Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2598. doi: 10.1107/S1600536811036336

2-(2-Chloro­phen­yl)-3-methyl-5,6-diphenyl-2,3-dihydro­pyrazine

N Anuradha a, S Chitra b, A Thiruvalluvar a,*, K Pandiarajan c, R J Butcher d, J P Jasinski e, J A Golen e
PMCID: PMC3201404  PMID: 22065837

Abstract

In the title mol­ecule, C23H19ClN2, the heterocyclic ring adopts a screw-boat conformation, with all substituents equatorial. The benzene ring at position 2 makes dihedral angles of 77.88 (12) and 76.31 (12)° with the phenyl rings at positions 5 and 6, respectively. The dihedral angle between the phenyl rings at positions 5 and 6 is 70.05 (10)°. The Cl atom is disordered over two positions with occupancy factors of 0.946 (5) and 0.054 (5). In the crystal, C—H⋯π inter­actions are found.

Related literature

For the biological properties of heterocyclic ring systems having a dihydro­pyrazine nucleus, see: Sondhi et al. (2005). For the use of dihydro­pyrazines, with reference to DNA breakage activity, see: Takechi et al. (2011). For the inhibition of the growth of Escherichia coli, see: Takeda et al. (2005). For a closely related crystal structure, see: Anuradha et al. (2009).graphic file with name e-67-o2598-scheme1.jpg

Experimental

Crystal data

  • C23H19ClN2

  • M r = 358.85

  • Monoclinic, Inline graphic

  • a = 10.5675 (8) Å

  • b = 19.7014 (9) Å

  • c = 10.4207 (7) Å

  • β = 118.479 (9)°

  • V = 1907.0 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.82 mm−1

  • T = 298 K

  • 0.25 × 0.14 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.659, T max = 1.000

  • 22812 measured reflections

  • 3831 independent reflections

  • 3092 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.150

  • S = 1.04

  • 3831 reflections

  • 240 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036336/wn2451sup1.cif

e-67-o2598-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036336/wn2451Isup2.hkl

e-67-o2598-Isup2.hkl (184KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036336/wn2451Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg4 are the centroids of the C21–C26, C51–C56 and C61–C66 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cg4i 0.93 2.80 3.643 (3) 152
C53—H53⋯Cg2ii 0.93 2.99 3.873 (4) 159
C64—H64⋯Cg3iii 0.93 2.88 3.729 (2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Heterocyclic ring systems having the dihydropyrazine nucleus have aroused great interest in the past and recent years due to their wide variety of biological properties (Sondhi et al., 2005). Dihydropyrazines are used to break DNA strands and inhibit bacterial growth (Takechi et al., 2011). In addition, these compounds have inhibited the growth of Escherichia coli (Takeda et al., 2005). Anuradha et al. (2009) have reported the crystal structure of 2-methyl-3,5,6-triphenyl-2,3-dihydropyrazine, in which the heterocyclic ring adopts a screw-boat conformation.

In the title molecule, C23H19ClN2, the heterocyclic ring adopts a screw-boat conformation, with all substituents equatorial. The benzene ring at position 2 makes dihedral angles of 77.88 (12)° and 76.31 (12)° with the phenyl rings at position 5 and 6, respectively. The dihedral angle between the phenyl rings at positions 5 and 6 is 70.05 (10)° (Fig. 1). A C24—H24···π interaction involving the phenyl (C61—C66) ring, a C53—H53···π interaction involving the benzene (C21—C26) ring and a C64—H64···π interaction involving the phenyl (C51—C56) ring are also found in the crystal structure (Table 1). The Cl atom is disordered over two positions. Its occupancy ratio refined to 0.946 (5):0.054 (5).

Experimental

To a homogeneous solution of benzil (1.05 g, 0.005 mol) and 1-methyl-2-(2'-chlorophenyl)-ethanediamine dihydrochloride (1.29 g, 0.005 mol) in ethanol (20 ml), sodium acetate trihydrate (2.04 g, 0.015 mol) was added. The precipitated sodium chloride was filtered off and the filtrate was refluxed for 2 h. On completion of the reaction, as indicated by TLC, the reaction mixture was poured into crushed ice and the resulting solid was filtered and purified by column chromatography on silica gel. Elution with benzene-petroleum ether (3:2 v/v) at 333–353 K gave the pure product (1.68 g) in 76% yield. Crystals suitable for X-ray diffraction studies were obtained by recrystallization of the pure product from ethyl acetate.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with Csp2—H = 0.93 Å, C(methine)—H = 0.98 Å and C(methyl)—H = 0.96 Å; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. The Cl atom is disordered over two positions. Its occupancy ratio refined to 0.946 (5):0.054 (5).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 25% probability level. H atoms are shown as small spheres of arbitrary radius.

Crystal data

C23H19ClN2 F(000) = 752
Mr = 358.85 Dx = 1.250 Mg m3
Monoclinic, P21/c Melting point: 417 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54184 Å
a = 10.5675 (8) Å Cell parameters from 5083 reflections
b = 19.7014 (9) Å θ = 4.5–73.5°
c = 10.4207 (7) Å µ = 1.82 mm1
β = 118.479 (9)° T = 298 K
V = 1907.0 (3) Å3 Block, pale-yellow
Z = 4 0.25 × 0.14 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 3831 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3092 reflections with I > 2σ(I)
graphite Rint = 0.052
Detector resolution: 16.1500 pixels mm-1 θmax = 73.7°, θmin = 4.5°
ω scans h = −13→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −21→24
Tmin = 0.659, Tmax = 1.000 l = −12→12
22812 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4958P] where P = (Fo2 + 2Fc2)/3
3831 reflections (Δ/σ)max = 0.001
240 parameters Δρmax = 0.32 e Å3
2 restraints Δρmin = −0.28 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.To allow for a stable and meaningful refinement of the Cl atoms, the C—Cl bonding distances were restrained to be the same (DFIX 1.76 0.02 C22 Cl1 C22 Cl2 and EADP Cl1 Cl2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.25340 (11) −0.21842 (8) 0.16414 (14) 0.1246 (4) 0.946 (5)
N1 0.24840 (17) −0.00156 (8) 0.13885 (16) 0.0488 (5)
N4 0.2879 (2) −0.02095 (9) −0.10830 (18) 0.0627 (6)
C2 0.3045 (2) −0.06586 (10) 0.1173 (2) 0.0556 (6)
C3 0.3806 (3) −0.05552 (12) 0.0291 (3) 0.0657 (8)
C5 0.2014 (2) 0.02435 (9) −0.10666 (19) 0.0479 (5)
C6 0.20118 (18) 0.04090 (9) 0.03284 (18) 0.0439 (5)
C21 0.3972 (2) −0.09884 (10) 0.2638 (2) 0.0527 (6)
C22 0.3840 (3) −0.16562 (12) 0.2953 (3) 0.0698 (7)
C23 0.4712 (3) −0.19357 (14) 0.4313 (3) 0.0861 (9)
C24 0.5737 (3) −0.15478 (14) 0.5392 (3) 0.0767 (8)
C25 0.5914 (3) −0.08844 (13) 0.5117 (2) 0.0664 (7)
C26 0.5037 (2) −0.06128 (10) 0.3758 (2) 0.0571 (6)
C31 0.4413 (3) −0.11844 (14) −0.0028 (3) 0.0828 (10)
C51 0.1010 (2) 0.05635 (9) −0.24852 (19) 0.0474 (5)
C52 −0.0386 (2) 0.07317 (11) −0.2826 (2) 0.0562 (6)
C53 −0.1342 (3) 0.09626 (12) −0.4219 (2) 0.0664 (7)
C54 −0.0896 (3) 0.10359 (11) −0.5258 (2) 0.0682 (8)
C55 0.0493 (3) 0.08806 (11) −0.4913 (2) 0.0650 (8)
C56 0.1443 (2) 0.06438 (10) −0.3546 (2) 0.0552 (6)
C61 0.15526 (19) 0.10853 (9) 0.05924 (18) 0.0441 (5)
C62 0.0827 (2) 0.11347 (9) 0.14084 (19) 0.0478 (5)
C63 0.0489 (2) 0.17630 (11) 0.1757 (2) 0.0568 (6)
C64 0.0894 (3) 0.23491 (10) 0.1328 (2) 0.0619 (7)
C65 0.1610 (3) 0.23089 (10) 0.0524 (2) 0.0638 (7)
C66 0.1926 (2) 0.16820 (10) 0.0139 (2) 0.0563 (6)
Cl2 0.249 (2) −0.1906 (15) 0.131 (2) 0.1246 (4) 0.054 (5)
H2 0.22221 −0.09585 0.06166 0.0668*
H3 0.46199 −0.02520 0.08554 0.0789*
H23 0.45990 −0.23883 0.44909 0.1033*
H24 0.63129 −0.17328 0.63114 0.0921*
H25 0.66209 −0.06190 0.58423 0.0797*
H26 0.51645 −0.01613 0.35854 0.0686*
H31A 0.36507 −0.15035 −0.05490 0.1243*
H31B 0.51148 −0.13840 0.08724 0.1243*
H31C 0.48607 −0.10673 −0.06119 0.1243*
H52 −0.06864 0.06904 −0.21230 0.0674*
H53 −0.22846 0.10679 −0.44500 0.0797*
H54 −0.15360 0.11902 −0.61885 0.0818*
H55 0.07976 0.09357 −0.56100 0.0780*
H56 0.23810 0.05365 −0.33281 0.0662*
H62 0.05680 0.07420 0.17213 0.0574*
H63 −0.00147 0.17897 0.22840 0.0682*
H64 0.06832 0.27704 0.15826 0.0743*
H65 0.18848 0.27043 0.02348 0.0765*
H66 0.23901 0.16601 −0.04263 0.0676*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1170 (7) 0.0679 (8) 0.1060 (7) −0.0285 (5) −0.0141 (5) 0.0118 (5)
N1 0.0561 (9) 0.0475 (8) 0.0414 (7) 0.0091 (7) 0.0221 (7) 0.0047 (6)
N4 0.0780 (12) 0.0660 (11) 0.0473 (9) 0.0211 (9) 0.0324 (9) 0.0053 (8)
C2 0.0608 (11) 0.0550 (11) 0.0456 (10) 0.0144 (9) 0.0209 (9) 0.0056 (8)
C3 0.0808 (14) 0.0633 (13) 0.0593 (12) 0.0228 (11) 0.0384 (11) 0.0090 (9)
C5 0.0557 (10) 0.0474 (9) 0.0414 (9) 0.0020 (8) 0.0239 (8) 0.0012 (7)
C6 0.0445 (8) 0.0467 (9) 0.0393 (8) 0.0013 (7) 0.0189 (7) 0.0023 (7)
C21 0.0556 (10) 0.0504 (10) 0.0464 (10) 0.0127 (8) 0.0198 (8) 0.0053 (8)
C22 0.0627 (12) 0.0561 (12) 0.0651 (13) 0.0016 (10) 0.0098 (10) 0.0082 (10)
C23 0.0831 (17) 0.0629 (14) 0.0829 (17) 0.0048 (12) 0.0158 (14) 0.0281 (13)
C24 0.0715 (14) 0.0817 (16) 0.0546 (12) 0.0177 (12) 0.0120 (11) 0.0200 (11)
C25 0.0633 (12) 0.0718 (14) 0.0496 (11) 0.0085 (10) 0.0151 (10) −0.0023 (9)
C26 0.0647 (12) 0.0514 (10) 0.0512 (10) 0.0083 (9) 0.0243 (9) 0.0015 (8)
C31 0.0993 (19) 0.0769 (16) 0.0746 (16) 0.0360 (14) 0.0434 (15) 0.0067 (12)
C51 0.0601 (10) 0.0442 (9) 0.0375 (8) −0.0005 (8) 0.0229 (8) 0.0002 (7)
C52 0.0614 (11) 0.0619 (12) 0.0456 (10) 0.0028 (9) 0.0258 (9) 0.0055 (8)
C53 0.0621 (12) 0.0698 (14) 0.0523 (11) 0.0071 (10) 0.0151 (10) 0.0049 (10)
C54 0.0925 (17) 0.0563 (12) 0.0389 (10) 0.0054 (11) 0.0177 (10) 0.0057 (8)
C55 0.1014 (18) 0.0541 (11) 0.0450 (10) 0.0006 (11) 0.0394 (11) 0.0034 (8)
C56 0.0717 (12) 0.0527 (10) 0.0476 (10) 0.0014 (9) 0.0336 (10) 0.0007 (8)
C61 0.0484 (9) 0.0446 (9) 0.0340 (8) 0.0047 (7) 0.0153 (7) 0.0027 (6)
C62 0.0521 (10) 0.0500 (10) 0.0378 (8) 0.0048 (8) 0.0185 (7) 0.0044 (7)
C63 0.0652 (12) 0.0610 (12) 0.0418 (9) 0.0151 (9) 0.0235 (9) 0.0022 (8)
C64 0.0768 (14) 0.0473 (10) 0.0496 (10) 0.0156 (9) 0.0204 (10) 0.0003 (8)
C65 0.0806 (14) 0.0430 (10) 0.0615 (12) 0.0031 (9) 0.0288 (11) 0.0079 (9)
C66 0.0666 (12) 0.0526 (10) 0.0526 (10) 0.0043 (9) 0.0307 (9) 0.0085 (8)
Cl2 0.1170 (7) 0.0679 (8) 0.1060 (7) −0.0285 (5) −0.0141 (5) 0.0118 (5)

Geometric parameters (Å, °)

Cl1—C22 1.748 (3) C61—C62 1.394 (3)
Cl2—C22 1.70 (2) C62—C63 1.384 (3)
N1—C6 1.282 (2) C63—C64 1.378 (3)
N1—C2 1.461 (3) C64—C65 1.373 (4)
N4—C3 1.462 (3) C65—C66 1.388 (3)
N4—C5 1.284 (3) C2—H2 0.9800
C2—C3 1.496 (4) C3—H3 0.9800
C2—C21 1.512 (3) C23—H23 0.9300
C3—C31 1.504 (4) C24—H24 0.9300
C5—C51 1.488 (3) C25—H25 0.9300
C5—C6 1.491 (3) C26—H26 0.9300
C6—C61 1.488 (3) C31—H31A 0.9600
C21—C26 1.387 (3) C31—H31B 0.9600
C21—C22 1.379 (3) C31—H31C 0.9600
C22—C23 1.384 (4) C52—H52 0.9300
C23—C24 1.364 (4) C53—H53 0.9300
C24—C25 1.370 (4) C54—H54 0.9300
C25—C26 1.378 (3) C55—H55 0.9300
C51—C52 1.383 (3) C56—H56 0.9300
C51—C56 1.392 (3) C62—H62 0.9300
C52—C53 1.392 (3) C63—H63 0.9300
C53—C54 1.379 (4) C64—H64 0.9300
C54—C55 1.369 (5) C65—H65 0.9300
C55—C56 1.375 (3) C66—H66 0.9300
C61—C66 1.392 (3)
C2—N1—C6 116.95 (16) C61—C66—C65 120.5 (2)
C3—N4—C5 117.38 (19) N1—C2—H2 108.00
N1—C2—C3 110.66 (17) C3—C2—H2 108.00
N1—C2—C21 109.42 (15) C21—C2—H2 108.00
C3—C2—C21 113.6 (2) N4—C3—H3 107.00
N4—C3—C2 111.1 (2) C2—C3—H3 107.00
N4—C3—C31 109.0 (2) C31—C3—H3 107.00
C2—C3—C31 115.8 (2) C22—C23—H23 120.00
N4—C5—C6 119.82 (16) C24—C23—H23 120.00
N4—C5—C51 117.16 (17) C23—C24—H24 120.00
C6—C5—C51 122.98 (18) C25—C24—H24 120.00
N1—C6—C5 121.10 (17) C24—C25—H25 120.00
N1—C6—C61 116.89 (16) C26—C25—H25 120.00
C5—C6—C61 121.90 (15) C21—C26—H26 119.00
C2—C21—C22 124.1 (2) C25—C26—H26 119.00
C2—C21—C26 119.70 (18) C3—C31—H31A 109.00
C22—C21—C26 116.25 (19) C3—C31—H31B 109.00
Cl1—C22—C21 120.9 (2) C3—C31—H31C 109.00
Cl1—C22—C23 117.1 (2) H31A—C31—H31B 109.00
C21—C22—C23 122.0 (2) H31A—C31—H31C 109.00
Cl2—C22—C21 99.7 (10) H31B—C31—H31C 109.00
Cl2—C22—C23 138.3 (10) C51—C52—H52 120.00
C22—C23—C24 120.0 (3) C53—C52—H52 120.00
C23—C24—C25 119.8 (2) C52—C53—H53 120.00
C24—C25—C26 119.6 (2) C54—C53—H53 120.00
C21—C26—C25 122.4 (2) C53—C54—H54 120.00
C5—C51—C52 121.65 (19) C55—C54—H54 120.00
C5—C51—C56 119.2 (2) C54—C55—H55 120.00
C52—C51—C56 118.88 (17) C56—C55—H55 120.00
C51—C52—C53 120.1 (2) C51—C56—H56 120.00
C52—C53—C54 120.2 (3) C55—C56—H56 120.00
C53—C54—C55 119.7 (2) C61—C62—H62 120.00
C54—C55—C56 120.6 (2) C63—C62—H62 120.00
C51—C56—C55 120.5 (2) C62—C63—H63 120.00
C6—C61—C62 119.88 (16) C64—C63—H63 120.00
C6—C61—C66 121.54 (19) C63—C64—H64 120.00
C62—C61—C66 118.39 (17) C65—C64—H64 120.00
C61—C62—C63 120.57 (18) C64—C65—H65 120.00
C62—C63—C64 120.4 (2) C66—C65—H65 120.00
C63—C64—C65 119.8 (2) C61—C66—H66 120.00
C64—C65—C66 120.4 (2) C65—C66—H66 120.00
C6—N1—C2—C3 35.9 (3) C2—C21—C22—Cl1 −0.7 (4)
C6—N1—C2—C21 161.74 (19) C2—C21—C22—C23 −179.8 (3)
C2—N1—C6—C5 1.1 (3) C26—C21—C22—Cl1 179.7 (2)
C2—N1—C6—C61 −175.12 (18) C26—C21—C22—C23 0.5 (4)
C5—N4—C3—C2 35.6 (3) C2—C21—C26—C25 179.9 (2)
C5—N4—C3—C31 164.2 (2) C22—C21—C26—C25 −0.5 (4)
C3—N4—C5—C6 1.5 (3) Cl1—C22—C23—C24 −179.0 (3)
C3—N4—C5—C51 −176.3 (2) C21—C22—C23—C24 0.2 (5)
N1—C2—C3—N4 −54.1 (2) C22—C23—C24—C25 −1.0 (5)
N1—C2—C3—C31 −179.0 (2) C23—C24—C25—C26 1.1 (5)
C21—C2—C3—N4 −177.59 (17) C24—C25—C26—C21 −0.3 (4)
C21—C2—C3—C31 57.5 (3) C5—C51—C52—C53 −173.11 (19)
N1—C2—C21—C22 130.8 (3) C56—C51—C52—C53 1.4 (3)
N1—C2—C21—C26 −49.6 (3) C5—C51—C56—C55 174.06 (18)
C3—C2—C21—C22 −105.1 (3) C52—C51—C56—C55 −0.6 (3)
C3—C2—C21—C26 74.6 (3) C51—C52—C53—C54 −1.1 (3)
N4—C5—C6—N1 −22.5 (3) C52—C53—C54—C55 0.0 (3)
N4—C5—C6—C61 153.6 (2) C53—C54—C55—C56 0.9 (3)
C51—C5—C6—N1 155.2 (2) C54—C55—C56—C51 −0.6 (3)
C51—C5—C6—C61 −28.8 (3) C6—C61—C62—C63 175.09 (18)
N4—C5—C51—C52 142.8 (2) C66—C61—C62—C63 0.0 (3)
N4—C5—C51—C56 −31.7 (3) C6—C61—C66—C65 −173.53 (19)
C6—C5—C51—C52 −35.0 (3) C62—C61—C66—C65 1.5 (3)
C6—C5—C51—C56 150.53 (19) C61—C62—C63—C64 −1.4 (3)
N1—C6—C61—C62 −38.6 (3) C62—C63—C64—C65 1.4 (3)
N1—C6—C61—C66 136.3 (2) C63—C64—C65—C66 0.1 (3)
C5—C6—C61—C62 145.14 (19) C64—C65—C66—C61 −1.6 (3)
C5—C6—C61—C66 −39.9 (3)

Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the C21–C26, C51–C56 and C61–C66 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C24—H24···Cg4i 0.93 2.80 3.643 (3) 152
C53—H53···Cg2ii 0.93 2.99 3.873 (4) 159
C64—H64···Cg3iii 0.93 2.88 3.729 (2) 153

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2451).

References

  1. Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o546. [DOI] [PMC free article] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sondhi, S. M., Singh, N., Rajvanshi, S., Johar, M., Shukla, R., Raghubir, R. & Dastidar, S. G. (2005). Indian J. Chem. Sect. B, 44, 387–399.
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Takechi, S., Kashige, N., Ishida, T. & Yamaguchi, T. (2011). J. Basic Appl. Chem. 1, 1–7.
  8. Takeda, O., Takechi, S., Katoh, T. & Yamaguchi, T. (2005). Biol. Pharm. Bull. 28, 1161–1164. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036336/wn2451sup1.cif

e-67-o2598-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036336/wn2451Isup2.hkl

e-67-o2598-Isup2.hkl (184KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036336/wn2451Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES