Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2813. doi: 10.1107/S1600536811039225

(2,7-Dimeth­oxy­naphthalen-1-yl)(2,4,6-trimethyl­phen­yl)methanone

Toyokazu Muto a, Kosuke Sasagawa a, Akiko Okamoto a,*, Hideaki Oike a, Noriyuki Yonezawa a
PMCID: PMC3201449  PMID: 22064621

Abstract

In the title compound, C22H22O3, the dihedral angle between the naphthalene ring system and the benzene ring is 82.93 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 50.11 (6) and 46.87 (7)°, respectively, with the naphthalene ring system and the benzene ring. In the crystal, three types of weak inter­molecular C—H⋯O inter­actions are observed.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010); Watanabe et al. (2010, 2011).graphic file with name e-67-o2813-scheme1.jpg

Experimental

Crystal data

  • C22H22O3

  • M r = 334.40

  • Monoclinic, Inline graphic

  • a = 10.5238 (4) Å

  • b = 12.2289 (4) Å

  • c = 15.0504 (5) Å

  • β = 111.340 (2)°

  • V = 1804.11 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 193 K

  • 0.50 × 0.40 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.739, T max = 0.882

  • 32585 measured reflections

  • 3295 independent reflections

  • 2945 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.08

  • 3295 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039225/zk2031sup1.cif

e-67-o2813-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039225/zk2031Isup2.hkl

e-67-o2813-Isup2.hkl (158.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039225/zk2031Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.54 3.3756 (18) 147
C7—H7⋯O2ii 0.95 2.60 3.466 (2) 152
C18—H18B⋯O3iii 0.98 2.59 3.471 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic acylation of 2,7-dimethoxynaphthalene, peri-arylcarbonylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). Recently, we have reported the crystal structures of several 1,8-diarylcarbonylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The arylcarbonyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of arylcarbonylated naphthalene homologues, 1-monoarylcarbonylated naphthalene compounds and the β-isomers of 3-monoarylcarbonylated naphthalene compounds, have been also clarified such as (2,7-dimethoxynaphthalen-1-yl)(4-fluorophenyl)methanone (Watanabe et al., 2011) and (3,6-dimethoxy-2-naphthyl)(4-fluorobenzoyl)methanone (Watanabe, Muto, Nagasawa et al., 2010).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 1-monoarylcarbonylnaphthalene bearing three methyl groups on the arylcarbonyl group, is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 82.93 (5)°. The carbonyl group makes torsion angles of -130.97 (14) and -131.79 (13)°, respectively, with the naphthalene ring and the benzene ring [C2—C1—C11—O1 torsion angle = -130.97 (14)°; O1—C11—C12—C13 torsion angle = -131.79 (13)°]. In addition, two types of intramolecular C—H···O interactions are observed (C9—H9···O1 = 2.39 Å and C22—H22a···O1 = 2.51 Å; Fig. 1 and Table 1).

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by three types of C—H···O hydrogen bondings: Intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H4) of the naphthalene ring of the adjacent molecule is formed along the c axis (C4—H4···O1i; Fig. 2 and Table 1). There is also intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of 2-methoxy group and one hydrogen atom (H7) of the naphthalene ring of the adjacent molecule along the b axis (C7—H7···O2ii; Fig. 3 and Table 1). Furthermore, an intermolecular C—H···O hydrogen bonding between the oxygen atom (O3) of the 7-methoxy group and one hydrogen atom (H18b) of the 2-methoxy group of the adjacent molecule along the ac diagonal (C18—H18b···O3 iii; Fig. 4 and Table 1) is observed.

Experimental

To a 10 ml flask, 2,4,6-trimethylbenzoyl chloride (0.55 mmol, 100 mg), aluminium chloride (0.60 mmol, 80.0 mg) and methylene chloride (1.25 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (0.50 mmol, 94.0 mg) was added. After the reaction mixture was stirred at 273 K for 6 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from methanol (yield 56%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from hexane and CHCl3.

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids at 50% probability and two types of weak intramolecular C—H···O interactions.

Fig. 2.

Fig. 2.

Intermolecular C4—H4···O1i interactions, viewed along the b axis [symmetry code: (i) x, -y + 1/2, z - 1/2].

Fig. 3.

Fig. 3.

A packing diagram of the title compound, showing intermolecular C7—H7···O2 ii interactions [symmetry code: (ii) –x + 1, y + 1/2, -z + 3/2].

Fig. 4.

Fig. 4.

A packing diagram of the title compound, showing intermolecular C18—H18b···O3 iii interactions [symmetry code: (iii) x - 1, -y + 1/2, z - 1/2].

Crystal data

C22H22O3 F(000) = 712
Mr = 334.40 Dx = 1.231 Mg m3
Monoclinic, P21/c Melting point = 408.0–410.0 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54187 Å
a = 10.5238 (4) Å Cell parameters from 15327 reflections
b = 12.2289 (4) Å θ = 3.2–68.1°
c = 15.0504 (5) Å µ = 0.64 mm1
β = 111.340 (2)° T = 193 K
V = 1804.11 (11) Å3 Block, colorless
Z = 4 0.50 × 0.40 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3295 independent reflections
Radiation source: rotating anode 2945 reflections with I > 2σ(I)
graphite Rint = 0.023
Detector resolution: 10.000 pixels mm-1 θmax = 68.2°, θmin = 4.5°
ω scans h = −12→12
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −14→14
Tmin = 0.739, Tmax = 0.882 l = −18→18
32585 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.4166P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3295 reflections Δρmax = 0.26 e Å3
232 parameters Δρmin = −0.25 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0080 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.37023 (10) 0.11774 (8) 0.92101 (7) 0.0486 (3)
O2 0.12893 (10) 0.13899 (8) 0.66767 (6) 0.0484 (3)
O3 0.68551 (11) 0.43082 (10) 1.02164 (8) 0.0629 (3)
C1 0.30975 (12) 0.22890 (10) 0.78444 (9) 0.0358 (3)
C2 0.23219 (13) 0.21417 (11) 0.68881 (9) 0.0400 (3)
C3 0.26304 (15) 0.27038 (12) 0.61732 (10) 0.0481 (4)
H3 0.2094 0.2590 0.5519 0.058*
C4 0.37039 (16) 0.34113 (12) 0.64283 (10) 0.0497 (4)
H4 0.3916 0.3780 0.5944 0.060*
C5 0.45068 (14) 0.36101 (11) 0.73909 (10) 0.0438 (3)
C6 0.55965 (15) 0.43751 (12) 0.76592 (12) 0.0539 (4)
H6 0.5804 0.4755 0.7178 0.065*
C7 0.63442 (15) 0.45735 (13) 0.85870 (13) 0.0565 (4)
H7 0.7077 0.5081 0.8752 0.068*
C8 0.60373 (14) 0.40273 (12) 0.93107 (11) 0.0487 (3)
C9 0.50014 (13) 0.32777 (11) 0.90886 (9) 0.0415 (3)
H9 0.4809 0.2915 0.9584 0.050*
C10 0.42134 (12) 0.30417 (10) 0.81193 (9) 0.0379 (3)
C11 0.27808 (13) 0.16488 (10) 0.85879 (8) 0.0358 (3)
C12 0.13503 (13) 0.15946 (10) 0.85716 (8) 0.0353 (3)
C13 0.05612 (13) 0.25478 (10) 0.84617 (9) 0.0385 (3)
C14 −0.07551 (14) 0.24589 (11) 0.84654 (9) 0.0437 (3)
H14 −0.1292 0.3102 0.8389 0.052*
C15 −0.13086 (14) 0.14637 (12) 0.85775 (10) 0.0458 (3)
C16 −0.05042 (14) 0.05397 (11) 0.87003 (10) 0.0462 (3)
H16 −0.0867 −0.0146 0.8788 0.055*
C17 0.08180 (14) 0.05783 (10) 0.86999 (9) 0.0406 (3)
C18 0.02367 (17) 0.14400 (14) 0.57628 (12) 0.0638 (4)
H18A −0.0067 0.2199 0.5618 0.077*
H18B −0.0533 0.0986 0.5759 0.077*
H18C 0.0583 0.1170 0.5281 0.077*
C19 0.66243 (19) 0.37810 (16) 1.09841 (13) 0.0703 (5)
H19A 0.6729 0.2989 1.0937 0.084*
H19B 0.5698 0.3944 1.0955 0.084*
H19C 0.7287 0.4046 1.1590 0.084*
C20 0.11031 (16) 0.36753 (11) 0.83889 (12) 0.0504 (4)
H20A 0.1250 0.3741 0.7784 0.061*
H20B 0.1969 0.3789 0.8921 0.061*
H20C 0.0441 0.4227 0.8414 0.061*
C21 −0.27449 (16) 0.14021 (15) 0.85686 (14) 0.0639 (5)
H21A −0.2992 0.0636 0.8606 0.077*
H21B −0.3376 0.1726 0.7977 0.077*
H21C −0.2800 0.1805 0.9117 0.077*
C22 0.16095 (16) −0.04745 (12) 0.87986 (13) 0.0569 (4)
H22A 0.2396 −0.0467 0.9401 0.068*
H22B 0.1927 −0.0544 0.8265 0.068*
H22C 0.1018 −0.1095 0.8795 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0445 (5) 0.0555 (6) 0.0429 (5) 0.0012 (4) 0.0126 (4) 0.0122 (4)
O2 0.0554 (6) 0.0534 (6) 0.0327 (5) −0.0105 (4) 0.0115 (4) −0.0034 (4)
O3 0.0491 (6) 0.0660 (7) 0.0622 (7) −0.0138 (5) 0.0066 (5) −0.0090 (5)
C1 0.0394 (6) 0.0382 (6) 0.0329 (6) 0.0018 (5) 0.0168 (5) 0.0003 (5)
C2 0.0472 (7) 0.0402 (7) 0.0346 (7) 0.0016 (5) 0.0175 (6) −0.0010 (5)
C3 0.0649 (9) 0.0500 (8) 0.0325 (7) 0.0041 (7) 0.0213 (6) 0.0012 (6)
C4 0.0663 (9) 0.0480 (8) 0.0462 (8) 0.0050 (7) 0.0341 (7) 0.0081 (6)
C5 0.0460 (7) 0.0439 (7) 0.0491 (8) 0.0041 (6) 0.0262 (6) 0.0052 (6)
C6 0.0526 (8) 0.0497 (8) 0.0706 (10) −0.0007 (6) 0.0359 (8) 0.0089 (7)
C7 0.0431 (8) 0.0493 (8) 0.0803 (11) −0.0071 (6) 0.0261 (8) 0.0016 (8)
C8 0.0373 (7) 0.0473 (8) 0.0586 (9) 0.0000 (6) 0.0139 (6) −0.0044 (6)
C9 0.0379 (7) 0.0440 (7) 0.0437 (7) 0.0003 (5) 0.0162 (6) −0.0008 (6)
C10 0.0378 (6) 0.0386 (7) 0.0414 (7) 0.0038 (5) 0.0192 (5) 0.0010 (5)
C11 0.0418 (7) 0.0358 (6) 0.0290 (6) −0.0019 (5) 0.0121 (5) −0.0027 (5)
C12 0.0415 (7) 0.0390 (6) 0.0263 (6) −0.0027 (5) 0.0135 (5) −0.0024 (5)
C13 0.0460 (7) 0.0379 (6) 0.0329 (6) −0.0023 (5) 0.0158 (5) −0.0040 (5)
C14 0.0467 (7) 0.0437 (7) 0.0431 (7) 0.0019 (6) 0.0192 (6) −0.0054 (6)
C15 0.0452 (7) 0.0524 (8) 0.0439 (7) −0.0053 (6) 0.0209 (6) −0.0090 (6)
C16 0.0525 (8) 0.0431 (7) 0.0477 (8) −0.0099 (6) 0.0237 (6) −0.0031 (6)
C17 0.0471 (7) 0.0386 (7) 0.0374 (7) −0.0031 (5) 0.0170 (6) −0.0002 (5)
C18 0.0582 (9) 0.0627 (10) 0.0544 (10) −0.0011 (8) 0.0014 (8) 0.0022 (7)
C19 0.0629 (10) 0.0782 (12) 0.0547 (10) −0.0117 (9) 0.0035 (8) −0.0099 (9)
C20 0.0562 (8) 0.0371 (7) 0.0630 (9) 0.0008 (6) 0.0276 (7) −0.0007 (6)
C21 0.0526 (9) 0.0698 (10) 0.0793 (12) −0.0065 (8) 0.0358 (9) −0.0094 (9)
C22 0.0570 (9) 0.0386 (7) 0.0753 (11) −0.0005 (6) 0.0243 (8) 0.0049 (7)

Geometric parameters (Å, °)

O1—C11 1.2201 (15) C13—C14 1.3916 (19)
O2—C2 1.3696 (16) C13—C20 1.5112 (18)
O2—C18 1.4190 (18) C14—C15 1.3858 (19)
O3—C8 1.3650 (18) C14—H14 0.9500
O3—C19 1.419 (2) C15—C16 1.383 (2)
C1—C2 1.3840 (18) C15—C21 1.5087 (19)
C1—C10 1.4296 (18) C16—C17 1.3924 (19)
C1—C11 1.4991 (16) C16—H16 0.9500
C2—C3 1.4105 (18) C17—C22 1.5111 (19)
C3—C4 1.363 (2) C18—H18A 0.9800
C3—H3 0.9500 C18—H18B 0.9800
C4—C5 1.407 (2) C18—H18C 0.9800
C4—H4 0.9500 C19—H19A 0.9800
C5—C6 1.420 (2) C19—H19B 0.9800
C5—C10 1.4236 (18) C19—H19C 0.9800
C6—C7 1.352 (2) C20—H20A 0.9800
C6—H6 0.9500 C20—H20B 0.9800
C7—C8 1.412 (2) C20—H20C 0.9800
C7—H7 0.9500 C21—H21A 0.9800
C8—C9 1.3694 (19) C21—H21B 0.9800
C9—C10 1.4208 (18) C21—H21C 0.9800
C9—H9 0.9500 C22—H22A 0.9800
C11—C12 1.4982 (17) C22—H22B 0.9800
C12—C17 1.4051 (17) C22—H22C 0.9800
C12—C13 1.4056 (18)
C2—O2—C18 118.01 (11) C15—C14—H14 118.9
C8—O3—C19 117.79 (12) C13—C14—H14 118.9
C2—C1—C10 119.75 (11) C16—C15—C14 118.02 (12)
C2—C1—C11 120.07 (11) C16—C15—C21 121.52 (13)
C10—C1—C11 120.17 (11) C14—C15—C21 120.46 (13)
O2—C2—C1 116.54 (11) C15—C16—C17 122.36 (12)
O2—C2—C3 122.23 (12) C15—C16—H16 118.8
C1—C2—C3 121.16 (12) C17—C16—H16 118.8
C4—C3—C2 119.46 (13) C16—C17—C12 118.59 (12)
C4—C3—H3 120.3 C16—C17—C22 119.09 (12)
C2—C3—H3 120.3 C12—C17—C22 122.28 (12)
C3—C4—C5 121.69 (12) O2—C18—H18A 109.5
C3—C4—H4 119.2 O2—C18—H18B 109.5
C5—C4—H4 119.2 H18A—C18—H18B 109.5
C4—C5—C6 121.78 (13) O2—C18—H18C 109.5
C4—C5—C10 119.41 (13) H18A—C18—H18C 109.5
C6—C5—C10 118.80 (13) H18B—C18—H18C 109.5
C7—C6—C5 121.20 (13) O3—C19—H19A 109.5
C7—C6—H6 119.4 O3—C19—H19B 109.5
C5—C6—H6 119.4 H19A—C19—H19B 109.5
C6—C7—C8 120.10 (14) O3—C19—H19C 109.5
C6—C7—H7 120.0 H19A—C19—H19C 109.5
C8—C7—H7 120.0 H19B—C19—H19C 109.5
O3—C8—C9 124.67 (14) C13—C20—H20A 109.5
O3—C8—C7 114.41 (13) C13—C20—H20B 109.5
C9—C8—C7 120.91 (14) H20A—C20—H20B 109.5
C8—C9—C10 120.13 (13) C13—C20—H20C 109.5
C8—C9—H9 119.9 H20A—C20—H20C 109.5
C10—C9—H9 119.9 H20B—C20—H20C 109.5
C9—C10—C5 118.84 (12) C15—C21—H21A 109.5
C9—C10—C1 122.61 (11) C15—C21—H21B 109.5
C5—C10—C1 118.49 (12) H21A—C21—H21B 109.5
O1—C11—C12 120.33 (11) C15—C21—H21C 109.5
O1—C11—C1 119.28 (11) H21A—C21—H21C 109.5
C12—C11—C1 120.39 (10) H21B—C21—H21C 109.5
C17—C12—C13 120.11 (12) C17—C22—H22A 109.5
C17—C12—C11 119.04 (11) C17—C22—H22B 109.5
C13—C12—C11 120.82 (11) H22A—C22—H22B 109.5
C14—C13—C12 118.76 (12) C17—C22—H22C 109.5
C14—C13—C20 118.30 (12) H22A—C22—H22C 109.5
C12—C13—C20 122.87 (12) H22B—C22—H22C 109.5
C15—C14—C13 122.15 (12)
C18—O2—C2—C1 161.62 (13) C11—C1—C10—C9 −4.59 (18)
C18—O2—C2—C3 −21.32 (19) C2—C1—C10—C5 −0.93 (18)
C10—C1—C2—O2 178.56 (11) C11—C1—C10—C5 178.15 (11)
C11—C1—C2—O2 −0.52 (17) C2—C1—C11—O1 130.97 (13)
C10—C1—C2—C3 1.46 (19) C10—C1—C11—O1 −48.11 (17)
C11—C1—C2—C3 −177.62 (12) C2—C1—C11—C12 −49.47 (16)
O2—C2—C3—C4 −177.48 (12) C10—C1—C11—C12 131.46 (12)
C1—C2—C3—C4 −0.5 (2) O1—C11—C12—C17 −46.12 (17)
C2—C3—C4—C5 −0.9 (2) C1—C11—C12—C17 134.33 (12)
C3—C4—C5—C6 −177.78 (14) O1—C11—C12—C13 131.78 (13)
C3—C4—C5—C10 1.4 (2) C1—C11—C12—C13 −47.77 (16)
C4—C5—C6—C7 178.76 (14) C17—C12—C13—C14 −1.15 (18)
C10—C5—C6—C7 −0.4 (2) C11—C12—C13—C14 −179.03 (11)
C5—C6—C7—C8 −0.8 (2) C17—C12—C13—C20 175.68 (12)
C19—O3—C8—C9 0.5 (2) C11—C12—C13—C20 −2.20 (18)
C19—O3—C8—C7 −179.03 (14) C12—C13—C14—C15 0.25 (19)
C6—C7—C8—O3 −179.25 (14) C20—C13—C14—C15 −176.73 (13)
C6—C7—C8—C9 1.2 (2) C13—C14—C15—C16 0.8 (2)
O3—C8—C9—C10 −179.74 (12) C13—C14—C15—C21 −179.45 (13)
C7—C8—C9—C10 −0.2 (2) C14—C15—C16—C17 −1.0 (2)
C8—C9—C10—C5 −1.05 (19) C21—C15—C16—C17 179.27 (13)
C8—C9—C10—C1 −178.31 (12) C15—C16—C17—C12 0.1 (2)
C4—C5—C10—C9 −177.84 (12) C15—C16—C17—C22 −177.54 (13)
C6—C5—C10—C9 1.38 (19) C13—C12—C17—C16 0.97 (18)
C4—C5—C10—C1 −0.47 (18) C11—C12—C17—C16 178.89 (11)
C6—C5—C10—C1 178.75 (12) C13—C12—C17—C22 178.55 (12)
C2—C1—C10—C9 176.34 (11) C11—C12—C17—C22 −3.53 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.95 2.54 3.3756 (18) 147
C7—H7···O2ii 0.95 2.60 3.466 (2) 152
C9—H9···O1 0.95 2.39 2.9464 (17) 117
C18—H18B···O3iii 0.98 2.59 3.471 (2) 149
C22—H22A···O1 0.98 2.51 2.885 (2) 102

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2031).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  4. Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. [DOI] [PMC free article] [PubMed]
  5. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. In the press.
  6. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  7. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712. [DOI] [PMC free article] [PubMed]
  11. Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o1466. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811039225/zk2031sup1.cif

e-67-o2813-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039225/zk2031Isup2.hkl

e-67-o2813-Isup2.hkl (158.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039225/zk2031Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES