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ABSTRACT (cf. Neff and Green 1987; Neff and Callaghan 1998).
The additional masking associated with increases in

Predictions from an ideal observer model are com- masker uncertainty is referred to as informational
pared with human thresholds for two profile analysis masking. When the number of masker tones is fixed,
tasks. Past work has shown that ideal observer models increasing the range across which the frequencies of
reasonably account for human thresholds when the the masker components are drawn does not necessarily
profile components are fixed in frequency and ampli- lead to increases in masking (Neff and Callaghan
tude. Randomly varying the frequencies of the tones 1988). Oh and Lutfi (1998; see also Neff et al. 1993)
making up the profile leads to higher thresholds. argue that informational masking is reduced as more
Owing in part to large interobserver variation, the masker tones are introduced, but that reductions in
ideal observer model is not successful in accounting informational masking associated with more masker
for the pattern of psychophysical thresholds associated tones are offset by increases in energetic masking asso-
with increases in frequency uncertainty. The ideal ciated with the increased likelihood that one or more
observer also fails to account for the results of a recent masker tones will be close to the signal frequency.
profile analysis experiment in which amplitude ran- Uncertainty can also be manipulated by varying the
domization was studied [Lentz JJ, Richards VM: J. number of different maskers in the set of potential
Acoust. Soc. Am. 102: 535–541, 1998]. Overall, the maskers; Wright and Saberi (1999) found that informa-
ideal observer predicts smaller effects of uncertainty tional masking increases as the number of potential
on thresholds than are observed in psychophysical maskers increases. Moreover, the magnitude of the
experiments. informational masking varies substantially across

Keywords: auditory profile analysis, ideal observer observers (cf. Neff and Dethlefs 1995). In all, as sug-
gested by Neff and Callaghan (1988, p. 1838), “the
dynamic properties of the maskers appear to interfere
with such detection, although listeners are instructed

INTRODUCTION to ignore the interfering stimuli and focus on the
signal.”

For the detection of a tone added to multitone mask- Informational masking has also been reported in
ers, substantial masking can be induced by randomly profile analysis experiments. Spiegel et al. (1981)
choosing the frequency of the maskers on different examined the detection of an increment in level to
trials, and there is even more when the frequencies one of many simultaneously presented equal-ampli-
are randomly chosen on each stimulus presentation tude tones (2–20 tones were tested). They examined

the effects of randomly choosing the frequencies of
the tones on a trial-by-trial basis (i.e., the frequencies

Correspondence to: Dr. Virginia M. Richards ? Department of Psychol- were fixed across intervals) and found thresholds
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were fixed. In contrast, randomly choosing the fre- they also used stimuli composed of tones whose ampli-
tudes were randomly chosen for each stimulus presen-quency of the signal did not, on average, lead to a
tation. The results support the conclusion thatchange in threshold compared with thresholds meas-
discrimination depends primarily on context-codingured when the signal frequency was fixed. Richards et
mechanisms in these conditions.al. (1989) examined various types of spectral shape

In the present experiment, effects of frequency per-discriminations and evaluated the effects of randomiz-
turbations of individual components in profile analysising the digital-to-analog converter (DAC) output rate.
experiments are considered. Because frequency per-Changing the DAC output rate scales all frequencies
turbation is present, substantial changes in excitationpresent, or translates the magnitude spectrum toward
patterns are introduced. The primary empirical ques-lower and higher frequencies on a logarithmic axis.
tion addressed in this article is whether a BayesianWhen the range of frequency shift extended beyond
ideal observer analysis applied to excitation patternsan octave, discrimination thresholds were substantially
can predict the pattern of human thresholds. Putincreased relative to the fixed-frequency condition.
another way, we were interested in determiningGockel and Colonius (1997) found that when the fre-
whether uncertainty effects in profile analysis experi-quency shift extended over 3 octaves, thresholds for
ments could be accounted for in terms of the stimulusdetecting differences in spectral shape were so large
present at the periphery. Two types of profile analysisas to be unmeasurable.
discriminations are tested: down–up vs. flat and 1-To date there have been no profile analysis studies
step vs. flat. The “flat” stimulus is composed of equal-in which presentation-by-presentation frequency ran-
amplitude tones. The down–up stimulus has ampli-domization of the individual components has been a
tudes that vary low–high– . . . –low–high. For the 1-manipulation of interest. Presumably this is because
step stimulus, the low-frequency tones have low ampli-randomly choosing component frequencies leads to
tudes and the high-frequency tones have highcomponents that interact within single auditory filters.
amplitudes.Under those circumstances, the excitation pattern is

Richards et al. (1989) used both discriminationvaried in an uncontrolled manner. If instead of varying
types and found that modest DAC output rate random-the frequency of the components the magnitudes of
ization (sample periods ranging from 40 to 45 ms;the components are varied, the change in the excita-
sample frequencies ranging from 22,222 to 25,000tion pattern is more easily appreciated. Kidd et al.
samples/s) led to threshold shifts of about 4 dB for(1986) and others (Berg and Green 1990; Kidd et al.
both discrimination types. In the current study, the1991; Lentz and Richards, 1998) found that introduc-
spacing between components is much wider than thating amplitude perturbation leads to higher thresholds tested in the Richards et al. study (8 rather than 21

in profile analysis tasks. Likewise, introducing components equidistant on a logarithmic frequency
“interfering” tones with random amplitudes degrades scale ranging from 200 to 5000 Hz; or the ratio between
sensitivity to changes in the relative magnitudes of adjacent tone frequencies is 1.58 rather than 1.17). As
target tones, provided the interfering and target tones a result, at least when the component tones are fixed
are gated on and off together (Hill and Bailey 1998). in frequency, the auditory filters centered at the com-
In these cases, the effect of amplitude perturbation is ponent tones may be treated as independent of one
thought to be mediated by substantially degraded long- another (cf. Lentz et al., 1999). Additionally, in the
term standards against which the test stimuli (or the present study, frequency randomization is not
target tones) can be compared. achieved by DAC randomization. Rather, the frequen-

Kidd et al. (1988) incorporated the intensity dis- cies of the components are chosen from a (log) uni-
crimination model set out by Durlach and Braida form distribution centered at the frequency each tone
(1969) in arguing that the decision processes associ- holds when frequencies are fixed. Note that when fre-
ated with the discrimination of changes in spectral quency uncertainty is introduced, for the 1-step stimu-
shape might depend on both short-term (sensory lus all components below the geometric mean of 1000
trace) representations, which are volatile across time Hz have lower magnitudes and the components above
and useful for only short time epochs (e.g., across 1000 Hz have higher magnitudes. It seemed possible
intervals), and long-term (context coding) representa- that this stimulus construction would “protect” the 1-
tions, which develop with experience. By this step condition from effects of frequency randomiza-
approach, varying the spectral patterns on a presenta- tion compared with the down–up condition. In the 1-
tion-by-presentation basis would lead to a dependence step condition, the signal vs. no-signal decision may
on variable long-term representations (Durlach and be made by comparing the level of any one (or more)
Braida 1969; Kidd et al. 1988). While Kidd et al. (1988) of the tones with frequencies below 1000 Hz against
were primarily interested in studying the role of the the level of any one (or more) of the tones with fre-

quencies higher than 1000 Hz. This is true regardlessshort-term trace mode in profile analysis experiments,
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of the degree of frequency randomization. For the degraded, frequency randomization and intensity vari-
ation are difficult to disentangle. For the detection ofdown–up condition, fine-tuned comparisons between

adjacent tones are required. changes in spectral pattern, intensity variations are
known to reduce sensitivity (cf. Kidd et al. 1986; BergThere are several reasons to believe that an ideal

observer will be at least partially successful in account- and Green 1990; Kidd et al. 1991; Lentz and Richards
1999). Thus, for excitation pattern models, frequencying for human profile analysis thresholds in the pres-

ence of frequency randomization. First, the Durlach randomization should also reduce sensitivity relative
to conditions in which there is no frequencyet al. (1986) ideal observer channel model has been

somewhat successful in accounting for profile analysis randomization.
data (cf. Berg and Green, 1990; Green 1992; Lentz
and Richards 1997). Second, profile analysis is thought
to depend on comparisons of spectral shape; thus, METHODS
randomization in the dimensions of frequency and
amplitude are rationally incorporated into an ideal

Human observersobserver model of profile analysis. Third, it is reason-
able to assume that, as has been suggested for ampli- Two, 4, or 8 tones made up the stimuli (N, number
tude perturbation (Kidd et al. 1988), frequency of components). For the 8-component stimulus, the
perturbation encourages observers to depend on con- tonal components were equally spaced on a logarith-
text coding in making their decisions. While it is not mic frequency scale ranging from 200 to 5000 Hz.
assured, at face value it seems reasonable that a depen- When fewer than 8 tones were used, the frequency
dence on long-term representations is similar to com- spacing between tones was the same but the central 2
parisons with state-conditional probabilities (e.g., the or 4 tones were the only ones presented.
probability of observing vector x given signal; the prob- Two spectral shape discriminations were tested:
ability of x given no signal) used to form likelihood down–up vs. flat and 1-step vs. flat. For the former,
ratios in ideal observer analyses. In all, it seems that the the stimuli were composed of either equal-amplitude
effects of frequency randomization on profile analysis tones (flat) or tones with magnitudes that varied
data is a problem well suited to ideal observer analysis. down–up . . . down–up. For 1-step stimulus, the low-

There are, nonetheless, several reasons why an ideal frequency tones (one-half of all tones present) were
observer analysis may fail to account for human thresh- of lower magnitude and the high-frequency tones were
olds when frequency randomization is introduced in of higher magnitude. The phases of each tone were
profile analysis tasks. First, any or all of the assumptions randomly chosen on each presentation from a uniform
listed above may be incorrect. Second, as described distribution with a range of 2p. Similarly, the overall
below, the ideal observer model depends on an analysis level was randomly chosen on each presentation from
of excitation patterns. As a result, errors in the descrip- a 30-dB range using 0.1-dB steps. Thresholds are
tion of the excitation pattern may undermine the com- reported as DL, the change in level, up or down, in
parison between ideal and human thresholds. Third, dB relative to the mean. A threshold of 9.1 dB (as DL)
effects of frequency uncertainty may depend on cen- is the minimum threshold that can be supported based
tral rather than peripheral factors. If this is so, the on changes in the level of a single component.1
ideal observer model will fail. In the Fixed condition, the frequencies of the com-

As suggested above, the predictions of an ideal ponents did not change. In the three random condi-
observer model depend fundamentally on the tions, the frequency of each component tone was
assumed stimulus representation. For example, if the chosen randomly on each stimulus presentation. This
stimuli are represented as FFT-based magnitude spec- was achieved by multiplying the frequency of each tone
tra, no effect of frequency randomization is expected. by a randomly chosen scalar. The end result is that
Wherever the components fall, the obtained magni- the distribution of possible frequencies was uniformly
tudes relative to the mean are uniquely associated with distributed on a logarithmic scale and the midpoint
either the signal (down–up or 1-step) or the no-signal was the component’s frequency in the Fixed condition.
(flat) stimuli. When frequency selectivity is imperfect,
as for excitation pattern models, the excitation pat-
terns do not reliably differentiate between stimuli

1 Fantini and Moore (1994; see Green 1988) describe the signalunless the auditory filters are narrow relative to the level required for the detection of an increment in level in a 3IFC
smallest frequency separation between two compo- procedure. Denoting the percent correct level used to define thresh-

old as PC, the range of randomization as R, and the change in levelnents. Two sinusoidal components falling within the
as C, one obtainspassband of a single auditory filter lead to local incre-

ments in the excitation pattern, as does a single rela- PC 5
C
R
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tively intense sinusoid. When frequency selectivity is
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For the most extreme degree of randomization, the briefly in the new condition. If practice effects were
apparent in the 15 threshold estimates obtained inMax Ran condition, the end points of the uniform

distributions were halfway between (geometric mean) any one condition, data collection was repeated. Re-
evaluations of thresholds were not common but didthe frequencies of neighboring tones. For the other

two random conditions, Mid Ran and Min Ran, the occur. Because the pattern of results varied across the
four observers, it is difficult to evaluate the potentialprocedure was the same except that the range was

smaller (achieved by taking the square root and 4th effect of long-term practice.
Observers had thresholds in quiet of 10 dB HL orroot of the scalar relative to the Max Ran condition,

respectively). Consider as an example the component better (for frequencies ranging from 250 to 8000 Hz),
except that Obs 2’s threshold at 500 Hz (right ear)which, in the Fixed condition, was centered at 795 Hz.

In the Max Ran condition, its frequency was chosen was 25 dB HL. The observers ranged in age from 19
to 27 years and were paid for participation. One of thefrom a range of 630–1000 Hz. For the Mid Ran and

Min Ran conditions, the range was 710–890 Hz and four observers had prior experience in psychoacoustic
tasks. Tests were conducted with the observer seated750–840 Hz, respectively. Because the stimulus dura-

tion was 200 ms, including 10-ms raised cosine onset/ in a double-walled sound-attenuated booth.
offset ramps, the frequency gradation was 5 Hz.

The stimuli were digitally generated and presented Quasi-ideal observer analysisthrough two channels of a 16-bit DAC using a sampling
rate of 20,000 samples/s, lowpass filtered at 7 kHz The quasi-ideal observer analysis relied on a general

Bayesian pattern recognition approach and theusing matched filters (KEMO VBF 8), and presented
diotically by way of two channels of Sennheiser assumption that the distributions of interest are multi-

variate normal (see Duda and Hart 1973). Because itHD410SL headphones. The interstimulus interval was
approximately 450 ms. The component tones each is assumed that the task relies solely on differences in

level at the output of auditory filters, and because thehad a mean level of 50 dB SPL.
The stimuli were presented using a 3IFC procedure, normal assumption is used (and, in restricted simula-

tions, shown to provide reasonably accurate results),with the signal being equally likely to be present in
any of the three intervals. Thresholds were estimated the ideal observer analysis is referred to as quasi-ideal.

For example, effects of suppression, potentialusing a 3-down, 1-up staircase procedure, which esti-
mated the 79% correct performance level (Levitt temporal/envelope cues, etc., are not evaluated. Com-

puter simulations were used to evaluate the perfor-1971). Initial signal levels and step sizes varied
depending on condition. In the Fixed condition, the mance of the quasi-ideal observer using Matlab 5.3

(The Math Works, Inc. 1996). Initially 1000 “signal”initial step size was 0.6 dB, which was reduced to 0.3
dB following three reversals. In the random condi- and 1000 “no-signal” stimuli were generated. The stim-

uli were passed through a linear version of the single-tions, the initial and final step sizes were 2 and 1 dB,
respectively. On four occasions (three for Obs 3 and parameter RoEx( p) filters [weighting function W(g)

5 (1 1 pg)e2pg where g is the deviation from the centerone for Obs 4), the tracking procedure attempted to
assign a negative DL, which was disallowed. The initial frequency relative to the center frequency; cf. Pat-

terson and Moore 1986]. In most instances, the equiva-value of DL was approximately 2–4 large steps greater
than the ultimate threshold. After observers practiced lent rectangular bandwidth (ERB) was set according

to the recommendations of Glasberg and Moore(see below), 15 threshold estimates were obtained for
each condition tested. The final 10 were averaged to (1990) and a stimulus level of 51 dB/ERB. Because

Lentz et al. (1999) found little effect of including filterprovide the final threshold estimate.
All observers practiced for at least 10 hours prior nonlinearities in their evaluation of the Glasberg and

Moore (1990) filters applied to profile analysis stimulito data collection. Data collection was blocked. For
Obs 3 and Obs 4, the discrimination type was blocked [using RoEx( p,r) filters rather than the simpler

RoEx( p) filters used here], level-dependent nonline-(down–up vs. fixed or 1-step vs. fixed). Then, for each
type of discrimination, both observers ran the Fixed arities are not incorporated. In some exploratory simu-

lations, ERBs approximately half and double thosecondition first and the other conditions were tested
in random order. Within each condition, the order in recommended by Glasberg and Moore (1990) were

evaluated. The frequency axis was defined between 0which the different numbers of components were run
was chosen quasirandomly for each observer. For Obs and 10,000 Hz using 2-Hz step sizes, meaning that the

frequency gradation was finer than in the psychophysi-1 and Obs 2, each discrimination type was run initially
for the Fixed condition and then for the Max Ran cal experiment.

In most instances, 41-auditory filters were placedconditions. Then, for each discrimination type, the
Min Ran and Mid Ran conditions were run. with center frequencies equidistant on a logarithmic

scale, with the lowest and highest center frequenciesBefore starting a new condition, observers practiced
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taking on values of 126 and 8000 Hz, respectively.2 It When the test stimulus was “nearer” the signal distribu-
tion, a signal response was assigned. Otherwise, a no-was assumed that only the levels at the outputs of the

auditory filters contribute to the decision rule, and so signal response was assigned.
The simulation led to hit and false alarm rates basedfiltering was achieved by multiplying the power spectra

and the filter weighting function and then summing on the 1000 signal and 1000 no-signal test stimuli.
Then, treating the discrimination as a single-intervalpower to estimate the power passed by each filter. The

output of each filter was expressed on a dB scale and task, the hit and false alarm rates were converted to
d 8 scores. The process was repeated anew for threeset to threshold if the output of the filter was below

threshold. Then, independent 4-dB zero-mean normal different signal levels that led to d 8 values between
approximately 0.5 and 1.5. Then, using a linear fit,deviates were added to the output of each filter. The

added “channel noise” prevents performance from the DL required for d 8 5 1 was estimated. This process
was repeated for the different Ns tested and for thebeing perfect when frequencies are fixed. It was set to

4 dB so that in the Fixed condition the model and different conditions tested. The ultimate results are
based on the average of two simulation replicates.averaged human data were about the same. Additional

details of the filtering procedures are described in
Lentz et al. (1999).

The computational procedure used to generate pre- RESULTS AND DISCUSSIONdictions is essentially equivalent to using the deci-
sion rule:

Human observers
Choose “signal” if

p(x/s)
p(x/n)

. 1,
Figure 1 shows the results for the individual observers
in different panels. Thresholds expressed as DL in dBotherwise, choose “no signal”
are plotted as a function of N. The top panel of Figure
2 shows the results averaged across observers. In Figurewhere p(x/s) and p(x/n) are the state-conditional
1, error bars indicate the standard errors of the meanprobability density functions for the “signal” and “no-
across 10 threshold replicates whereas in Figure 2,signal” states, respectively. As indicated above, the com-
error bars indicate the standard errors of the meanputational method included an added assumption that
across the 4 observers. Filled symbols indicate thethe distributions are multivariate normal. Thus, com-
down–up vs. flat discrimination and open symbols indi-putationally, the following steps were carried out. The
cate the 1-step vs. flat discrimination. Fixed, Min Ran,initial 1000 signal and 1000 no-signal stimuli were
Mid Ran, and Max Ran conditions are indicated usingpassed through the filter bank yielding 2000 m-dimen-
squares, circles, triangles, and upside down triangles,sional excitation patterns, where m is the number of
respectively.filters used. Then, the summary statistics for the signal

The most striking result is the variation in the pat-and no-signal excitation patterns were derived. Spot
tern of the data across observers. An analysis of vari-checks indicated the signal and no-signal covariance
ance (ANOVA) revealed only one significant effect, amatrices were essentially the same, so they were aver-
main effect of frequency randomization (F(9,3) 5aged to provide a single estimate of the covariance
42.4, p , 0.001). The effect of discrimination typematrix (Duda and Hart 1973). Next, 1000 signal and
neared statistical significance ( p ' 0.07) but the1000 no-signal test stimuli were generated, and the
remaining comparisons did not. It is remarkable thatMahalanobis3 distance between each test stimulus and
there is an effect of frequency randomization whenthe signal and no-signal mean vectors was computed.
the stimuli are composed of only two components (Fig.
2). In this case, the lower-frequency tone is always
associated with an intensity decrement relative to the

2 When the Glasberg and Moore (1990) ERBs were adopted and higher-frequency tone; there is little for the observerwhen 30 or more filters were used, simulations indicated that increas-
to keep track of. Nonetheless, substantial increases ining the number of filters had little impact on the pattern of results

(although the amount of “channel noise” required to match thresh- thresholds are obtained. Spiegel et al. (1981) likewise
olds increased with number of filters). The number of filters found effects of uncertainty when just two tones wererequired for “stable” performance (e.g., results that did not depend

tested, but it is more impressive in their experimentcritically upon the number of filters tested) depended upon filter
bandwidths. because the frequency of the more intense of the two
3 For a sample vector x the squared Mahalanobis is given by (x 2 tones was fixed.
mt S21(x 2 m), where t denotes transpose m and s are the mean vector Considering the individual data, it should be kept in
and covariance matrix for the multivariate normal distribution, for mind that for signal levels above 9 dB or so, observerseither the signal or the no-signal stimuli. For example, if the excita-

might, in principle, perform the task using level infor-tion pattern is based on the outputs of 41 filters, x and m are vectors
of length 41 and s is a 41 3 41 matrix. mation available for just one component. Nine dB is
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FIG. 1. The data for individual observers are plotted in separate panels. Error bars indicate the standard errors of the mean across 10 threshold
replicates. The filled symbols are for the down–up vs. flat discrimination; the unfilled symbols are for the 1-step vs. flat discrimination. The
parameter indicates the condition: Fixed (M, m), Min Ran (V, v), Mid Ran (n, m), and Max Ran (,, .).

a conservative estimate; when frequency randomiza- discrimination and filled symbols indicate the
down–up vs. flat discrimination. The parameter is thetion is applied, the expected threshold at a single fre-

quency locus is sure to be much higher than 9 dB. For degree of frequency randomization: Fixed (squares),
Min Ran (circles), Mid Ran (triangles) and Max RanObs 1 in the Max Ran condition, N 5 2 and N 5 4,

thresholds exceed this limit. This also holds for Obs (upside down triangles). Note that the ordinate is
expanded relative to the upper panel by a factor of3 in the Max Ran condition in the down–up vs. flat

discrimination. Even though there is no difference in 3 1/3. Thresholds fall with increasing numbers of com-
ponents, and the impact of frequency randomizationthe stimuli, on occasion thresholds measured with

N 5 2 vary depending on the discrimination type (e.g., is modest except when the randomization is the maxi-
mum tested (Max Ran). For the Max Ran and MidObs 1, Max Ran and Obs 2, Mid Ran), but in the main

the thresholds are similar. This result suggests that Ran conditions, there is an interaction between N and
discrimination type such that thresholds in the 1-steplong-term practice effects are small, if present at all.
vs. flat discrimination condition fall more rapidly than
in the down–up vs. flat discrimination. For the FixedQuasi-ideal observer and Min Ran conditions, there is little difference
between thresholds for the two discrimination typesThe bottom panel of Figure 2 shows the results for

the quasi-ideal observer. The abscissa is the number of and thus no interaction is apparent.
These results may be compared with expectationscomponents and the ordinate is threshold expressed as

DL in dB. Unfilled symbols are for the 1-step vs. flat for an optimal model when there are no auditory fil-
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the shift was restricted to the Max Ran conditions.
Even in the Max Ran condition, the shift was modest.
Decreasing the standard deviation of the added
Gaussian deviate lowered thresholds overall but left
the pattern of predictions largely unaltered.

Comparing human and ideal observers

The quasi-ideal observer model clearly fails to predict
the magnitude of observed threshold shifts with
increases in the magnitude of frequency randomiza-
tion. The ideal observer model predicts a substantial
rise in threshold only for the Max Ran condition. As
indicated above, additional simulations indicate that
changes in the variance of the added channel noise
and changes in the number of filters do not lead to
notable increases in the effects of uncertainty. When
filter bandwidths are reduced, there is a slightly larger
effect of frequency randomization, although the
impact is mainly in the Max Ran condition. In contrast
to the model predictions, the human data indicate
effects of level randomization even when the shift is
from Fixed to Min Ran.

The interaction predicted by the quasi-ideal
observer was not found for all observers. As shown in
Figure 2, the ideal observer model predicts that when
effects of frequency randomization are obtained, anFIG. 2. The top panel shows the data averaged across 4 observers;
interaction between N and discrimination type is alsoerror bars indicate one standard error of the mean across observers.

The bottom panel plots the predictions of the quasi-ideal observer obtained. For the human observers, only Obs 1 and
model. Note that scale for the lower panel is expanded relative to Obs 3 tended to show this result (Fig. 1). For Obs
the top panel. Symbols are as in Fig. 1. 1, the divergence with N reflects the relatively low

thresholds measured in the Max Ran and Mid Ran,
N 5 8 conditions in the 1-step vs. flat discrimination.ters. For the fixed condition, the ideal channel model
For Obs 3, the interaction owes as much to the rise in(cf. Durlach et al. 1986) predicts that thresholds
threshold that occurs as N increases in the down–upshould fall as 1/!N. Moreover, thresholds should be
vs. flat discrimination as to the reduction in thresholdsthe same for the two discrimination tasks (“balanced
obtained as N increases in the 1-step vs. flat dis-stimuli” in Durlach et al., 1986). The current model
crimination.likewise generates thresholds that fall as 1/!N for the

Fixed and Min Ran conditions. In the Max Ran and
Mid Ran conditions, for the flat vs. down–up discrimi-

RETROSPECTIVE ANALYSIS OF AMPLITUDEnation the function relating thresholds to N is shal-
PERTURBATION DATAlower than the 1/!N prediction. In the flat vs. 1-step

discrimination, the slope is steeper than 1/!N.
In additional simulations, we examined the effects When the frequencies of the individual components

are randomly chosen, human data indicate a largerof changes in several aspects of the model. In none
of the simulations were large changes in the effects of effect of uncertainty than the quasi-ideal observer. Past

experiments concerning the impact of amplitude ran-frequency randomization noted. Increasing the num-
ber of filters led to better overall performance (all domization on profile analysis studies have shown that

human thresholds increase with increases in the mag-other factors being fixed), but the pattern of results
was similar to that shown in the bottom panel of Figure nitude of the amplitude randomization. Moreover,

Berg and Green (1990) found that even though thresh-2. Increasing the filter bandwidth led to lower thresh-
olds, whereas decreasing the filter bandwidth led to olds increase with increases in the magnitude of ampli-

tude perturbation, the decision rule appears to remainhigher thresholds. The magnitude of the shift
depended slightly on the magnitude of the threshold. stable and near optimal. Whether the increase in

thresholds reflects a shift in efficiency in addition toFor example, halving the bandwidths led to larger
increases for N 5 2 than N 5 8, but even for N 5 2, a shift associated with increases in variability is not
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The results for an ideal observer are plotted using
unfilled symbols. First, the standard deviation of the
“channel noise” was set so that the model thresholds
for N 5 4, Fixed condition, were approximately the
same as the averaged psychophysical data.4 Then, the
remaining thresholds were determined using com-
puter simulations and the methods described above.
Comparing the predicted and obtained effects of
amplitude perturbation, it is apparent that the model
underestimates the effect of amplitude uncertainty.
This parallels the results obtained when uncertainty
is introduced by randomizing the frequencies of the
component tones. The magnitude of the model’s error
appears to be larger for frequency than amplitude
uncertainty. When the model predicts a threshold of
about 3.5 dB, the obtained thresholds are approxi-
mately 7.5 and 5.5 dB when frequency and amplitude
randomization are applied, respectively.FIG. 3. Averaged data from Lentz and Richards (1998) are plotted

using solid symbols and error bars show the standard errors of the It is interesting to note that nearly identical results
mean across 4 observers. The open symbols plot the predictions are achieved if one forgoes auditory filtering and uses
of an ideal observer model. The parameters indicate the degree of the ideal observer channel model (Durlach et al. 1986)amplitude variation: none (Fixed; M, m), s 5 3 dB (V, v), and

prediction. Denoting thresholds as D, one form of thes 5 6 dB (n, m).
channel model is D } sC /!N, where DC is the stand-
ard deviation of the “channel noise” and N is the num-
ber of (independent) components. When amplitudeaddressed; a change in efficiency that is correlated
randomization is present, the variance associated withwith increases in variability would suggest that the ideal
the “channel noise” reflects both the impact of themodel falls short of accounting for the effects of uncer-
perturbation applied to the stimulus amplitudes andtainty when amplitude perturbation is present. Here,
the encoding noise in each channel. If these perturba-data reported by Lentz and Richards (1998) are
tions are independent and normally distributed, andconsidered.
referring to these two noise sources in terms of theObservers discriminated between stimuli with a
standard deviations sS and sE for the stimulus (pertur-“tophat” vs. flat profile. For the tophat shape, the mid-
bation) and encoding noises respectively, the predic-dle components were incremented in level relative to
tion becomesthe mean and the outer components were decre-

mented relative to the mean. For example, for an 8-
D }

!(s 2
E 1 s 2

S)

!Ncomponent tophat stimulus, the two lowest- and two
highest-frequency components had lower amplitudes

If sE is estimated using Fixed thresholds, the predictedand the four middle components had higher ampli-
effects of uncertainty for this simpler model aretudes. Ns of 4, 8, and 16 were tested. The components
approximately as shown in Figure 3. Note that for thiswere equidistant on a logarithmic frequency axis such
simpler model, increasing stimulus variability (increas-that when 16 tones were tested they ranged in fre-
ing sS) has the largest impact on threshold when thequency from 200 to 5000 Hz. Thus, the individual
encoding noise is small.components were nearer in frequency than in the cur-

rent experiment. Three conditions were tested. In the
Fixed condition, no amplitude variation was applied.

SUMMARY AND DISCUSSIONIn s 5 3 and s 5 6 conditions, a zero-mean, normally
distributed deviate was independently chosen and

To summarize, the quasi-ideal observer model fails toadded to each component of the profile (as DL in dB).
account for human data when the task is to detectThe standard deviation of the normal distribution was
changes in spectral shape and the frequencies of theeither 3 or 6 dB.
component tones are randomly chosen. DependingThe filled symbols in Figure 3 show the results of the

Lentz and Richards’ (1998) Experiment II, averaged
across their 4 observers. The results for the Fixed,

4 Lentz and Richards (1998) noted that for the averaged data the3-, and 6-dB conditions are indicated by filled squares,
ideal model predicts a larger effect of N than obtained. The standardcircles, and triangles, respectively. Error bars indicated deviation of the channel noise was set to 4.3 dB, compared with 4
dB in the primary experiment.the standard errors of the mean across observers.
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on one’s confidence in the linear quasi-optimal model observers might incorporate in making a decision in
the face of frequency and/or amplitude uncertainty.examined, this result may be taken to indicate that

uncertainty effects in profile analysis data cannot be Alternatively, one might imagine that the long-term
standard is not fixed but relies relatively heavily onaccounted for in terms of the stimulus properties as

represented at the periphery. Despite substantial indi- recently heard stimulus samples.
Increases in the effects of uncertainty might be pro-vidual differences, it is apparent that the quasi-ideal

observer underpredicts the impact that randomizing the duced by vastly reducing the number and/or spacing
of auditory filters whose outputs the observer isamplitudes or frequencies has on thresholds. This fail-

ure is similar to the “informational” masking measured assumed to incorporate into their decisions. Oh and
Lutfi (1998; see also Lutfi, 1993) modeled the combi-for the detection of a tone added to a multitone

masker, where an energy-model observer would moni- nation of informational and energetic masking for
the detection of a 1000-Hz tone added to multitonetor the output of a single auditory filter near the signal

frequency and thus is little affected by changes in the maskers by restricting the number of filters the
observer was assumed to integrate across (sum ofmasker frequency composition.

How might the quasi-ideal model be altered to pro- power) and varying the bandwidth across which those
filters might reside. Two auditory filters situated in thevide an increased effect of randomization in profile

analysis experiments? Changes in the quasi-ideal 100–2500 Hz frequency range fit their averaged data
set well. Moreover, by varying these two free parame-model such as filter bandwidth, number of filters,

channel noise, etc., had little or no impact on the ters, number of filters and frequency range, individual
differences were well described. It remains to be seenpredicted relative effect of uncertainty on thresholds.

If one imagines that the effect of increases in uncer- whether a similar scheme will be successful in captur-
ing profile analysis data. For example, in Figure 3 ittainty is to systematically increase a “decision” noise,

the likely effect would be to increase the effects of is apparent that thresholds fall with number of compo-
nents, a result that seems unlikely to be captured usinguncertainty as well as to reduce the slope relating

thresholds to N (cf. Lentz and Richards 1997). For a very sparse number of auditory filters.
The quasi-ideal model considered here also fails inamplitude randomization, Kidd et al. (1991) obtained

such an interaction whereas Lentz and Richards that an interaction between discrimination type and
N is predicted, a result not supported by the individual(1998) did not. In the present experiment, the interac-

tion between the degree of randomization and N did data. Given the magnitude of the individual differ-
ences, it may be that a single model will not ultimatelynot approach significance.

If one rejects a primary assumption of the model account for this type of data. Rather, subject-specific
parameters associated with strategies, etc., may haveused here, that discrimination relies on long-term con-

text rather than short-term trace comparisons, larger to be invoked.
effects of uncertainty might be obtained. The primary
argument against short-term trace comparisons is that
Kidd et al. (1988) found no effects of interstimulus
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