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The transition from acute to chronic musculoskeletal pain is not well understood. To understand this
transition, it is important to know how peripheral and central sensitization are manifested and how they can
be assessed. A variety of human pain biomarkers have been developed to quantify localized and
widespread musculoskeletal pain. In addition, human surrogate models may be used to induce
sensitization in otherwise healthy volunteers. Pain can arise from different musculoskeletal structures
(e.g. muscles, joints, ligaments, or tendons), and differentiating the origin of pain from those different
structures is a challenge. Tissue specific pain biomarkers can be used to tease these different aspects.
Chronic musculoskeletal pain patients in general show signs of local/central sensitization and spread of
pain to degrees which correlate to pain intensity and duration. From a management perspective, it is
therefore highly important to reduce pain intensity and try to minimize the duration of pain.
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Introduction
Musculoskeletal pain is a major clinical problem and

further research into peripheral and central neuro-

biological mechanisms is required to improve under-

standing, diagnosis and management. Peripheral and

central sensitization are important mechanisms for

musculoskeletal pain conditions. This paper will

focus on the clinical manifestations of localized and

widespread musculoskeletal pain, and the methods to

assess the underlying mechanisms involved. Several

experimental techniques to assess deep tissue hyper-

algesia, temporal summation of pain, descending

pain control, and referred pain are available. These

methods reflect different mechanisms relevant for

symptoms seen in patients (e.g. spreading of pain,

tenderness, widespread hyperalgesia) and offer addi-

tional information to be used for revisions of treat-

ment strategies. A progressive sensitization of central

mechanisms (central sensitization) is a potential

mechanism involved in the transition from acute to

chronic pain, and needs to be assessed by appropriate

biomarkers.

This paper will follow the translational pain

research strategy in the presentation where basic

animal science is translated into human experimental

pain models for investigating fundamental pain

mechanisms in healthy volunteers. As healthy volun-

teers do not behave as for example a sensitized

chronic patient, pain models are needed where the

healthy volunteers can transiently be transformed

into a surrogate model of a patient, i.e. the models act

as a proxy for clinical symptoms where mechanisms

such as peripheral or central sensitization can be

mimicked. Finally, the discovered mechanisms can be

further investigated and possibly modulated in

individuals with musculoskeletal pain problems.

Basic Aspects of Musculoskeletal Pain
Basic aspects of muscle pain
Muscle pain presents as localized, regional or wide-

spread pain. As the clinical pain condition transits

from one to the other, more and more sensory

abnormalities occur1 with widespread hyperalgesia in

chronic conditions. There is evidence from the

literature that the intensity of ongoing pain2 as well

as the duration of pain3 determine the degree of

generalized muscle hyperalgesia. This is important to

note as it underpins the importance of the ongoing

nociception for the chronification process.

The myofascial pain syndrome is an example of a

regional muscle pain condition characterized by lo-

calized tenderness and pain caused by active myofas-

cial trigger points. The affected muscles often display

increased fatigability, stiffness, subjective weakness,
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pain in movement, and restricted range of motion that

is unrelated to joint restrictions.4

The sensation of acute deep-tissue pain is the result

of activation of group III (Adelta-fiber) and group IV

(C-fiber) polymodal muscle nociceptors.5 The noci-

ceptors can be sensitized by release of neuropeptides

from nerve endings. This may eventually lead to hy-

peralgesia and central sensitization of dorsal horn

neurons manifested as prolonged neuronal discharges,

increased responses to defined noxious stimuli, res-

ponse to non-noxious stimuli, and expansion of the

receptive field.5–7 In humans, little information is

available on the peripheral neuronal correlate of

muscle nociceptor activation, and only few micro-

neurographic studies have been published8,9 due to

difficulties in recording and directly activating muscle

nociceptors. Other quantitative techniques are there-

fore needed, and quantitative sensory testing may help

to assess muscle pain, muscle hyperalgesia, and re-

ferred pain.

Basic aspects of tendon/ligament pain
Within the mixed group of musculoskeletal pain com-

plaints are the tendinopathies. Rotator cuff, lateral

elbow and Achilles tendinopathy are well-recognized

examples. The wide range of treatments and lack of

consensus among clinicians might reflect a lack of

knowledge regarding, not only about etiology, but also

basic sensitivity and nociceptive properties of tendon

tissues. Alfredson and Lorentzon10 found high micro-

dialysate glutamate levels in painful Achilles tendino-

pathy subjects. Cat tendon tissue was found to have a

dense innervation of groups III and IV afferent fibers.11

Mense and Simons12 highlight the increased innervation

density of neuropeptide containing fibers in rat calcaneal

tendon peritendineum tissue compared to the associated

muscle. Substance P and calcitonin gene-related peptide

immunoreactivity has been demonstrated in human

tendon tissue13,14 indicating a thin fiber sensory

innervation (most likely serving a nociceptive function).

The nerve endings are mostly found around small

arterioles and blood vessels in the tissue.13,14

The nociceptive features of tendinous tissue have

been described experimentally by tendon tissue injec-

tions of hypertonic saline (Fig. 1),15 glutamate, and

capsaicin16 to study pain reactions and referred pain

patterns. In general, tendons are more sensitive to

experimental pain stimulus compared with similar in-

jections in muscle tissues. Further, N-methyl-D-aspar-

tate and transient receptor potential V1 receptors were

shown to be functionally relevant in tendon tissue as

peri-tendinous injections of glutamate and capsaicin,

respectively, were effective in inducing tendon pain.16

Basic aspects of bone related pain
Bone-associated pain is very frequent in the clinic and

is difficult to treat.17 A common bone disorder is

osteoporosis, which leads to decreased density and

bone fragility and thereby bone-associated pain.18

Cancer patients with bone metastases suffer from

bone-associated pain, and animal models have been

developed to delineate the underlying pain mechan-

isms and to help in the development of new and

better treatment regimes.19

The underlying origin of bone-associated pain is

still not fully understood in either animals or humans.

Kellgren20 investigated the pain sensitivity of bone by

drilling holes in human bone and found that this did

not cause any pain when the periosteum was anes-

thetized. The periosteum is innervated by unmyeli-

nated nociceptive afferents, and pressure stimulation

seems capable of activating these fibers.21 Animal

studies indicate that delta-opioid receptors are located

on those peripheral endings and play an important

role in controlling bone-associated nociception.22 This

information could lead to design of better manage-

ment regimes for bone-related pains as this is a

significant clinical problem. Periosteum pain sensitiv-

ity has not been thoroughly investigated, although

injection of hypertonic saline around the periost

caused more pain than did intramuscular injections.23

Basic aspects of joint pain
Joint pain is a major clinical problem.24 Inflammatory

joint diseases (e.g. rheumatoid arthritis) are the main

reasons for joint pain at younger ages, whereas

osteoarthritis (OA) is more prominent in the elderly.

Osteoarthritis is one of the most common diseases

worldwide, and the major source of OA-associated

pain derives from nociceptive receptors in the da-

maged superficial bone and joint structures. OA pain is

normally localized but it can be also referred (e.g. from

hip OA to knee).

Figure 1 Example of the pain distribution after injecting a

small bolus of hypertonic saline into the muscle, tendon and

tendon-bone junction of the tibialis anterior. Larger referred

pain areas and higher pain intensities were often found after

injecting the tendon-bone junction compared with tendon

and muscle. Based on data from Gibson et al.15
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Most of the basic information on the neurobiology

of joint pain comes from inflammatory models.

Direct animal models exist for OA but they do not

translate very well into humans. A model based on

hypertonic saline injections into the patellar fat pad of

the knee mimics some OA joint pain characteristics

and is probably the best model so far.25 Continuous

and intense nociceptive input from the OA-damaged

knee joint may drive central sensitization in animals.26

Impairment of descending inhibition lowers the exci-

tation threshold of spinal cord neurons to joint noci-

ceptive input, increases the receptive fields of neurons,

and increases ongoing discharges.27

Disease hallmarks in OA are articular cartilage

degeneration and joint space narrowing but generally

OA etiology is unclear. Peripheral nociceptors may be

sensitized by, for example, inflamed synovium and

damaged subchondral bone, and most often there is a

discrepancy between physical damage of joint and

pain symptoms.28 The joint afferent nerves contain

Abeta, Adelta and C-fibers.29 Corpuscular endings of

Abeta-fibers are identified in ligaments and in the

fibrous capsule. C-fibers are identified in all structures

of the joint except the normal cartilage. A particular

group of C-fibers (silent nociceptors) do not respond

to noxious mechanical stimuli under normal condi-

tions but only with ongoing inflammation.30

It has been shown that muscle and joint tissue in

rats show differing sensory responses to experimental

pain, with prolonged allodynia in joint compared to

muscle tissue.31 It would appear prudent to presume

that human muscle and other deep tissue (joint,

tendon, or tendon-bone junction) would similarly

display differing sensory manifestations to experi-

mental pain. From all human joint structures

including ligaments, fibrous capsule, adipose tissue,

meniscus, periosteum and synovial layer, but not

cartilage, pain can be evoked in animals by mechan-

ical, thermal and chemical stimuli.32,33

Recently a new joint pain mapping technology has

been further developed where pressure pain thresh-

olds are assessed from many locations over the joint

(Fig. 2). By mapping the pain threshold levels onto

the Magnetic Resonance Imaging extracted 3D joint

surface it is now possible to get an impression of the

regions of the joint (e.g. the knee) which are sensitized

the most.34 This can later (1) be related to the

radiological findings, or (2) be modulated by analge-

sic or anti-inflammatory compounds.

Central Mechanisms in Musculoskeletal Pain
Referred pain
Musculoskeletal conditions are often accompanied by

local and/or referred pain20 where referred pain is

based on a central mechanism.35 Pain located around

the source of pain is termed local pain or primary

pain, whereas pain felt in a different region away from

the source of pain is termed referred pain. A clear

distinction between spread of pain and referred pain is

not possible at the moment, and these phenomena may

also share common pathophysiological mechanisms.

Central sensitization may be reflected by the size and

location of referred pain.36 Animal studies show expan-

sion and development of new receptive fields by noxious

muscle stimuli.37 In the context of referred pain, the

unmasking of new receptive fields due to central sen-

sitization could mediate this phenomenon.35,38 The

frequency of referred pain from prolonged mechani-

cal stimulation on the anterior tibial muscle is sig-

nificantly higher than for brief stimulation, indicating

the time-dependency of referred pain.15 Moreover,

saline-induced referred pain occurred less frequently in

healthy subjects treated with ketamine compared with

a placebo treatment,39 indicating the involvement of

central sensitization.

Referred pain has been used extensively as a

diagnostic tool in the clinic. In clinical practice, it is

very common to see that pain in one region (e.g. the

neck, shoulder or hip) spreads to another (e.g. the

arm, hand or knee). Pain from muscles and joints is

usually described as deep and diffuse and difficult to

locate precisely.40 In patients with musculoskeletal

pain, the symptoms may be the summation of

referred pain from multiple tissues (e.g. ligament

and muscles at the same time), making it more

difficult to establish the proper diagnosis. Referred

pain from muscle tissues may be similar to referred

pain elicited by other tissues, for example, joints.41

Temporal summation of pain
The facilitated pain response to sequential stimuli of

equal strength is defined as temporal summation and

mimics the initial phase of the wind-up process

measured in animal dorsal horn neurons.42 To elicit

temporal summation, a stimulus is repeated at

constant intervals, for example, five times with a

frequency of 1 Hz, at constant intensity. The intensity

Figure 2 Mapping of the pressure pain sensitivity. Pressure

pain thresholds are assessed on several sites around the knee

in a non-symptomatic healthy subject and in three different

OA pain patients. A novel pain sensitivity mapping approach

illustrates the individual pattern of sensitivity changes in

patients. Based on data from Arendt-Nielsen et al.34
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of the five constant stimuli is increased gradually until

the subject feels an increase in pain perception during

the repeated stimulation. Repeated tapping on a muscle

by a pressure probe has recently been used to assess the

efficacy of temporal summation, and temporal summa-

tion was found to be more potent for deep tissue

stimulation compared with skin stimulation.43

The facilitated degree of temporal summation

indicates an enhanced central integrative mechanism

(central sensitization). Therefore, facilitated temporal

summation of pain in fibromyalgia and OA pain

patients might suggest the involvement of central

sensitization.34,44–46 The threshold for the withdrawal

reflex during repeated stimulation is significantly

lower in fibromyalgia and whiplash patients com-

pared with healthy controls, indicating facilitated

temporal summation (due to central sensitization) in

these patients.47

Descending modulation
The manifestation of central sensitization may also be

due to an imbalance between descending inhibition

and facilitation, which can also be assessed experi-

mentally. Painful heterotopic conditioning stimuli

(thermal, mechanical, electrical, or chemical) have

been utilized to evoke diffuse noxious inhibitory

control or conditioning pain modulation, which is the

decreased pain perception induced by phasic painful

stimulation given elsewhere in the body than the

heterotopic stimulus. It has been suggested that a

dysfunction of diffuse noxious inhibitory control

mechanisms may be an important contributor to the

clinical manifestations of chronic pain48 as also found

in e.g. OA patients with less efficient inhibition of

pressure pain thresholds during experimental arm

pain compared with healthy controls.34 In line, a

recent study has demonstrated reduced activation

of the rostral anterior cingulate cortex in fibro-

myalgia patients versus healthy control subjects;

this brain area is probably essential in descending

pain control.49

Transition from localized acute pain to chronic
widespread pain
Today there are no definitive models explaining the

transition from localized to widespread musculoske-

letal pain conditions (Fig. 3). It is likely that that the

initial excitation and sensitization of nociceptors due

to tissue damage will cause sufficient nociceptive

input to the central pain systems to cause central

sensitization of dorsal horn neurons and/or at higher

brain centers.36 The mechanisms of central sensitiza-

tion may involve an imbalance between descending

inhibition and facilitation. Reorganization of the

higher brain centers may also take place in parallel or

after the sensitization of second-order neurons.

New and advanced quantitative pain assessment

technologies have been developed to obtain more

detailed information about the spreading of muscu-

loskeletal hyperalgesia. By measuring pressure pain

thresholds from many locations, the localized versus

the generalized muscle hyperalgesia can be assessed

and quantified50 and provides new diagnostic possi-

bilities. Generalized hyperalgesia to pressure stimula-

tion has been detected in conditions such as chronic

osteoarthritis pain34 and whiplash pain patients.51

Figure 3 If a pain patient with an initial musculoskeletal pain problem is followed over years and if the problem is not resolved

the pain starts to spread outside the origin of pain due to development of central sensitization. The pain will gradually spread as

illustrated on this sketch and the spread can often not be explained by e.g. disease progression.
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Biomarkers for Musculoskeletal Pain
In medicine, a biomarker has many definitions and

can refer to many different tests (e.g. histology,

serology, genetics, radiology, electrophysiology, ima-

ging). A quantitative human pain biomarker devel-

oped for basic studies, diagnostics or drug screening

is a technique to provoke pain and pain mechanisms

in a standardized way combined with methods for

quantitative assessment of the responses in healthy

volunteers or patients.48

The challenge in developing novel pain manage-

ment approaches is to translate pre-clinical data into

a meaningful clinical context. It is estimated that

maximally 10% of the pre-clinical findings on drug

effects translate to pain patients, and hence it is very

important to know which animal findings are

predictive for a positive or negative effect in humans.

In recent years, more and more translational pain

biomarkers have been developed where techniques,

mechanisms or procedures can be translated from

animals via healthy volunteers to pain patients

providing a mechanism-based approach for charac-

terization of new and existing analgesic compounds

and manual treatments.

In addition to traditional pain biomarkers, surro-

gate pain models are also very useful for under-

standing the complex pain mechanisms involved in

musculoskeletal pain and for assessing the efficacy of

novel pain management strategies. A surrogate pain

model is used to mimic a specific clinical symptom (in

particular sensitization such as allodynia or hyper-

algesia) and hence acts as a proxy for alternations in

the peripheral or central neural apparatus in pain

patients.52 The surrogate models can be applied to

healthy volunteers who transiently act as pain pa-

tients (e.g. short-lasting hyperalgesia), and the effect

of a given treatment on a specific symptom can be

investigated quantitatively under very standardized

conditions. A similar approach has also been used

for assessing the effects of a manual therapy tech-

nique in experimental lateral epicondylalgia.53 In

addition, a surrogate model can be applied to pa-

tients to investigate how much a given pain me-

chanism will be facilitated54 and hence how a given

drug can dampen this specific mechanism, e.g.

capsaicin-induced facilitation of wind-up like pain

in a chronic pain patient.

The biomarker approach in early drug
development for managing musculoskeletal pain
Early phase trials applying pain biomarkers can be

performed in healthy volunteers (phase I mechanism-

based proof-of-concept experimental studies) or in

small clinical studies (phase I mechanism-based

proof-of-concept experimental clinical studies, phase

II mechanism-based proof-of-concept clinical stu-

dies). In later phases, large clinical trials (phase III

and VI pain trials) on, e.g. acute pain, inflammatory

pain, neuropathic pain, musculoskeletal pain, visceral

pain, headache and dysfunctional pain syndromes

can besides standard clinical measures also include

the most sensitive pain bio-markers to provide

additional mechanistic information.55

Surrogate models of muscle pain and
hyperalgesia
Classical studies based on exercise (eccentric) and

the development of muscle soreness (delayed onset

muscle soreness) is one good example of a surrogate

model demonstrating deep tissue hyperalgesia.56

Based on fundamental studies, it is known that a

variety of algogenic substances can provoke muscle

pain,35 and hence many of those techniques have

been transferred to humans for experimental, clinical

and drug screening studies. The algogenic substances

as surrogate models in humans are summarized

below.

Bradykinin, serotonin, nerve growth factor (NGF) and

substance P

Intramuscular injection of bradykinin, serotonin and

substance P produces pain and hyperalgesia.57 NGF is

of particularly interesting compound to use58,59 as

many anti-NGF or TrkA-antagonists are under deve-

lopment. Moreover, NGF induces no pain at injection

but widespread hyperalgesia develops within one day.

Hypertonic saline, glutamate and capsaicin

Intramuscular injection of hypertonic saline,39,60

glutamate61 and capsaicin62 induces local and referred

pain areas. This technique has been used extensively to

evaluate the effect of e.g. manual interventions, the N-

methyl-D-aspartate receptor blocker ketamine, admi-

nistered to block peripheral or central receptors,

morphine, and alfentanil.

Acid (low pH)

Activation of acid-sensing ion channels results in

mechanical hyperalgesia in animals.63 Recently, this

observation has been confirmed in humans where

intramulcular injection of an acidic buffer induced

mechanical muscle hyperalgesia.64 Tissue acidosis is

an important feature in many clinical conditions.65

This observation has prompted the pharmaceutical

industry to start the development of activation of

acid-sensing ion channel receptor antagonists, and

the acid model can act as a biomarker in this area.

Assessing muscle hyperalgesia
Some of the chemical substances injected intramuscu-

larly causes experimentally induced muscle pain

hyperalgesia and hence can act as a proxy for clinical

muscle hyperalgesia (surrogate model). Muscle hyper-

algesia can be assessed by e.g. pressure stimulation

(pressure algometry) or cuff algometry.
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Pressure pain sensitivity can be assessed by means

of a handheld pressure algometer where the probe

can be applied to a hard body structure, such as the

periost,66 joints,34 soft tissue such as muscles,67or

tendons.56 To determine the pressure pain threshold

the intensity is increased, preferably by a fixed rate

(kPa/second), until the person defines it as pain. The

pressure can be increased further until the pain

tolerance threshold is reached. Both Adelta- and C-

fibers mediate pain induced by pressure stimulation.68

This technique is widely used for assessment of

treatment (e.g. morphine, kappa-agonists, oxycodone,

rofecoxib, tramadol, codeine, imipramine, ketamine)

and recently reference values have been published.69

Automated pressure algometers are used in the most

advanced laboratories as they are user-independent.

The pressure is increased at a pre-defined rate for each

assessment.34

The pain sensitivity of a musculoskeletal struc-

ture is dependent on the location of the stimulus

application.70 Therefore, the pressure pain sensitivity

map technology has been developed for volunteer

and patient studies. Within a specific region (e.g. the

knee joint) a set of locations71 are defined from where

pressure pain thresholds are measured. These values

are transferred to a color coded pain sensitivity map

showing the regions of highest sensitivity (volunteers)

or hyperalgesia before and after drug administration

or pain management.

The different pressure devices are all designed to

activate a relatively small area and a restricted struc-

ture. To get a more general response from musculos-

keletal structures a cuff algometer (Fig. 4) has been

developed and applied to healthy volunteers72 and

pain patients.73 The standardized cuff is inflated at a

pre-determined rate, and the volunteer rates the pain

on an electronic pain scale and indicates when the

pain detection and the pain tolerance thresholds are

reached. This automated technique is user-indepen-

dent and hence useful in drug trials.

Conclusion
Musculoskeletal pain has a substantial socio-eco-

nomical impact with only few available efficient pain

management strategies. Musculoskeletal pain often

develops over time resulting in more hyperalgesia and

larger pain areas. Peripheral and spreading sensitiza-

tions are probably important mechanisms for the

translation of acute local pain to chronic musculos-

keletal pain conditions. Several mechanisms, such as

sensitizations, descending control, central integration

and expansion of receptive fields/referred pain have

been identified in musculoskeletal nociception and

pain. Quantitative methods for assessment of these

mechanisms in chronic musculoskeletal pain condi-

tions are available and offer additional information

about involved mechanisms to be used for revisions

of treatment strategies.
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