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The finding of the high frequency of the somatic IDH1R132 
and IDH2R172 mutations in the isocitrate dehydrogenase 
(IDH) genes in glioma (Parsons et al. 2008; Bleeker et al. 
2009) has recently revolutionized brain tumor research. The 
IDH2R172 mutation occurs at a relatively low frequency in 
glioma (Hartmann et al. 2009; Sonoda et al. 2009; Yan et al. 
2009), but the IDH1R132 mutation occurs in 70% to 80% of 
secondary glioblastoma (Balss et al. 2008; Bleeker et al. 
2009; Hartmann et al. 2009; Ichimura et al. 2009; Nobu-
sawa et al. 2009; Parsons et al. 2008; Sanson et al. 2009; 
Sonoda et al. 2009; Watanabe et al. 2009; Weller et al. 2009; 
Yan et al. 2009). The IDH1R132 mutation is an early event in 
gliomagenesis, and patients with low-grade glioma show 

even higher frequencies (Parsons et al. 2008; Balss et al. 
2008; Bleeker et al. 2009; Ohgaki and Kleihues 2009). The 
mutation is also associated with a subset of acute myeloid 
leukemia (Mardis et al. 2009; Chou et al. 2010; Ward et al. 
2010), its precursor myelodysplastic syndrome (Andrulis  
et al. 2010), and thyroid cancer (Murugan et al. 2010). The 
IDH1 gene encodes for NADP+-dependent IDH1, which is 
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Summary

The somatic IDH1R132 mutation in the isocitrate dehydrogenase 1 gene occurs in high frequency in glioma and in lower 
frequency in acute myeloid leukemia and thyroid cancer but not in other types of cancer. The mutation causes reduced 
NADPH production capacity in glioblastoma by 40% and is associated with prolonged patient survival. NADPH is a 
major reducing compound in cells that is essential for detoxification and may be involved in resistance of glioblastoma to 
treatment. IDH has never been considered important in NADPH production. Therefore, the authors investigated NADPH-
producing dehydrogenases using in silico analysis of human cancer gene expression microarray data sets and metabolic 
mapping of human and rodent tissues to determine the role of IDH in total NADPH production. Expression of most 
NADPH-producing dehydrogenase genes was not elevated in 34 cancer data sets except for IDH1 in glioma and thyroid 
cancer, indicating an association with the IDH1 mutation. IDH activity was the main provider of NADPH in human normal 
brain and glioblastoma, but its role was modest in NADPH production in rodent brain and other tissues. It is concluded 
that rodents are a poor model to study consequences of the IDH1R132 mutation in glioblastoma. (J Histochem Cytochem 
59:489–503, 2011)
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found in cytoplasm, peroxisomes, and endoplasmic reticu-
lum of cells (Geisbrecht and Gould 1999; Margittai and 
Banhegyi 2008). IDH2 is the second NADP+-dependent 
IDH localized in mitochondria (Hartmann et al. 2009; 
Sonoda et al. 2009; Yan et al. 2009). The other three mem-
bers of the IDH family are NAD+ dependent, exclusively 
localized in mitochondria and involved in the Krebs cycle 
(Ying 2008). NAD+-dependent IDHs have not been found 
to be mutated in relation with gliomagenesis in particular 
and cancer in general (Yan et al. 2009).

The causal relationship between IDH mutations and gli-
omagenesis is only partly understood. Both mutations in the 
IDH1 and IDH2 genes affect evolutionary-conserved resi-
dues (arginines R132 and R172, respectively). The argi-
nines are localized in the isocitrate binding site of the 
NADP+-dependent IDHs (Xu et al. 2004). The mutations 
inactivate the enzymatic activity of IDH1 and IDH2 
(Ichimura et al. 2009; Yan et al. 2009; Bleeker et al. 2010). 
They cause reduced production of α-ketoglutarate and 
NADPH from isocitrate and NADP+.

The most important functional consequence of mutated 
IDH1 is that it converts α-ketoglutarate and NADPH into 
2-hydroxyglutarate and NADP+ (Dang et al. 2009). In 
patients with L-2-hydroxyglutaric aciduria, the accumula-
tion of 2-hydroxyglutarate is associated with a higher risk 
of gliomagenesis (Aghili et al. 2009). Moreover, 2-hydrox-
yglutarate may inhibit degradation of hypoxia-inducible 
factor (HIF) subunit HIF-1α (Gross et al. 2010). HIF-1α can 
thus form the heterodimer HIF-1, consisting of HIF-1α and 
HIF-1β, that is transported into the nucleus as transcription 
factor (Hughes et al. 2010; Pollard and Ratcliffe 2009; 
Thompson 2009). HIF-1 is the master switch of cellular 
adaptation to low oxygen levels and induces transcription 
of more than 100 genes involved in angiogenesis, cell 
motility, invasion, and anaerobic glycolysis (Bjerkvig et al. 
2009; Nobusawa et al. 2009; Atai et al. 2011; Hughes et al. 
2010). HIF-1α thus provides a survival kit for glioma cells.

IDH1 can be considered either as a tumor suppressor 
gene (the mutation causes loss of function by reducing cyto-
plasmic α-ketoglutarate levels) or as an oncogene (the 
mutation causes gain of function by increasing levels of 
2-hydroxyglutarate levels and increasing HIF-1α levels). 
Reduced α-ketoglutarate levels in the cytoplasm due to the 
IDH1R132 mutation may also reduce degradation of HIF-1α 
(Zhao et al. 2009). However, α-ketoglutarate levels were 
found not to be reduced in glioma and acute myeloid leuke-
mia with the IDH1R132 mutation (Dang et al. 2009; Gross 
et al. 2010).

Another clinically important phenomenon of the 
IDH1R132 mutation is the prolonged survival of glioblas-
toma patients with the mutation (Bleeker et al. 2009; 
Hartmann et al. 2009; Hartmann et al. 2010; Nobusawa  
et al. 2009; Sanson et al. 2009; Sonoda et al. 2009; Watanabe 

et al. 2009; Weller et al. 2009). The IDH1R132 mutation was 
associated with improved survival of 1 year on average in 
our set of 98 glioblastoma patients, of whom 18 had the 
IDH1R132 mutation (Bleeker et al. 2010). We hypothesized 
in that study that reduced NADPH production in the cyto-
plasm of glioma cells is responsible for prolonged survival. 
We found that the capacity to produce NADPH was reduced 
by 38% in glioblastoma samples harboring the IDH1R132 
mutation, as demonstrated by metabolic mapping (Bleeker 
et al. 2010). Moreover, the mutated IDH1 consumes 
NADPH rather than producing it. Thus, the NADPH pro-
duction in IDH1-mutated glioblastoma is likely to be even 
more profoundly decreased. NADPH has a major impact on 
detoxification. NADPH is among others necessary for the 
production of reduced glutathione (Koehler and Van 
Noorden 2003) and reduced thioredoxins (Holmgren and 
Lu 2010; Biaglow and Miller 2005), formation of active 
catalase tetramers (Salvemini et al. 1999), and the activity 
of the members of the cytochrome P450 family (Van 
Noorden and Butcher 1986, 1991; Koehler and Van Noorden 
2003). Oxygen radicals are metabolized by NADPH-
dependent systems, and oxygen stress is particularly 
induced by irradiation and chemotherapy (Ozben 2007). 
Recently, it was reported that patients with low-grade gli-
oma with the mutation responded better to telozolomide 
treatment (Houillier et al. 2010).

Surprisingly, it appeared that the capacity of IDH to pro-
duce NADPH represents 65% of the total NADPH production 
in the human brain (Bleeker et al. 2010). This is in contrast 
with the general concept that the irreversible oxidative part of 
the pentose phosphate pathway by activity of glucose-6-phos-
phate dehydrogenase (G6PDH) and 6-phosphogluconate 
dehydrogenase (6PGDH) is the major NADPH provider in the 
cytoplasmic compartment of cells, whereas IDH, malate dehy-
drogenase (MDH), and hexose-6-phosphate dehdrogenase 
(H6PDH) play a minor role (Van Noorden 1984; Stoward et al. 
1991; Koehler and Van Noorden 2003; Kil et al. 2006; Reitman 
and Yan 2010). Therefore, we further investigated the relative 
role in NADPH production by IDH and the other NADPH-
producing dehydrogenases in normal human, mouse, and rat 
tissues and glioblastoma samples using metabolic mapping 
(Van Noorden 2009, 2010). Furthermore, we analyzed expres-
sion of these dehydrogenases in human cancer relative to nor-
mal human tissue in silico (Atai et al. 2011; Mir et al. 2010) to 
establish their potential role in the generation of NADPH in 
cancer.

Materials and Methods

Glioblastoma Samples
The activity of NADPH-producing dehydrogenases was 
localized using metabolic mapping according to Van 
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Noorden (2009, 2010) in cryostat sections of samples from 
glioblastoma patients and non-cancerous brain tissue sam-
ples. Twenty-six glioblastoma samples that were classified 
by the pathologist (DT) according to the World Health 
Organization (WHO) 2007 classification and five non-
cancerous brain tissue samples containing both white and 
grey matter were used in the study. Tumor samples were 
included only when at least 80% of the samples consisted 
of cancer cells, as verified by hematoxylin–eosin staining. 
Use of patient material fell under the Dutch Code of proper 
secondary use of human tissue and was waived by the local 
ethics committee.

All glioblastoma and non-cancerous brain tissue samples 
were obtained from the tumor bank maintained by the 
Departments of Neurosurgery and Neuropathology at the 
Academic Medical Center, Amsterdam, the Netherlands. 
All samples were snap-frozen in liquid nitrogen in the oper-
ating room and stored at –80C until used. The mutational 
status of the IDH1 and IDH2 genes was determined previ-
ously (Bleeker et al. 2009; Bleeker et al. 2010). Thirteen 
glioblastoma samples mutated in the IDH1 gene (IDH1R132) 
and 13 glioblastoma samples with wild-type IDH1 and 
IDH2 genes were selected for further studies described 
here.

Normal Mouse Tissues
The activity of NADPH-producing dehydrogenases was 
localized in tissues of five young adult C57 B1/6 mice 
(Charles Rivers, Someren, the Netherlands) with body 
weight of 22 to 26 g. The animals were kept under con-
stant environmental conditions with a 12-hr dark/12-hr 
light cycle and free access to food and water. Animals 
were kept under these conditions for at least 2 weeks. 
The animals were sacrificed by CO

2
 exposure and subse-

quent cervical dislocation. Animal procedures were car-
ried out in compliance with Institutional Standards for 
Human Care and Use of Laboratory Animals. The 
Institutional Animal Care and Use Committee approved 
the experiments.

Samples of tissues were slowly snap-frozen in small 
plastic vials in liquid nitrogen and stored at –80C until used 
as described by Vogels et al. (2009) to ensure preservation 
of optimum tissue morphology. Cerebrum, cerebellum, spi-
nal cord, tongue, small and large intestines, pancreas, liver, 
and kidney were collected.

Human Glioblastoma in Nude Rat Brain
Tissues of five glioblastoma tumors were grafted in the 
brain of eight nude rats (Han: rnu/ruu Rowett) as described 
previously (Wang et al. 2009). The tumors were allowed to 
grow for 4 to 5 months, and then brains with tumors were 
removed and frozen in liquid nitrogen. All procedures and 

experiments were approved by the National Animal 
Research Authority in Norway and conducted according to 
the European Convention for the Protection of Vertebrates 
Used for Scientific Purposes.

Metabolic Mapping
Six-µm-thick cryostat sections were cut of all patient sam-
ples and rodent tissue samples at –25C on a HM560 cryo-
stat (MICROM, Walldorf, Germany), picked up on glass 
slides, and stored at –80C until used. By keeping the cabi-
net temperature in the cryostat as low as possible, cryostat 
sectioning of brain could be done despite the high lipid 
content, as shown by De Witt Hamer et al. (2006). Cryostat 
sections of these tissues were allowed to dry at room tem-
perature for 5 min and were then incubated for the localiza-
tion of the activity of G6PDH, 6PGDH, IDH, MDH, and 
H6PDH, according to Van Noorden and Frederiks (1992). 
Incubation medium contained 18% polyvinyl alcohol (PVA, 
weight average Mr 70,000–100,000; Sigma-Aldrich, St. 
Louis, MO) in 0.1 M phosphate buffer (pH 7.4), 0.32 mM 
1-methoxyphenazine methosulphate (Serva, Heidelberg, 
Germany), 0.8 mM NADP+ (Roche, Mannheim, Germany), 
5 mM sodium azide, 5 mM MgCl

2
, 5 mM nitro blue tetra-

zolium salt (nitro BT; Sigma-Aldrich), and the respective 
substrates. For G6PDH, 6PGDH, IDH, MDH, and H6PDH, 
the following substrates and concentrations were used:  
10 mM glucose-6-phosphate (G6P; Serva), 10 mM  
6-phosphogluconate (PG; Sigma), 20 mM D,L-isocitrate 
(Sigma), 100 mM L-malate (Serva), and 10 mM galactose-
6-phosphate (Sigma-Aldrich), respectively. The media 
were freshly prepared just before incubation, and nitro  
BT was added after being dissolved in a heated mixture  
of dimethylformamide and ethanol (final dilution of each 
solvent in the medium was 2% v/v).

For the demonstration of the activity of G6PDH, 6PGDH, 
IDH, MDH, and H6PDH, sections were incubated at 37C 
for 10 to 45 min depending on the reaction rate. The incuba-
tion was stopped immediately by rinsing the sections in 
phosphate buffer (0.1 M, pH 5.3, 60C) to remove the vis-
cous incubation medium. Afterward, sections were embed-
ded in glycerin–gelatin. Experiments were performed in 
duplicate, and the concentrations of the substrates and coen-
zymes in the incubation media were sufficiently high to 
ensure maximum velocity (V

max
) of the enzyme activities 

(Stoward and Van Noorden 1991; Van Noorden and Butcher 
1991). Control reactions were performed in the absence of 
substrate (Butcher and Van Noorden 1985).

Image Analysis
The final reaction product of NADPH-producing dehydro-
genase activity (nitro BT-formazan) was analyzed in three 
areas in each of five sections with the use of quantitative 
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image analysis, using a Vanox-T photomicroscope with a 
10× objective (Olympus, Tokyo, Japan) and a CFW-1312M 
1360 × 1024-pixel 10-bit monochrome FireWire camera 
(Scion, Tucson, AZ) mounted on the front port of the 
microscope using adapting optics. Sections were illumi-
nated with white light that was filtered by a monochromatic 
filter of 585 nm and an infrared blocking filter to correctly 
measure the absorbance of both mono- and diformazans 
(Van Noorden and Butcher 1991; Van Noorden and 
Frederiks 1992). Absorbance calibration of the images was 
performed with the use of a calibrated 10-step density tablet 
(Stouffer, South Bend, IN). After measuring the step tablet, 
known absorbance values were related to measured gray 
values using the built-in calibration function of ImageJ, 
using the Rodbard function. Density calibrated images 
were recorded in one single run and stored on disk for 
analysis. The resolution used prevented distributional 
errors (Chieco et al. 1994). All settings were maintained 
throughout the recording session and at the end of the ses-
sion verified against the step tablet values. Software used 
for capturing was swf-image, a Scion proprietary camera 
driver, as an extension to the image-processing application 
of ImageJ, developed by Rasband (2009). ObjectJ, a plug-
in for non-destructive image marking and result linking 
developed by Vischer and Nastase (2009), was used to indi-
cate regions of interest (ROI) that were measured. Using 
the ObjectJ plug-in, mean absorbance values within the 
ROI were collected from the test reaction and the control 
reaction, allowing calculation of specific activity of the 
NADPH-producing dehydrogenases. Activity was 
expressed as µmoles NADPH produced per ml of tissue per 
min (Van Noorden and Frederiks 1992). The use of ObjectJ 
allows a retrospective quality control of areas measured.

In Silico Analysis
The genome databases of PubMed (http://www.ncbi.nlm 
.nih.gov/sites/entrez) were used to collect information on the 
human NADPH-producing dehydrogenase genes such as 
Entrez Gene ID, gene name, gene symbol, and gene syn-
onyms.

The Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo/) and ArrayExpress (http://www.ebi.ac.uk/microar-
ray-as/ae/) were searched to retrieve published human micro-
array gene expression data sets comparing cancer samples 
with normal tissue samples. Microarray expression data were 
retrieved from 34 data sets (after excluding 29 data sets for 
various reasons such as normal tissue samples consisting of 
cells in culture; for references, see Table 1) comparing cancer 
with normal human samples as described previously (Atai et 
al. 2011; Mir et al. 2010). For all data sets, log

2
-transformed 

signal intensity measurements were available for each probe in 
every sample, including probes for the genes investigated.

The original method of spot qualification and data nor-
malization was maintained for each data set. To compare 
between platforms, expression intensity was calculated for 
each Entrez Gene ID by averaging multiple probe intensi-
ties. To retrieve expression data of NADPH-producing 
dehydrogenases from the data sets, Entrez Gene ID coding 
for G6PDH, 6PGDH, H6PDH, IDH1, IDH2, ME1, and 
ME3 (2539, 5226, 3417, 3418, 4199, 10,873, and 9563, 
respectively) was used. Two expression parameters—
namely, frequency of overexpression (the fraction of 
patients in a data set who showed overexpression of the spe-
cific gene in cancer tissue vs normal tissue) and percentile 
fold change (the level of overexpression of the specific gene 
determined as a percentile of expression levels of all genes 
in a particular data set again when comparing cancer tissue 
and normal tissue)—were used to quantify the frequency 
and level of gene expression (Atai et al. 2011; Mir et al. 
2010). A percentile fold change >0.95 was arbitrarily con-
sidered as substantial overexpression, and a frequency of 
overexpression >30% was arbitrarily considered as frequent 
overexpression.

Data Analysis
The R-program (http://www.r-project.org) and Matlab 
(MatWorks, Natick, MA) were used to calculate the in 
silico data (expression parameters of NADPH-producing 
dehydrogenases).

Results
Localization of the activity of the major NADPH-producing 
dehydrogenases IDH and G6PDH in wild-type and IDHR132-
mutated glioblastoma is shown in Figure 1. IDH activity is 
reduced in the mutated glioblastoma. First, an in silico 
analysis of microarray studies in human cancer versus nor-
mal tissue of the seven NADPH-producing dehydrogenases 
genes was performed to establish the relevance for the 
NADPH production capacity of the individual dehydroge-
nases in cancer in general and in glioma in particular. Table 
1 shows that both parameters that we used to analyze the 
data, percentile fold change and frequency of overexpres-
sion, were upregulated to a limited extent only in relation to 
any type of cancer for each of the seven genes. Remarkably, 
IDH1 showed the strongest upregulated expression in glio-
blastoma, lung carcinoma, and thyroid carcinoma (Table 1). 
Prostate cancer also showed an elevated percentile fold 
change, but the frequency of overexpression was small. The 
two glioma data sets of Bredel et al. (2005) and Kotliarov 
et al. (2006) both showed upregulation of IDH1 gene 
expression (Table 2). The percentile fold change is high in 
all glioma stages in both data sets, but the frequency of 
overexpression is high only in data set of Bredel et al. 



NADPH Production and the IDH1 Mutation in Glioblastoma 	 493

Table 1. In Silico Analysis of the Expression of NADPH-Producing Dehydrogenases in Cancer versus Normal Tissue Expressed as (A) 
Percentile Fold Change and (B) Frequency of Overexpression in 34 Data Sets

Normal 
(n)

Cancer 
(n) IDH1 IDH2 G6PDH 6PGDH ME1 ME3 H6PDH Reference

(A) Percentile fold changea

  Bladder carcinoma 14 13 0.74 0.87 0.85 — 0.4 — 0.23 Dyrskjot et al. 2004
  Colon carcinoma 18 18 — 0.86 0.39 0.67 0.88 0.79 — Notterman et al. 2001
  Colon carcinoma 5 100 0.51 0.39 0.42 — 0.71 — 0.55 —
  Esophagus carcinoma 8 8 0.72 0.19 0.11 — 0.05 — 0.37 Kimchi et al. 2005
  Gastric carcinoma 8 22 0.53 0.66 0.65 — 0.12 — — Hippo et al. 2002
  Gastric carcinoma 23 89 0.18 0.05 — 0.83 0.07 0.09 0.4 Chen et al. 2003
  Gastro-intestinal stromal tumor 14 33 0.07 0.47 0.43 0.15 0.75 0.02 0.12 —
  Glioblastoma 4 31 0.8 0.78 — 0.6 0.11 0.18 0.88 Bredel et al. 2005
  Glioblastoma 23 81 0.97 0.67 0.64 — 0.05 — 0.9 Kotliarov et al. 2006
  Hepatocellular carcinoma 75 105 — 0.12 — 0.28 0.97 0.33 0.19 Chen et al. 2002
  Head and neck carcinoma 3 65 0.6 0.29 — 0.5 0.92 0.34 0.09 Chung et al. 2004
  Head and neck carcinoma 22 22 0.84 0.04 — — 0.69 0.08 0.45 Kuriakose et al. 2004
  Head and neck carcinoma 4 34 0.16 0.15 — — 0.33 0.19 0.29 Cromer et al. 2004
  Leiomyosarcoma 4 9 0.55 0.89 0.06 — 0.74 — — Quade et al. 2004
  Lung carcinoma 5 5 0.92 0.31 — — 0.96 0.16 0.43 Wachi et al. 2005
  Lung carcinoma 17 154 0.73 0.17 — 0.6 0.74 0.4 0.07 Bhattacharjee et al. 2001
  Lung carcinoma 19 34 0.81 0.89 0.9 — 0.59 — — Inamura et al. 2005
  Lung carcinoma 9 23 0.97 0.92 0.99 — 0.94 — 0.2 Dehan et al. 2007
  Lung carcinoma 10 86 0.86 0.99 — — 0.96 0.94 0.25 Beer et al. 2002
  Mamma carcinoma 3 38 — 0.04 — 0.43 — — 0.07 Perou et al. 2000
  Mamma carcinoma 7 40 0.34 0.71 0.3 — 0.35 — 0.24 Richardson et al. 2006
  Melanoma 7 45 0.41 0.19 0.9 — 0.05 — 0.48 Talantov et al. 2005
  Mesothelioma 10 44 0.65 0.84 0.93 — 0.2 — 0.71 Gordon et al. 2005
  Ovarium carcinoma 4 27 0.07 0.29 0.6 — 0.94 — — Welsh et al. 2001
  Prostate carcinoma 41 62 0.43 0.54 — 0.69 0.07 0.35 0.39 Lapointe et al. 2004
  Prostate carcinoma 50 52 0.97 0.97 — — 0.02 0.76 0.13 Singh et al. 2002
  Prostate carcinoma 6 13 — 0.61 — 0.81 — 0.5 0.44 Varambally et al. 2005
  Prostate carcinoma 19 14 0.47 0.55 0.16 — 0.04 — 0.54 Dhanasekaran et al. 2001
  Renal carcinoma 8 9 0.07 0.07 0.64 — 0.58 — 0.81 Lenburg et al. 2003
  Renal carcinoma 3 28 — 0.17 — 0.09 0.59 0.19 0.88 Higgins et al. 2003
  Seminoma 5 13 0.63 0.91 0.05 — 0.09 0.63 Korkola et al. 2006
  Seminoma 14 23 — — — 0.83 0.15 — 0.13 Sperger et al. 2003
  Nonseminoma 5 87 0.53 0.9 0.07 — 0.06 — 0.54 Korkola et al. 2006
  Thyroid carcinoma 7 7 0.97 0.9 0.62 — 0.04 — 0.59 —
(B) Frequency of overexpressionb

  Bladder carcinoma 7 7 0.71 0.29 0.00 — 0.00 — 0.00 —
  Colon carcinoma 14 13 0.00 0.31 0.08 — — 0.00 Dyrskjot et al. 2004
  Colon carcinoma 18 18 — 0.00 0.00 0.00 0.00 0.00 — Notterman et al. 2001
  Esophagus carcinoma 5 100 0.06 0.13 0.22 — 0.17 — 0.07 —
  Gastric carcinoma 8 8 0.00 0.00 0.00 — 0.00 — 0.00 Kimchi et al. 2005
  Gastric carcinoma 8 22 0.00 0.00 0.05 — 0.00 — — Hippo et al. 2002
  Gastro-intestinal stromal tumor 23 89 0.00 0.00 — 0.00 0.00 — 0.00 Chen et al. 2003
  Glioblastoma 14 33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 —
  Glioblastoma 4 31 1.00 0.55 — 0.52 0.00 0.03 0.61 Bredel et al. 2005
  Hepatocellular carcinoma 23 81 0.31 0.00 0.02 — 0.00 — 0.02 Kotliarov et al. 2006
  Head and neck carcinoma 75 105 — 0.00 — 0.00 0.00 0.00 0.00 Chen et al. 2002
  Head and neck carcinoma 3 65 0.15 0.02 — 0.17 0.43 0.27 0.02 Chung et al. 2004
  Head and neck carcinoma 22 22 0.00 0.00 — — 0.00 0.00 0.00 Kuriakose et al. 2004
  Leiomyosarcoma 4 34 0.03 0.00 — — 0.12 0.00 0.00 Cromer et al. 2004
  Lung carcinoma 4 9 0.22 0.44 0.00 — 0.33 — — Quade et al. 2004

(continued)
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Table 2. In Silico Analysis of the Expression of NADPH-Producing Dehydrogenases in Stages WHO2, WHO3, and WHO4 
(Glioblastoma) of Glioma versus Non-cancerous Brain in the Microarray Data Sets of Bredel et al. (2005) and Kotliarov et al. (2006) 
Expressed as (A) Percentile Fold Change and (B) Frequency of Overexpression

Dehydrogenase Gene
WHO2 
(Bredel)

WHO3 
(Bredel)

WHO4 
(Bredel)

WHO2 
(Kotliarov)

WHO3 
(Kotliarov)

WHO4 
(Kotliarov)

(A) Percentile fold changea

  IDH1 0.62 0.76 0.8 0.98 0.98 0.98
  IDH2 0.64 0.64 0.78 0.66 0.78 0.67
  G6PDH — — — 0.23 0.33 0.64
  6PGDH 0.39 0.48 0.6 — — —
  ME1 0.1 0.09 0.11 0.08 0.04 0.05
  ME3 0.17 0.3 0.18 — — —
  H6PDH 0.8 0.84 0.88 0.79 0.9 0.9
(B) Frequency of overexpressionb

  IDH1 1.00 0.00 1.00 0.12 0.19 0.31
  IDH2 0.00 0.5 0.55 0.00 0.00 0.00
  G6PDH — — — 0.00 0.00 0.02
  6PGDH 0.22 0.00 0.52 — — —
  ME1 0.00 0.00 0.00 0.00 0.00 0.00
  ME3 0.00 0.00 0.03 — — —
  H6PDH 0.44 0.5 0.61 0.00 0.00 0.02

aThe numbers in bold are larger then the arbitrarily selected threshold of 0.95, meaning that the gene is among 5% of all genes that are highest upregu-
lated in cancer compared to normal tissue in this data set.
bThe numbers in bold are larger than the arbitrarily selected threshold of 0.30, meaning that the gene is upregulated in at least 30% of the patients with 
cancer compared to normal tissue in this data set.

Normal 
(n)

Cancer 
(n) IDH1 IDH2 G6PDH 6PGDH ME1 ME3 H6PDH Reference

  Lung carcinoma 5 5 0.16 0.00 — — 0.28 — 0.00 Wachi et al. 2005
  Lung carcinoma 17 154 0.18 0.00 — 0.15 0.26 0.04 0.03 Bhattacharjee et al. 2001
  Lung carcinoma 19 34 0.33 0.47 0.35 — 0.07 — — Inamura et al. 2005
  Lung carcinoma 9 23 0.60 0.80 0.60 — 0.80 — 0.00 Dehan et al. 2007
  Mamma carcinoma 10 86 0.00 0.02 — — 0.01 0.00 0.00 Beer et al. 2002
  Mamma carcinoma 3 38 — 0.00 — 0.18 — — 0.00 Perou et al. 2000
  Melanoma 7 40 0.03 0.17 0.03 — 0.00 — 0.00 Richardson et al. 2006
  Mesothelioma 7 45 0.00 0.00 0.40 — 0.00 — 0.00 Talantov et al. 2005
  Ovarium carcinoma 10 44 0.00 0.00 0.03 — 0.00 — 0.03 Gordon et al. 2005
  Prostate carcinoma 4 27 0.04 0.00 0.22 — 0.17 — — Welsh et al. 2001
  Prostate carcinoma 41 62 0.00 0.00 — 0.00 0.00 0.00 0.00 Lapointe et al. 2004
  Prostate carcinoma 50 52 0.00 0.00 — 0.00 0.03 0.00 Singh et al. 2002
  Prostate carcinoma 6 13 — 0.00 — 0.00 — 0.00 0.00 Varambally et al. 2005
  Renal carcinoma 19 14 0.00 0.00 0.00 — 0.00 — 0.00 Dhanasekaran et al. 2001
  Renal carcinoma 8 9 0.00 0.00 0.11 — 0.00 — 0.00 Lenburg et al. 2003
  Seminoma 3 28 — 0.03 — 0.00 0.04 0.03 0.74 Higgins et al. 2003
  Seminoma 5 13 0.41 0.95 0.00 — 0.00 — 0.42 Korkola et al. 2006
  Nonseminoma 14 23 — — — 0.00 0.00 — 0.00 Sperger et al. 2003
  Thyroid carcinoma 5 87 0.00 1.00 0.00 — 0.00 — 0.08 Korkola et al. 2006

The number of samples from non-cancer patients (normal) and cancer patients (cancer) is given for each data set as well as the reference.
aThe numbers in bold are larger then the arbitrarily selected threshold of 0.95, meaning that the gene is among 5% of all genes that are highest upregu-
lated in cancer compared to normal tissue in this data set.
bThe numbers in bold are larger than the arbitrarily selected threshold of 0.30, meaning that the gene is upregulated in at least 30% of the patients with 
cancer compared to normal tissue in this data set.

Table 1. (continued)
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(2005). The IDH2 gene also shows upregulation but to a 
lesser extent (Table 2).

Localization of the activity of NADP+-dependent IDH 
and the dehydrogenases of the pentose phosphate pathway, 
G6PDH and 6PGDH, in control mouse central nervous sys-
tem, tongue epithelium, and liver is shown in Figure 2. The 
figure shows strong heterogeneity of activity of the dehy-
drogenases in all tissues. Image analysis data of the activity 
of the dehydrogenases in various regions of tissues are 
shown in Table 3. Remarkably, when we calculated the 
NADPH production capacity of IDH and the dehydroge-
nases of the pentose phosphate pathway, G6PDH and 
6PGDH, they showed a similar proportion in each tissue 
compartment despite the heterogeneity of activity in the tis-
sues. In all mouse tissues, G6PDH and 6PGDH together 
produced more NADPH than IDH1 and IDH2 did together. 
Particularly, G6PDH is important for NADPH production. 
This proportion is 25% versus 75% in the cerebellum, 5% 
versus 95% in the cerebrum, 10% versus 90% in the spinal 
cord, 10% versus 85% in tongue epithelium, and 50% ver-
sus 50% in the liver. H6PDH activity was below the detec-
tion limit in all cases and MDH activity as well except for a 
low MDH activity in tongue (5%). All other mouse organs 
studied (small and large intestines, pancreas, and kidney) 
showed similar patterns of NADPH production capacity 
(data not shown).

In general, our findings show that IDH activity contrib-
utes relatively little to the NADPH production in control 
mouse tissues and particularly in the central nervous sys-
tem, whereas the pentose phosphate pathway is responsible 
for the major part of NADPH production. This is in contrast 
to the human cerebrum, where IDH activity is responsible 
for 60% of the NADPH production capacity (Bleeker et al. 
2010).

To test the discrepancy that we observed between human 
and rodent tissues, we determined IDH activity in rat brain 
in which human glioblastoma explants were grown (Fig. 3; 
Table 4). Here, IDH activity was responsible for 16% and 
the pentose phosphate pathway for 84% of the NADPH pro-
duction capacity in rat cerebrum and in human glioblastoma 
for 48% and 52%, respectively, again showing differences 
in the role of IDH activity in NADPH production between 
rodents and human.

Discussion
NADPH is an essential compound for detoxification reac-
tions in cells. In particular, the cellular antioxidant system 
relies heavily on NADPH (Koehler and Van Noorden 
2003). The general opinion based on rodent models is that 
the irreversible oxidative part of the pentose phosphate 
pathway with G6PDH and 6PGDH is the main provider of 

Figure 1. Metabolic mapping of the activity of IDH (B, E) and G6PDH (C, F) in serial cryostat sections of human wild-type (A-C) 
and IDHR132-mutated (D-F) glioblastoma. Hematoxylin–eosin (HE)–stained sections (A, D) are shown for morphological purposes. The 
amount of blue dye (nitro BT-formazan) reflects IDH or G6PDH activity. v, blood vessel. Bars = 150 µm.
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NADPH. However, this may not be the case in humans (Kil 
et al. 2006) except for erythrocytes in which NADPH is 
mainly provided by G6PDH (Scott et al. 1991; Peters and 
Van Noorden 2009).

Indeed, our metabolic mapping study shows a major 
role for IDH in NADPH production capacity in the normal 
human brain and glioma (Fig. 1; Bleeker et al. 2010). In 
contrast, in normal mouse tissues, including the central 
nervous system, we found that the irreversible oxidative 
part of the pentose phosphate pathway has the major 
capacity to generate NADPH, and IDH has only limited 
capacity (Fig. 2; Table 3). Localization of activity of 
G6PDH in these mouse organs (Fig. 2) is in good agree-
ment with previous metabolic mappings studies (Van 
Noorden 1984; Biagotti et al. 2000; Biagotti et al. 2002; 
Biagotti et al. 2005; Ferri et al. 2005). Therefore, we con-
clude that the concept that NADPH is mainly provided by 
the pentose phosphate pathway and not by IDH is based on 
studies of organisms other than humans. This is further 
confirmed by the metabolic mapping data on the experi-
mental model of human glioblastoma tumors in the brain 
of nude rats (Fig. 3; Table 4). The relative contribution of 
IDH to the capacity of NADPH production is much larger 
in the human glioblastoma explants than in the rat brain. 
Furthermore, Lee et al. (2002) and Kil et al. (2006, 2007) 

demonstrated that IDH is essential in human cells for the 
provision of NADPH because specific reduction of IDH 
activity increased oxidative damage, apoptosis, and senes-
cence. Silencing of IDH1 expression by siRNA is even 
lethal in human cancer cells (Abdel-Wahab and Levine 
2010), indicating that one wild-type allele must be retained 
in IDH1 mutant cancer cells. Moreover, homozygously 
mutated IDH1 glioma has not been found yet. These data 
show once more that a mouse is not a man and stress that 
data obtained in rodent models of glioblastoma may not 
reflect the situation in the glioblastoma patient.

The quantitative analysis of the activity of NADPH-
producing dehydrogenases in normal mouse tissues (Table 
3) revealed another surprising finding. Despite the strong 
heterogeneity in activity in the different compartments of a 
tissue, the relative NADPH production capacity of the 
dehydrogenases was similar in those tissues. In the cere-
brum, 25% was represented by IDH and 75% by G6PDH 
and 6PGDH; these percentages were 5% and 95% in the 
cerebellum, 10% and 90% in spinal cord, and so on (Table 
3). These data indicate that the regulation of the activity of 
these enzymes is coordinated per tissue, be it on the tran-
scriptional, translational, or posttranslational level. This 
aspect of the activity of NADPH-producing dehydroge-
nases warrants further study.

Table 3. Quantitative Histochemical Analysis of the Activity of the NADPH-Producing Dehdrogenases IDH, G6PDH, 6PGDH, MDH, 
and H6PDH (expressed as µmoles NADPH Generated per min per ml of Tissue) in Normal Mouse Tissue (n=5) and Given as a 
Percentage (%) of the Total NADPH Production Capacity

Activity Percentage

  IDH G6PDH 6PGDH IDH G6PDH + 6PGDH

Cerebrum Cortex 0.51 ± 0.25 1.08 ± 0.29 0.30 ± 0.20 27 73
  Cortex 0.28 ± 0.16 0.75 ± 0.27 0.30 ± 0.08 21 79
  Thalamus 0.23 ± 0.01 0.84 ± 0.04 0.28 ± 0.06 17 83
  Corpus callosum 0.58 ± 0.11 1.41 ± 0.20 0.24 ± 0.18 26 74
Cerebellum Molecular layer 0.07 ± 0.06 1.79 ± 0.05 0.24 ± 0.06 3 97
  Purkinje cells 0.08 ± 0.06 1.38 ± 0.28 0.23 ± 0.03 5 95
  Granular layer 0.06 ± 0.04 0.68 ± 0.10 0.16 ± 0.01 7 93
  White matter 0.07 ± 0.01 1.31 ± 0.26 0.23 ± 0.07 4 96
Spinal cord Gray matter 0.16 ± 0.06 1.14 ± 0.16 0.24 ± 0.03 10 90
  White matter 0.13 ± 0.04 0.95 ± 0.18 0.18 ± 0.03 10 90
Tongue epithelium Basal cell layer 0.45 ± 0.08 1.00 ± 0.20 0.67 ± 0.19 20 75
  Upper cell layer 0.28 ± 0.07 1.80 ± 0.03 1.80 ± 0.05 7 90
Colon Bottom crypts 0.50 ± 0.17 0.95 ± 0.31 1.12 ± 0.23 19 81
  Upper part crypts 0.18 ± 0.05 0.42 ± 0.18 1.00 ± 0.29 11 89
  Surface 0.28 ± 0.09 0.94 ± 0.29 0.92 ± 0.69 13 87
Pancreas Endocrine (islets) 1.25 ± 0.09 1.51 ± 0.08 0.26 ± 0.19 41 59

Exocrine 1.72 ± 0.05 1.55 ± 0.05 0.29 ± 0.18 42 58
Liver Periportal 0.86 ± 0.06 0.74 ± 0.13 0.14 ± 0.02 49 51
  Pericentral 0.70 ± 0.11 0.51 ± 0.17 0.11 ± 0.02 54 46
Kidney Corpuscules 0.34 ± 0.13 1.35 ± 0.11 0.08 ± 0.01 19 81
  Tubuli 1.53 ± 0.07 1.22 ± 0.09 0.11 ± 0.04 53 47
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The IDH1 and IDH2 gene mutations are linked with gli-
omagenesis, acute myeloid leukemia, and thyroid cancer 
because of 2-hydroxyglutarate production, which is consid-
ered an oncometabolite (Dang et al. 2009; Ward et al. 2010; 
Fu et al. 2010; Gross et al. 2010). However, it was recently 
found that glioblastoma cells expressing mutant IDH1 show 

reduced growth when α-ketoglutarate production via  
glutaminase is inhibited as well (Seltzer et al. 2010), indi-
cating that not only production of the oncometabolite is 
involved in gliomagenesis but also reduced production of 
α-ketoglutarate and/or NADPH. We found that the IDH1 
mutation reduced the NADPH production capacity as well 

Figure 2. Localization of the activity of IDH (B, F, J, N, R), G6PDH (C, G, K, O, S) and 6PGDH (D, H, L, P, T) in serial cryostat sections of 
mouse cerebrum (A–D), cerebellum (E–H), spinal cord (I–L), tongue (M–P), and liver (Q–T). Hematoxylin–eosin (HE)–stained sections 
(A, E, I, M, Q) are shown for morphological purposes. The amount of blue dye (nitro BT-formazan) reflects IDH, G6PDH, or 6PGDH 
activity. Note the strong heterogeneity of activity in the tissues and the specific staining patterns throughout the different structures of 
the tissues. Cerebrum: 1, gray matter; 2, 3, white matter; 4, archecortex. Cerebellum: 1, molecular layer; 2, Purkinje cells; 3, granular layer; 
4, white matter. Spinal cord: 1, gray matter; 2, white matter. Tongue epithelium: 1, basal cell layers; 2, upper cell layers. Liver: 1, periportal 
area; 2, pericentral area. Note that micrograph O is overexposed because of the intense staining of the epithelium. Bars = 75 µm.
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in glioblastoma. The consequence of the mutations is that 
NADPH is consumed rather than produced during 2-hydrox-
yglutarate production. The affinity (K

m
) for NADP+ of 

wild-type IDH1 is 49 µM and that of the IDH1R132 mutation 
is 84 µM. The affinity for NADPH of wild-type IDH1 is not 
measurable but is 0.44 µM of the IDH1R132 mutation, which 
means that NADPH consumption is manifold higher by 
IDH1R132 than NADPH production in glioblastoma cells 
(Dang et al. 2009). In acute myeloid leukemia cells, a simi-
lar upregulation of the affinity for NADPH of IDH1R132 was 
demonstrated (Gross et al. 2010). Therefore, it cannot be 
ruled out that loss of NADPH production in the cytoplasm 

contributes to gliomagenesis due to a diminished antioxi-
dant system. However, loss of NADPH production is more 
likely involved in prolonged survival of glioblastoma 
patients with the mutation because cellular damage during 
irradiation and chemotherapy is largely induced by reactive 
oxygen species. When NADPH availability is limited in 
cancer cells, therapy may well be more effective. This 
hypothesis will be investigated because a better response to 
telozolomide treatment of low-grade glioma with the muta-
tion has been found (Houillier et al. 2010). The IDH1 and 
IDH2 mutations in acute myeloid leukemia are not positive 
prognostic factors but rather negative prognostic factors 
(Boissel et al. 2010; Paschka et al. 2010).

The in silico analysis of microarray data sets (Tables 1 
and 2) did not show much upregulation of expression of 
most of the genes of NADPH-producing dehydrogenases. 
The changes in expression of these genes are especially 
modest when compared with our previous in silico analyses 
of expression of kinase genes (Mir et al. 2010) and the 
osteopontin gene (Atai et al. 2011), which showed strong 
overexpression in both percentile fold change and fre-
quency of overexpression in patients. These findings indi-
cate that cancer does not particularly induce transcription of 
genes of dehydrogenases that can provide NADPH, which 
is considered of vital importance for cells, particularly can-
cer cells, to survive because it is needed for many detoxifi-
cation processes. It suggests that under stress—for example, 
during irradiation or chemotherapy—the cancer cells have 

Table 4. Quantitative Histochemical Analysis of the Activity of 
Isocitrate Dehydrogenase (IDH) and the Pentose Phosphate 
Pathway (G6PDH + 6PGDH) Expressed as µmoles NADPH 
Generated per min per ml of Tissue in Human Glioblastoma 
Explants and in Normal Nude Rat Brain (n = 8)

Activity Percentage

  IDH
G6PDH + 

PGDH IDH
G6PDH + 

PGDH

Normal rat 
brain

0.48 ± 0.07 2.17 ± 0.63 16 84

Human 
glioblastoma 
explant

2.28 ± 0.24 2.45 ± 0.38 48 52

Figure 3. Localization of activity of IDH (B) and G6PDH (C) in serial cryostal sections of human glioblastoma explants (GBM) in normal 
nude rat brain (RB). Hematoxylin–eosin (HE)–stained section (A) is shown for morphological purposes. Bars = 100 µm.
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to rely on the NADPH-producing dehydrogenases that are 
available. This may explain why the IDH1 mutation may 
have the prolonging effect on patient survival.

It is remarkable that overexpression of IDH1 was 
observed in glioma (Table 2) and thyroid cancer (Table 1), 
besides two out of five data sets of lung carcinoma, because 
the IDH1 mutation has only been found in glioblastoma, 
thyroid cancer, and acute myeloid leukemia. The relation-
ship between IDH2 expression and the mutation in cancer is 
less clear (Tables 1 and 2). We did not have access to micro-
array data sets on acute myeloid leukemia to investigate 
whether IDH1 and/or IDH2 expression is also elevated in 
this type of cancer.

The capacity to produce NADPH in normal human brain, 
as well as wild-type and IDH1R132-mutated glioblastoma, is 
represented for 55% to 65% by IDH, for 30% by the irrevers-
ible oxidative pentose phosphate pathway, and for 10% by 
MDH and H6PDH (Bleeker et al. 2010). Again, this was a sur-
prising finding. We expected at least to find a lower contribu-
tion of IDH to the total capacity of NADPH production in 
IDH1R132-mutated glioblastoma. However, the relative contri-
butions by the different dehydrogenases remained the same, 
despite the fact that only IDH activity was decreased signifi-
cantly. This discrepancy may well be due to the small number 
of glioblastoma samples included in the metabolic mapping 
study (n=13 for both groups), but it may also be a biological 
phenomenon that is related to the constant contribution of the 
dehydrogenases to the total NADPH production capacity in 
the different tissues as discussed above.

In conclusion, the present study reveals that in humans, 
the relative contribution of IDH activity to NADPH produc-
tion capacity in the cerebrum and glioblastoma is largely 
unlike that in other organisms such as rodents, substantiat-
ing that reduction in NADPH production capacity is signifi-
cant due to the IDH1R132 mutation in humans but not in 
rodents. It makes rodents an unsuitable model to study 
functional consequences of the IDH1R132 mutation in human 
glioblastoma.
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