these two colicins are longer than the others identified to date, which are all CTG (N_{10}) CAG, but they may be the same length and have a variant CTG (N_{10}) CAT sequence. The position of the SOS box in relation to the other control regions for the *cib* gene is also consistent with a function as an operator sequence. Further examination of the nucleotide sequence at the 5' side of the colicin Ib structural gene reveals the existence of a second region that may also have the capacity to bind the lexA gene product (Fig.4b). In this region there are three potential LexA binding regions which resemble the consensus sequence for the SOS box, although the spacing between the CTG repeats is not the same as the consensus (Fig 4a and b). To our knowledge there is no other published instance of such organisation although in most cases the sequence data does not extend as far to the 5' of the structural gene as that determined for colicin Ib. We are currently examining the entire 5' region to determine which of the sequences function as control elements. This second putative LexA binding region, approximately 70 bp upstream from the -35 element of the postulated promoter for *cib*, also bears some similarities to the DNA sequences that bind the cAMP repressor protein (CRP, ref 32). Physiological experiments (2) have indicated that the *cib* gene may be subject to catabolite repression and it is possible that we may have identified the site responsible for CRP binding, although we have no genetic evidence to support this idea.

Recent genetic data (9) indicates that the EcoRI fragment cloned in pLG281 does not carry the gene for the colicin Ib immunity protein and all our data are in aggreement with this. This raises the question of how the *cib* gene was cloned without its associated immunity protein gene in a host sensitive to colicin Ib. One possibility is that there may be a considerable delay in the expression of the *cib* gene in newly transformed colicin-sensitive hosts. Consistent with this notion is the finding (unpublished data) that pLG281 can be introduced into Cir⁺ or Cir⁻ bacteria with equal efficiencies. Accumulation of host chromosomal *cir* mutations may be essential for the longer term

			_ ⊽	~~	117	71 V	•	1	1	1	111	1	11								
COLICIN	Ib	98	A	GKF	LSA/	IA	AR	EKD	ENTL	KTI	RAG	INAL)AA	1	27						
COLICIN	E1	234	A	GKR	NELA	QA	SAK	YKE	LDEL	VKR	LSP	RAN	IDP	20	64						
COLICIN	A	223	A	GKF	VEA/	١QA	AI	NTA	QLN	VNN	ILSG	AVS	SAA	2	51						
						•			•												
			4	٧L	~~	7				1 7	7 1 1						t		11	L	
COLICIN	Ιb	442	A	RQN	IAE	3				KRF	RDE	INN	(V	1	KDA:	IKL	TSD	FY	RTI	YD	
COLICIN	E1	324	A	RVI	IEAEI	3				NL	KAQ	NNI	LNS	SQI	KDA	VDA	TVS	FY	QTL	TE	
COLICIN	A	371	A	RQF	QAE	SAE	RQR	QAM	EVAE	KAR	DE	REI	LE	TS	ELI	AGM	GDK	IG	EHL	ED	
					•		•	•													
	1		L	ν.	11	11	77	νı	1117			,	111	114	11	1 44	ı⊅ı	1	۷۵	L	
Ib	E	FGKQA	SEL	AKE	LAS	/SQ	GKQ	IKS	VDDA	LNA	FDK	FRN	INL	IKK	YN I (QDR	MAI	SK/	ALE	AI	
E1	K	YGEKY	SKM	IAQE	LAD	(SK	GKK	IGN	VNEA	LA/	FER	YKE	DVL	IKK	FSK.	ADR	DAI	FN.	ALA	SV	
A	K	YKAIA	KDI	ADN	IKNI	? 0	GKT	IRS	FDDA	MAS	LNK	ITA	NP/	MK	I NK.	ADR	DAL	VN	AWK	HV	
		117		. 1	. ı⊽ı		11	▼	112	,			Δ 11	م	411	1 1	Δ١	11		۲۷	
Ib	N	OVHMA	ENF	KLE	SKAI	GF	TGK	VIE	RYDV	AVE	LOK	AV	TD	WR!	PFF	VKL	ESL	AA	GRA	AS	
E1	K		KHL	DOE	AKYI	LKI	TGH	VSF	GYDV	vsi	DILK	IKE	DTGI	OWK	PLF	LTL	EKK		DAG	vs	
A	D	AODMA	NKL	GNI	SKA	'KV	ADV	VMK	VEKV	RE	SIE	GYE	TG	WG	PLM	LEV	ESW	VL	SGI	AS	
	,	۲ ک	ᢦᢦ	ł			411	11	Δ12	7 7	11	1		~	Δı		Δt	1	11		
Ib	A	VTAWA	FSV	ML			GTP	VGI	LGFA	11	IMAA	vs	۱LV	ND	KFI	EQV	NK	LI	GI		626
E1	Y	VVALL	FSL	LA			GTT	LGI	WGIA	I	TGI	LCS	SYI	D	KNK	LNT	INE	VL	GI		522
Δ	S	VALGI	FSA	TLO	AYAI	LSL	GVP	ATA	VGIA	GII	LAA	vvo	GAL		KFA	DAL	NNE		RPA	н	592

Figure 5 Homologous amino acid sequences in colicins Ib, E1 and A. Perfectly homologous amino acids are marked with a triangle and amino acids homologous between two of the three colicins are indicated by an arrowhead.

viability of the bacteria and this would account for the observed pattern of resistance to killing of W3110(pLG281) by colicins Ib, Ia and V (12).

In common with other colicins whose amino acid sequence is known, the hydrophobicity profile of colicin Ib (data not shown) reveals a strongly hydrophobic region near the C-terminus. In the case of colicins E1 and A (33, 34) this region has been postulated to mediate membrane depolarisation. Since these two colicins and colicin Ib all act to depolarise the bacterial cytoplasmic membrane it is tempting to speculate that that the hydrophobic domain at the C-terminus of the colicin Ib polypeptide also mediates membrane depolarisation. Our comparison of the amino acid sequences of colicins E1, A and Ib has extended considerably the observations of Morlon *et al.*(34) in which short regions of colicins E1 and A were found to be homologous. Our analysis (Fig. 5) shows extensive homology between the C-terminal regions of the three colicins extending over at least 200 amino acid residues. The functional significance of these findings is unclear at present, but would seem to suggest divergence of the three genes from a common ancestral gene.

The bacterial surface receptor for colicins E1 and A is the BtuB polypeptide that is involved in uptake of vitamin B_{12} (35). Both colicins share a common amino acid sequence that is present in a peptide fragment that

binds to the BtuB receptor (34, 35). Surprisingly a very similar amino acid sequence is present in the colicin Ib protein (Fig. 5). However the cell surface receptor for colicin Ib is the *cir* product and the BtuB receptor is not known to play a role in colicin Ib uptake.

We have been unable to find significant homology between the N-terminal region of colicin Ib and the other two colicins, the most noticeable of which is an absence of the concentration of glycine residues as described for colicins A and E1 (34). We have also found no significant homology in the amino acid sequences of colicin Ib and cloacin DF13 (36). Further information on both the DNA and the polypeptide sequences of other colicins should prove valuable in identifying conserved polypeptides and hopefully in correlating their structure with their biological properties.

ACKNOWLEDGEMENTS

We wish to thank the following people for their help during the course of this work, Dave Pioli and Dave Burt for their help with the computer analysis and Stephen Busby for very useful discussions. This work was supported in part by a SERC grant to Brian Wilkins whose suggestions and comments are gratefully acknowledged.

REFERENCES

- 1. Tokuda, H. and Konisky, J. (1978) Proc. Natl. Acad. Sci. USA 75, 2579-2583
- 2. Pugsley, A.P. (1981) Mol. Gen. Genet. 183, 522-527
- Glazebrook, J.A., Forster, J.W. and Strike, P. (1983) J. Bacteriol. 155, 122-128
- Ebina, Y., Kishi, F. and Nakazawa, A. (1982) J. Bacteriol. 150, 1479-1481
- van den Elzen, P.J.M., Maat, J., Walters, H.H.B., Veltkamp, E. and Nijkamp, H.J.J. (1982) Nucl. Acids Res. 10, 1913-1928
- Morlon, J., Lloubes, R., Chartier, M., Bonicel, J. and Lazdunski, C. (1983) EMBO J. 2, 787-789
- 7. Little, J.W. and Mount, D.W. (1982) Cell 29, 11-22
- 8. Hardy, K. (1975) Bacteriol. Rev. 39, 464-515
- 9. Gottlieb, J.H. and Duckworth, D.H. (1983) Gene 26, 301-302
- 10. Stocker, B.A.D. (1966) Heredity 21, 166
- 11. Braun, V. (1977) In J. L. Reissig (Ed.) Microbial Interactions (Receptors and Recognition, Series B, Vol 3). Chapman and Hall (London)
- 12. Boulnois, G.J. (1981) Molec. Gen. Genet. 182, 508-510
- 13. Bolivar, F. (1978) Gene 4, 121-136
- 14. Dougan, G. and Sherratt, D. (1977) Molec. Gen. Genet. 151, 151-160
- Messing, J. Crea, R. and Seeburg, P.H. (1981) Nucl. Acids Res. 9, 309-322
- 16. Messing, J. and Vieira, J. (1982) Gene 19, 269-276
- 17. Vieira, J. and Messing, J. (1982) Gene 19, 259-268
- 18. Boulnois, G.J. and Wilkins, B.M. (1979) Molec. Gen. Genet. 175, 275-279
- 19. Guyer, M.S. (1978) J. Mol. Biol. 126, 347-365

- Echarti, C., Hirschel, B., Boulnois, G.J., Varley, J.M., Waldvogel, F. and Timmis, K.N. (1983) Infec. Immun. 41, 54-60
- 21. Wilkins, B.M., Boulnois, G.J. and Lanka, E. (1981) Nature 290, 217-221
- 22. Holmes, D.S. and Quigley, M. (1981) Anal. Biochem. 114, 193-197
- 23. Laemmli, U.K. (1970) Nature, 227, 680-685
- 24. Bonner, W.M., Laskey, R.A. (1974) Eur. J. Biochem 46, 83-88
- 25. Anderson, S. (1981) Nucl. Acids Res. 9, 3015-3027
- 26. Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467
- 27. Konisky, J. (1972) J. Biol. Chem. 247, 3750-3755
- 28. Rosenberg, M. and Court, D. (1979) Ann. Rev. Genet. 13, 319-353
- 29. Shine, J. and Dalgarno, L. (1975) Nature 254, 34-38
- 30. Stormo, G.D., Schneider, T.D. and Gold, L.M. (1983) Nucl. Acids Res. 10, 2971-2996
- 31. Platt, T. (1981) Cell 24, 10-23
- 32. de Crombrugge, B., Busby, S. and Buc, H. (1984) Science 224, 831-838
- 33. Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T. and Nakazawa, A. (1982) Proc. Natl. Acad. Sci. USA 79, 2827-2831
- Morlon, J., Lloubes, R., Varenne, S., Chartier, M. and Lazdunski, C. (1983) J. Mol. Biol. 170, 271-285
- 35. Cavard, D. and Lazdunski, C. (1981) FEMS Microbiol. Letters 12, 311-316
- 36. van den Elzen, P.J.M., Walters, H.H.B., Veltkamp, E, and Nijkamp,
- H.H.J. (1983) Nucl. Acids Res 11, 2465-2477
- 37. Mizusawa, S., Court, D. and Gottesman, S. (1983) J. Mol. Biol. 171, 337-343
- van den Berg, E., Zwetsloot, J., Noordermeer, I., Pannekoek, H., Dekker, B., Dijkema, R. and van Ormondt, H. (1981) Nucl. Acids Res. 9, 5623-5643
- 39. Horii, T., Ogawa, T. and Ogawa, H. (1980) Proc. Natl. Acad Sci. USA 77, 313-317
- 40. Miki, T., Ebina, Y., Kishi, F. and Nakazawa, A. (1981) Nucl. Acids Res. 9, 529-543
- 41. Sancar, G.B., Sancar, A., Little, J.W. and Rupp, W.D. (1982) Cell 28, 523-530
- 42. Kenyon, C. and Walker, G. (1980) Nature 289, 805-810
- 43. Easton, A.M. and Kushner, S.R. (1980) Nucl. Acids Res. 11, 8625-8640