Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2596. doi: 10.1107/S1600536811036142

4-(4-Chloro­phen­yl)-8-methyl-2-oxo-1,2,5,6,7,8-hexa­hydro­quinoline-3-carbonitrile

Abdullah M Asiri a,b, Abdulrahman O Al-Youbi a, Hassan M Faidallah a, Khadija O Badahdah a, Seik Weng Ng c,a,*
PMCID: PMC3201532  PMID: 22064998

Abstract

The six-membered N-heterocyclic ring of the title compound, C17H15ClN2O, is fused with a methyl-substituted cyclo­hexene ring. The approximately planar nitro­gen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows a trigonal–planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclo­hexene ring adopts a half-chair conformation. In the crystal, inversion-related mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, generating dimers.

Related literature

For a related compound, see: Asiri et al. (2011).graphic file with name e-67-o2596-scheme1.jpg

Experimental

Crystal data

  • C17H15ClN2O

  • M r = 298.76

  • Monoclinic, Inline graphic

  • a = 18.6304 (4) Å

  • b = 18.7399 (4) Å

  • c = 8.5209 (2) Å

  • β = 90.229 (2)°

  • V = 2974.89 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.30 × 0.03 × 0.03 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.550, T max = 0.935

  • 10387 measured reflections

  • 3014 independent reflections

  • 2682 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.187

  • S = 1.03

  • 3014 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036142/xu5320sup1.cif

e-67-o2596-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036142/xu5320Isup2.hkl

e-67-o2596-Isup2.hkl (148KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036142/xu5320Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (4) 1.84 (4) 2.744 (3) 174 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank King Abdulaziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

We have reported the synthesis of 2-oxo-4-phenyl-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile by using the reaction of benzaldehyde, 1-tetralone and ethyl cyanoacetate. The last reactant is incorporated into the product to form a part of the six-membered nitrogen-bearing ring, which is now endowed with an exocyclic cyanide group (Asiri et al., 2011). In the present study, the use of 2-methylcyclohexane leads to the formation of the analogous compound with a cyclohexene ring fused with the six-membered nitrogen-bearing ring (Scheme I). The planar nitrogen-bearing ring (r.m.s. deviation 0.019 Å) is aromatic, and the N atom shows trigonal planar coordination; its benzene substituent is aligned at 77.1 (1) °. The cyclohexene ring adopts a half-chair conformation (Fig. 1). Two molecules are linked about a center-of-inversion by an N–H···O hydrogen bond to generate a dimer (Table 1).

Experimental

4-Chlorobenzaldehyde (1.4 g, 10 mmol), 2-methylcyclohexanone (1.2 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) were heated in ethanol (50 ml) for 6 h. The solid product was collected, washed with water and then recrystallized from ethanol.

Refinement

Carbon–bound H-atoms were placed in calculated positions [C–H 0.95–0.99 Å; Uiso(H) 1.2–1.5 Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map and was freely refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C17H15ClN2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C17H15ClN2O F(000) = 1248
Mr = 298.76 Dx = 1.334 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yc Cell parameters from 4602 reflections
a = 18.6304 (4) Å θ = 3.3–74.1°
b = 18.7399 (4) Å µ = 2.27 mm1
c = 8.5209 (2) Å T = 100 K
β = 90.229 (2)° Prism, colorless
V = 2974.89 (11) Å3 0.30 × 0.03 × 0.03 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 3014 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2682 reflections with I > 2σ(I)
Mirror Rint = 0.025
Detector resolution: 10.4041 pixels mm-1 θmax = 74.3°, θmin = 3.4°
ω scan h = −22→23
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −12→23
Tmin = 0.550, Tmax = 0.935 l = −10→10
10387 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0973P)2 + 6.1309P] where P = (Fo2 + 2Fc2)/3
3014 reflections (Δ/σ)max = 0.001
194 parameters Δρmax = 0.79 e Å3
0 restraints Δρmin = −0.40 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.03066 (4) 0.40727 (4) 1.04897 (10) 0.0561 (3)
O1 0.43887 (13) 0.55097 (12) 0.6145 (3) 0.0732 (8)
N1 0.43862 (13) 0.43226 (13) 0.5593 (3) 0.0513 (6)
N2 0.28356 (14) 0.58993 (14) 0.8353 (3) 0.0520 (6)
C1 0.41066 (14) 0.36551 (15) 0.5654 (4) 0.0448 (6)
C2 0.44737 (15) 0.31216 (15) 0.4544 (4) 0.0458 (6)
H2 0.4536 0.3360 0.3503 0.055*
C3 0.52222 (16) 0.29166 (17) 0.5165 (4) 0.0531 (7)
H3A 0.5514 0.3348 0.5291 0.080*
H3B 0.5455 0.2594 0.4418 0.080*
H3C 0.5175 0.2677 0.6182 0.080*
C4 0.39803 (15) 0.24814 (15) 0.4311 (3) 0.0461 (6)
H4A 0.4254 0.2088 0.3818 0.055*
H4B 0.3584 0.2615 0.3590 0.055*
C5 0.36656 (18) 0.22215 (15) 0.5866 (3) 0.0498 (7)
H5A 0.4062 0.2102 0.6598 0.060*
H5B 0.3382 0.1783 0.5679 0.060*
C6 0.31816 (16) 0.27916 (15) 0.6619 (4) 0.0480 (7)
H6A 0.2711 0.2795 0.6074 0.058*
H6B 0.3097 0.2664 0.7731 0.058*
C7 0.35036 (15) 0.35264 (14) 0.6542 (3) 0.0425 (6)
C8 0.31531 (15) 0.41183 (14) 0.7254 (3) 0.0402 (6)
C9 0.34494 (15) 0.47924 (15) 0.7151 (3) 0.0453 (6)
C10 0.41041 (17) 0.49152 (16) 0.6296 (4) 0.0532 (7)
C11 0.31115 (15) 0.54044 (16) 0.7834 (3) 0.0451 (6)
C12 0.24447 (15) 0.40529 (14) 0.8035 (3) 0.0396 (6)
C13 0.23840 (17) 0.38018 (16) 0.9559 (3) 0.0480 (7)
H13 0.2797 0.3628 1.0093 0.058*
C14 0.17279 (18) 0.38018 (16) 1.0307 (3) 0.0512 (7)
H14 0.1688 0.3630 1.1352 0.061*
C15 0.11297 (16) 0.40541 (14) 0.9520 (3) 0.0436 (6)
C16 0.11705 (16) 0.43002 (17) 0.8006 (4) 0.0504 (7)
H16 0.0753 0.4465 0.7474 0.060*
C17 0.18293 (16) 0.43036 (18) 0.7268 (3) 0.0502 (7)
H17 0.1865 0.4479 0.6225 0.060*
H1 0.481 (2) 0.439 (2) 0.508 (5) 0.078 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0605 (5) 0.0437 (4) 0.0642 (5) −0.0013 (3) 0.0181 (4) 0.0010 (3)
O1 0.0666 (14) 0.0474 (13) 0.106 (2) −0.0271 (11) 0.0384 (14) −0.0337 (13)
N1 0.0412 (13) 0.0416 (13) 0.0711 (17) −0.0104 (10) 0.0060 (12) −0.0181 (12)
N2 0.0544 (14) 0.0540 (15) 0.0478 (13) −0.0066 (11) 0.0023 (11) −0.0180 (11)
C1 0.0362 (13) 0.0401 (14) 0.0580 (16) −0.0042 (11) −0.0058 (11) −0.0078 (12)
C2 0.0416 (14) 0.0358 (13) 0.0599 (17) −0.0031 (11) 0.0022 (12) 0.0042 (12)
C3 0.0464 (16) 0.0499 (17) 0.0631 (18) −0.0040 (13) 0.0025 (13) 0.0048 (14)
C4 0.0467 (14) 0.0404 (14) 0.0510 (16) −0.0046 (12) 0.0032 (12) −0.0013 (12)
C5 0.0692 (19) 0.0329 (13) 0.0472 (15) −0.0062 (12) 0.0010 (13) 0.0046 (11)
C6 0.0484 (15) 0.0383 (14) 0.0573 (16) −0.0057 (11) −0.0037 (12) 0.0050 (12)
C7 0.0445 (14) 0.0358 (13) 0.0472 (14) −0.0024 (11) −0.0113 (11) −0.0001 (11)
C8 0.0444 (14) 0.0418 (14) 0.0342 (12) −0.0054 (11) −0.0083 (10) −0.0001 (10)
C9 0.0460 (14) 0.0415 (14) 0.0484 (15) −0.0097 (11) 0.0036 (11) −0.0107 (11)
C10 0.0494 (15) 0.0440 (16) 0.0662 (19) −0.0134 (12) 0.0103 (14) −0.0193 (14)
C11 0.0469 (14) 0.0465 (15) 0.0420 (13) −0.0132 (12) 0.0047 (11) −0.0088 (12)
C12 0.0454 (14) 0.0373 (13) 0.0361 (12) −0.0066 (10) −0.0032 (10) −0.0020 (10)
C13 0.0568 (16) 0.0489 (16) 0.0383 (14) 0.0081 (13) −0.0004 (12) 0.0069 (12)
C14 0.0665 (18) 0.0461 (16) 0.0411 (14) 0.0045 (14) 0.0054 (13) 0.0093 (12)
C15 0.0534 (16) 0.0318 (13) 0.0457 (14) −0.0067 (11) 0.0066 (12) −0.0018 (10)
C16 0.0467 (15) 0.0563 (17) 0.0480 (15) −0.0107 (13) −0.0080 (12) 0.0046 (13)
C17 0.0463 (15) 0.0670 (19) 0.0374 (13) −0.0133 (14) −0.0068 (11) 0.0082 (13)

Geometric parameters (Å, °)

Cl1—C15 1.745 (3) C5—H5B 0.9900
O1—C10 1.241 (4) C6—C7 1.503 (4)
N1—C1 1.356 (4) C6—H6A 0.9900
N1—C10 1.368 (4) C6—H6B 0.9900
N1—H1 0.91 (4) C7—C8 1.424 (4)
N2—C11 1.150 (4) C8—C9 1.382 (4)
C1—C7 1.378 (4) C8—C12 1.486 (4)
C1—C2 1.539 (4) C9—C11 1.433 (4)
C2—C4 1.524 (4) C9—C10 1.442 (4)
C2—C3 1.538 (4) C12—C13 1.386 (4)
C2—H2 1.0000 C12—C17 1.399 (4)
C3—H3A 0.9800 C13—C14 1.381 (4)
C3—H3B 0.9800 C13—H13 0.9500
C3—H3C 0.9800 C14—C15 1.382 (4)
C4—C5 1.531 (4) C14—H14 0.9500
C4—H4A 0.9900 C15—C16 1.373 (4)
C4—H4B 0.9900 C16—C17 1.381 (4)
C5—C6 1.540 (4) C16—H16 0.9500
C5—H5A 0.9900 C17—H17 0.9500
C1—N1—C10 125.7 (3) C5—C6—H6B 109.1
C1—N1—H1 118 (3) H6A—C6—H6B 107.8
C10—N1—H1 116 (3) C1—C7—C8 118.3 (2)
N1—C1—C7 119.8 (3) C1—C7—C6 120.7 (3)
N1—C1—C2 113.8 (2) C8—C7—C6 120.7 (3)
C7—C1—C2 126.1 (2) C9—C8—C7 120.1 (3)
C4—C2—C1 108.8 (2) C9—C8—C12 117.4 (2)
C4—C2—C3 113.2 (2) C7—C8—C12 122.4 (2)
C1—C2—C3 110.8 (2) C8—C9—C11 122.0 (3)
C4—C2—H2 108.0 C8—C9—C10 121.1 (3)
C1—C2—H2 108.0 C11—C9—C10 116.8 (2)
C3—C2—H2 108.0 O1—C10—N1 121.2 (3)
C2—C3—H3A 109.5 O1—C10—C9 124.0 (3)
C2—C3—H3B 109.5 N1—C10—C9 114.8 (2)
H3A—C3—H3B 109.5 N2—C11—C9 178.6 (3)
C2—C3—H3C 109.5 C13—C12—C17 118.8 (3)
H3A—C3—H3C 109.5 C13—C12—C8 121.6 (2)
H3B—C3—H3C 109.5 C17—C12—C8 119.4 (2)
C2—C4—C5 111.7 (2) C14—C13—C12 120.5 (3)
C2—C4—H4A 109.3 C14—C13—H13 119.7
C5—C4—H4A 109.3 C12—C13—H13 119.7
C2—C4—H4B 109.3 C13—C14—C15 119.3 (3)
C5—C4—H4B 109.3 C13—C14—H14 120.3
H4A—C4—H4B 107.9 C15—C14—H14 120.3
C4—C5—C6 111.5 (2) C16—C15—C14 121.6 (3)
C4—C5—H5A 109.3 C16—C15—Cl1 119.4 (2)
C6—C5—H5A 109.3 C14—C15—Cl1 119.0 (2)
C4—C5—H5B 109.3 C15—C16—C17 118.8 (3)
C6—C5—H5B 109.3 C15—C16—H16 120.6
H5A—C5—H5B 108.0 C17—C16—H16 120.6
C7—C6—C5 112.5 (2) C16—C17—C12 120.9 (3)
C7—C6—H6A 109.1 C16—C17—H17 119.5
C5—C6—H6A 109.1 C12—C17—H17 119.5
C7—C6—H6B 109.1
C10—N1—C1—C7 −3.1 (5) C7—C8—C9—C10 1.6 (4)
C10—N1—C1—C2 171.0 (3) C12—C8—C9—C10 −174.6 (3)
N1—C1—C2—C4 −161.8 (3) C1—N1—C10—O1 −178.3 (3)
C7—C1—C2—C4 11.8 (4) C1—N1—C10—C9 −0.6 (5)
N1—C1—C2—C3 73.2 (3) C8—C9—C10—O1 178.9 (3)
C7—C1—C2—C3 −113.2 (3) C11—C9—C10—O1 1.0 (5)
C1—C2—C4—C5 −45.4 (3) C8—C9—C10—N1 1.3 (4)
C3—C2—C4—C5 78.3 (3) C11—C9—C10—N1 −176.6 (3)
C2—C4—C5—C6 63.7 (3) C9—C8—C12—C13 −102.5 (3)
C4—C5—C6—C7 −43.5 (3) C7—C8—C12—C13 81.5 (3)
N1—C1—C7—C8 5.8 (4) C9—C8—C12—C17 72.3 (3)
C2—C1—C7—C8 −167.5 (3) C7—C8—C12—C17 −103.8 (3)
N1—C1—C7—C6 179.6 (3) C17—C12—C13—C14 −0.2 (4)
C2—C1—C7—C6 6.3 (4) C8—C12—C13—C14 174.5 (3)
C5—C6—C7—C1 9.8 (4) C12—C13—C14—C15 0.1 (5)
C5—C6—C7—C8 −176.5 (2) C13—C14—C15—C16 0.5 (4)
C1—C7—C8—C9 −5.1 (4) C13—C14—C15—Cl1 −178.4 (2)
C6—C7—C8—C9 −178.9 (3) C14—C15—C16—C17 −1.0 (4)
C1—C7—C8—C12 170.9 (2) Cl1—C15—C16—C17 178.0 (2)
C6—C7—C8—C12 −2.9 (4) C15—C16—C17—C12 0.8 (5)
C7—C8—C9—C11 179.3 (3) C13—C12—C17—C16 −0.2 (4)
C12—C8—C9—C11 3.1 (4) C8—C12—C17—C16 −175.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.91 (4) 1.84 (4) 2.744 (3) 174 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5320).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2468. [DOI] [PMC free article] [PubMed]
  3. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036142/xu5320sup1.cif

e-67-o2596-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036142/xu5320Isup2.hkl

e-67-o2596-Isup2.hkl (148KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036142/xu5320Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES