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The emission rates of volatile organic compounds (VOCs) were measured to investigate the
emission characteristics of five types of common furniture products using a 5m?> size chamber
at 25°C and 50% humidity. The results indicated that toluene and «-pinene are the most dominant
components. The emission rates of individual components decreased constantly through time, ap-
proaching the equilibrium emission level. The relative ordering of their emission rates, if assessed
in terms of total VOC (TVOC), can be arranged as follows: dining table > sofa > desk chair >
bedside table > cabinet. If the emission rates of VOCs are examined between different chemical
groups, they can also be arranged in the following order: aromatic (AR) > terpenes (TER) >
carbonyl (CBN) > others > paraffin (PR) > olefin (HOL) > halogenated paraffin (HPR). In addition,
if emission strengths are compared between coated and uncoated furniture, there is no significant
difference in terms of emission magnitude. Our results indicate that the emission characteristics of
VOC are greatly distinguished between different furniture products in terms of relative dominance
between different chemicals.
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1. INTRODUCTION

Volatile organic compounds (VOCs) have received a great deal of attention due to high abundances and asso-
ciated impact on health, especially in indoor environments [1, 2]. A wide spectrum of sources can contrib-
ute to the emission of VOCs in both indoor and outdoor environments. In case of indoor emission,
VOCs are released from furnishing products and/or household products. Although the chemical com-
positions of VOCs in the indoor environment are not simple enough to describe, aromatic hydrocarbons have
often been identified as the most dominant components [3, 4]. A number of compounds such as benzene,
toluene, ethyl benzene, and xylene are widely known as the key components with common grouping acro-
nyms like BTEX [5, 6].

The emission rates of VOC have been measured intensively by numerous authors to help to assess
their influence on air quality and the human health impact [7, 8]. Chamber method is one of the common
testing techniques to evaluate the exchange rate of such pollutants released from diverse sources. As VOCs
can be produced from various materials used in residential households (such as wood-based products,
adhesives, rubber, and wall paint), they can affect human health to varying degrees [9]. The pattern of VOC
emissions, if assessed between source materials or between chemical components, can vary greatly between
materials under diverse conditions [10, 11]. Frequent usage of certain furniture products in every normal
day may increase the rate of exposure to reactive substances and secondary products released or produced in
indoor air [12]. This type of exposure can lead to many common symptoms, for example, acute respiratory
infections, lung disease, allergies, and so forth [13-16].

To learn more about the emission characteristics of indoor VOCs from household sources, five types
of furnishing products (i.e., desk chair, bedside table, dining table, sofa, and cabinet) were chosen to ex-
plore the basic aspects of the indoor emissions. Emission rates of all these 5 products were measured by em-
ploying a large-scale chamber system. The results of our chamber experiments were evaluated in terms of
their exiting concentration (@ g/m3) levels and emission rate estimates (flux in terms of mg/unit/hr) for direct
comparison between different parameters.

2. MATERIALS AND METHODS
2.1. Overview of Sampling Chamber

In this study, a big-size chamber system with a 5 m? capacity was used to collect samples from each of our
5 target furniture products. The chamber system basically consists of 4 parts: the main emission chamber,
air purification system, temperature (and humidity) control system, and heating unit (Figure 1). The main
emission chamber is built with a double body structure, which includes (1) an inner chamber (width 1.850 x
depth 1.850 x height 1.500 mm) and (2) an outer chamber (width 4.000 x depth 2.500 x height 2.400 mm).
The inner unit was made using SUS 304 material (stainless steel) to minimize adsorption of pollutants. The
edge of chamber doors was coated with Teflon material to protect gas leaking with inertness. In addi-
tion, to reduce possible contamination during sample collection, we employed an air purification system
consisting of a prefilter unit, a molecular sieve (10 A) filter (for dehumidification), and a main filter made of
microactivated charcoal (1300 m?/ g). The air trapped between the two (inner and outer) chambers was heat-
ed constantly by the heating unit at 70°C.

2.2. Testing Materials (Furniture Products)

In this study, 5 different furniture product samples (in low to middle price range) commonly available in
republic of Korea were selected by considering popularity, variety, and communality. All of these samples
were purchased less than 2 weeks of their arrival at the end seller. The selected samples can be described as
follows.
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FIGURE 1: Emission test chamber system, 5m? in size (Ecopro, Republic of Korea).

(1) Table and chair (medium density fiberboard (MDF) 100%).

(2) Bedside table made of board (MDF (50%), high-density fiberboard (HDF: 20%), and particle-
board (PB: 30%). Its surface is covered with low-pressure melamine (LPM: 80%) and polyvinyl
chloride (PVC: 20%).

(3) Dining table (natural marble (50%), rubber wood (40%), and MDF (10%)) with chair (wood
(30%), MDF (10%), foam (20%), and polyurethane (PU) leather (40%)).

(4) Sofa with foam (20%) and PU leather (80%).

(5) Cabinet made up of board (PB (70%) and MDF (30%)) with its surface (LPM (70%) and poly-
propylene (PP: 30%)).

2.3. Sampling

The chamber test for each furniture product was technically undertaken as the 2-stage test from blank to real
samples (Figure 2). The former step was initially taken to check the cleanness and stability of the system,
as the maintenance of the blank level is quite critical to operate this chamber system. Once this initial step
is completed, the latter step proceeded to estimate the emission rates of the actual samples. The emission
rates of all 5 target products were measured during the period of 28 August through 27 December 2009.

2.3.1. Cleaning and Bake-Out for Blank Level Analysis

It is important to reduce any possible bias in the measurements of emission rates for diverse furniture
types. Thus, recovery rate of chamber was first tested for blank conditions of chamber. To initiate the blank
experiments, it was first cleaned using (1) ethanol and (2) pure water. It was then baked at 70°C for 24 hours
and stabilized at 25°C and 50% relative humidity (RH). Pure air was supplied constantly into the chamber
for a duration of 24~72 hours to check the blank levels of the flux measurements. Then, the air sample was
loaded into sampling tube filled with Tenax-TA (Supelco, USA) adsorbent for 30 minutes at a flow rate of
0.15Lmin~!. Once samples are collected, each tube was protected immediately from contamination by the
use of air tight tube seal. The collected sampling tube was analyzed for VOC by gas chromatography/mass
spectrometer (GC/MS) system (Agilent 6890, USA) combined with thermal desorber (Model: TDS2-7,
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FIGURE 2: Flowchart of the chamber emission test procedure.

Gerstel, Germany). If the blank values of TVOC were above 20 ;g m—>, chamber cleaning was repeated
with a replacement of the filter units.

2.3.2. Sample Test

After a blank test, the emission rates of each furniture type were measured by following the chamber test
procedure established by the Korea National Institute of Environmental Research (NIER). To this end,
upon unpacking, our target sample was placed inside the chamber at the center position. The drawers (or
the doors) in the samples were left open during emission test. Throughout the tests, the temperature and
humidity were maintained constantly at 25 + 1°C and 50 £ 5%, respectively. Exiting air was ventilated
at a frequency of 0.5 times per hour. The sample loading rate (L) is an important factor determined by the
ratio between surface area and volume of chamber (m?/m> = 1/m). The loading factor (m?/m?) of all target
samples was set to fall in the range of 0.4 < L < 1. The emission rates of the target samples were measured
for a total period of 2 weeks (43 days) at intervals set arbitrarily as of 2, 4, and 8 hours and 1, 2, 3,4, 7, 10,
and 14 days.

2.4. Analysis of VOC and QA

The equipment and the procedure employed for the determination of VOCs are described below. The
operation conditions for GC/MS and thermal desorber (TD) system are described in Table 1. Results of
the TD recovery tests using a list of VOCs (benzene, toluene, ethylbenzene, m,p-xylene, styrene, o-xylene,
and n-dodecane) were computed as 93~108%. The concentration of TVOC was calculated by integrating all
individual VOCs from n-hexane to n-hexadecane. The liquid-phase primary standard for VOCs (Japanese
indoor air standards mix, Supelco, USA) was used to prepare a working standard (WS) at 5 concentration
levels (20, 50, 100, 200, and 500 ng). These WSs were routinely injected into the sampling tube filled with
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TABLE 1: Operating conditions of TD and GC/MS system for the analysis of VOC.

Parameter Conditions

(A) Thermal desorber (TD)
Desorption temperature 325°C
Desorption flow rate and time 30 mL/min, 15 min
Cold trap material Liquid N» or adsorber
Cold trap temperature —-50°C

(B) GC/MS system
Injector temperature 300°C
Carrier gas He
GC column DB-1 capillary column

(0.32mm, 60m, 1 ;um)
Column flow rate 1.2 mL/min
40°C (5 min)—4°C/min (180°C)—

Temperature program . .
20°C/min (250°C)—250°C (10 min)

MS source temperature 250°C

Detector type Electron impact ionization
Mass range 35~350 amu
Electron energy 70eV

Tenax TA. In our analysis of VOCs, there are a number of limiting factors to derive fully quantitative data
sets. For instance, although the use of Tenax is potent enough to assess concentration levels of common
VOCs (e.g., BTEX), it is not necessarily compatible with all individual components of PS, especially the
lighter VOCs (e.g., 1,1,1-trichloroethane (ISO 16017-1)). For the analysis of samples, a total sampling
volume of 4.5 L. was collected at a flow rate of 0.15 L/min for 30 minutes (MP-30 pump, Sibata, Japan).
Before sampling, the adsorption tube was conditioned for 240 minutes at 300°C with the supply of pure
N5 (150 mL/min) using tube conditioner (APK1200, KNR, Korea). After sampling, the tubes were stored
in an airtight condition below 4°C and analyzed within 2 weeks. The method detection limit (MDL) was
estimated by seven repetitive analyses of the least detectable quantity of working standard loaded into the
sampling tube. The MDL values for each compound estimated in terms of absolute mass were typically
under 2 ng. In addition, the relative standard deviation for all target VOCs, if derived based on three repet-
itive analyses of the sampling tube, fell below 5%.

3. RESULTS AND DISCUSSIONS
3.1. Estimate of VOC Emission Rate

The emission rates for the materials are estimated by considering a particular flow of air passing through the
unit in the test chamber (mg/unit/h). The VOC emission rates for the test materials are thus determined in
parallel by concentration (;2g/m>) of each target component exiting the chamber. Information on the amount
of VOCs contained in the exiting air (11g/m>) provides us with general information of VOC levels and the
following exchange rates through time:

(Ci=Cwp)xQ (G =Cyp)xNV

SER, =
4 1 unit 1 unit

(3.1)
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where SER, is the unit specific emission rate (mg/unit/h), C, the concentration in exiting air () (mg/m?),
C;p the concentration in entering air (mg/m3), N the air exchange rate (1/h), Q the ventilation rate (m3/h),
and V the volume of chamber (m?>).

There are many methods developed to assess the emission rates of building materials such as mathe-
matical models with the consideration of some intricate factors [17-21]. Because of the diverse shapes of
furniture product samples investigated in this study, it is not possible to directly assess the total surface areas
of each sample product. Hence, as a simple method to assess the emission rates of such furniture products,
equation (3.1) was used for all our target products, regardless surface area.

3.2. The General Pattern of the VOC’s Data

A total of 39 target compounds were determined in this study, as tabulated in Table 2. Table 3 presents
statistical summary of these 39 target VOCs to allow a direct comparison between five types of furniture pro-
ducts investigated in this study. The concentrations of target compounds varied greatly between the pro-
ducts. The results shown in Table 3 indicate that the highest equilibrium concentration (pg/m?) was recorded
by toluene (330 £ 2.51), while the lowest was by bromodichloromethane (0.28 &£ 0.19). If this comparison
is made for all 5 products, the highest values were consistently seen by toluene (with an exception of ethyl-
benzene as the highest in the dining table). The equilibrium concentration levels of all individual VOCs
(except the two dominant of toluene and ethylbenzene) are typically below 100 jg/m>.

In compliance with this finding, many authors have routinely found toluene as the predominant com-
ponent of the VOCs released from furniture, based on both small- [18, 20, 22, 23] and large-scale chamber
tests (environmental chamber) [24]. Note that a serious health concern has been raised with respect to tol-
uene (e.g., birth defects) depending on its intake amount, exposure duration, genetic susceptibility, age, and
so forth. For the reader’s reference, the maximum concentration of toluene determined from three furniture
types (i.e., desk chair, dining table, and sofa) in fact exceeded a strict guideline value of 80 ppb (~307 pg/m3
in standard conditions (25°C and 1 atm pressure)) set as the minimum risk level of chronic duration [25].
If these data are evaluated in terms of the abundance of VOC types, dining table was recorded with the
highest number (38 compounds). In contrast, the cabinet showed the least one (20 compounds), although it
recorded the highest level of benzene (2.45 4+ 1.28) among 5 types of furniture. Benzene is well known as
a human carcinogen [26].

The emission rates of these types of furniture were also calculated to assess the relative intensity of
their source strengths. As shown in Table 4, the emission rates of 39 target VOCs are summarized for each
product. These emission rates are highly comparable to the pattern already described by concentration data
(ug/m?). As can be expected, the highest emission rates were recorded from toluene for most products.
The relative ordering of the TVOC emission rates, if compared between all five types of furniture, can
be arranged in a highly consistent manner: dining table > sofa > desk chair > bedside table > cabinet
(Figure 3).

The observed differences between individual furniture types reflect the differences in the properties
of materials used for their production. To facilitate further evaluation of these emission data, all 39 com-
pounds were evaluated in terms of 7 data groups by considering their chemical families: aromatic (AR),
carbonyl (CBN), paraffin (PR), halogenated paraffin (HPR), halogenated olefin (HOL), terpenes (TER),
and others (Table 2).

3.3. Temporal Trend of VOC Emission Rates from Different Furniture Type

In this paper, the emission rate of TVOC derived by the toluene response factor was evaluated along with
the emission rates of all individual VOCs. TVOC is the one single parameter that is simpler and faster for
the calculation of the concentrations (or emission rates) rather than evaluating several dozens of individual
VOCs [27]. In the Republic of Korea, the Korean Ministry of Environment (KMOE) provides regulation
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TABLE 2: List of 39 target compounds investigated in this study.

Order Full name (short name) Grouping® CAS number MOlf;rﬁzix;’ight Chemical formula
Benzene (B) AR 71-43-2 78.1 CgHg

2 Toluene (T) AR 108-88-3 82.1 CgHs5CHj3
Ethylbenzene (E) AR 100-41-4 106.2 CeHs5CyHs

4 m,p-Xylene (m,p-X) AR 108-38-3 106.2 CeHa(CH3)2

106-42-3

5 Styrene (S) AR 100-42-5 104.2 CeHsCoHj3

6 0-Xylene (0-X) AR 95-47-6 106.2 CsH4(CH3)>

7 3-Ethyltoluene (3-ET) AR 620-14-04 120.2 Ce¢HsCH3C,Hs

8 4-Ethyltoluene (4-ET) AR 622-96-8 120.2 CeHsCH3CHg

9 1,3,5-Trimethylbenzene (TMB-1) AR 108-67-8 120.2 CeH3(CH3)3

10 2-Ethyltoluene (2-ET) AR 611-14-3 120.2 Ce¢HsCH3C,Hs

11 1,2,4-Trimethylbenzene (TMB-2) AR 95-63-6 120.2 CeH3(CH3)3

12 1,4-Dichlorobenzene (DCB) AR 106-46-7 147.0 CeH4Cl>

13 1,2,4,5-Tetramethylbenzene (TMB-3) AR 95-93-2 134.2 CeH(CH3)4

14 4-Methyl-2-pentanone (MP) CBN 108-10-1 100.2 CgH 12O

15 n-Butyl acetate (BA) CBN 123-86-4 116.2 CgH 202

16 Nonanal (NL) CBN 124-19-6 142.2 CgH;7CHO

17 Decanal (DL) CBN 112-31-2 156.3 CoH9CHO

18 Hexane (HX) PR 110-54-3 86.2 CeHi4

19 Heptane (HP) PR 142-82-5 100.2 C7Hj6

20 Octane (O) PR 111-65-9 114.2 CsHig

21 Nonane (NN) PR 111-84-2 128.3 CoHpo

22 Decane (DE) PR 124-18-5 1423 CioHpo

23 Undecane (U) PR 1120-21-4 156.3 Ci1Hog

24 Dodecane (D) PR 112-40-3 170.3 Ci2Hpg

25 Tridecane (TI) PR 629-50-5 184.4 Ci3Hpg

26 Tetradecane (TE) PR 629-59-4 198.4 Ci4H3g

27 Pentadecane (P) PR 629-62-9 212.4 Ci5Hsn

28 Hexadecane (HD) PR 629-73-2 224 .4 CieHsa

29 1,2-Dichloroethane (DCE) HPR 107-06-2 99.0 CoH4Cly

30 1,1,1-Trichloroethane (TCE-1) HPR 71-55-6 133.4 C,H;3Cl3

31 1,2-Dichloropropane (DCP) HPR 78-87-5 113.0 C3HgClo

32 Bromodichloromethane (BCM) HPR 75-27-4 163.8 CHBrCl,

33 Trichloroethylene (TCE-2) HOL 79-01-6 1314 CyHCI;

34 Tetrachloroethylene (TCE-3) HOL 127-18-4 165.8 C,Cly

35 «-Pinene («-P) TER 2437-95-8 136.2 CioHis

36 B-Pinene (B-P) TER 18172-67-3 136.2 CioHie
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TABLE 2: Continued.

Molecular weight

Order Full name (short name) Grouping® CAS number ( -1 Chemical formula
gmo
37 Limonene (LMN) TER 138-86-3 136.2 CioHi6
38 Ethyl acetate and chloroform (EC) other 141-78-6 88.1 CH3COOC,Hs
67-66-3 119.4 CHCl3
39 1-Butanol (BL) other 71-36-3 74.1 C4HoOH

* Acronyms for VOC groups: AR: aromatic, CBN: carbonyl, PR: paraffin, HPR: halogenated paraffin, HOL: halogenated olefin, ER: terpenes, and
others.

TVOC (mg/hr/unit)
)

8
6
4
2
0 *= X—X @
0 2 4 6 8 10 12 14 16
Time (day)
—a— Dining table —o— Bedside table
—o— Sofa —*— Cabinet

—a— Desk chair

FIGURE 3: Emission rate of TVOC for 5 furniture types as a function of elapsed time.

guidelines for VOC emissions from building materials such as in terms of TVOC [28, 29]. The results of
our study derived for each product are thus compared in terms of TVOC, as shown in Figure 3. The TVOC
data collected within 14 days (after sample production) show greatly distinguishable patterns between the
products. The highest equilibrium emission rate of TVOC (mg/hr/unit) was derived from dining table (7.85),
while the lowest one was from cabinet (0.39). The emission rates of all 5 furniture types tended to gradually
decrease toward the end of the tests (up to 14 days), as they approached equilibrium. Higher emission
rates were generally produced within a few hours, and then the values decreased systematically. As seen
in Figure 3, the total individual emission rates of dining table, sofa, and desk chair became similar after 14
days. The other two also approached the least values but at much reduced rates.

As mentioned, the concentration data for all 39 target VOCs were further evaluated after being
grouped: AR, CBN, PR, HPR, HOL, TER, and others. As shown in Table 5, statistical summary of their
emission rates is tabulated for each type of studied furniture. Among all chemical groups, AR is the most
dominant. In contrast, HPR and HOL were generally negligible, as they were undetectable in many cases
(bedside table, sofa, and cabinet). If the relative ordering of emission rates is assessed, these chemical groups
can be arranged in the following order: AR > TER > CBN > others > PR > HOL > HPR. Moreover, if
we assess the relative contribution of individual groups to the total emission rate of each furniture type, the
percentage of AR emitted from the furniture is predominant for all the products with moderate variations
(Figure 4). Sofa was seen to emit the least proportion of aromatic VOCs (38.2%), while desk chair gave
most aromatic VOCs out (94.6%).
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FIGURE 4: Relative emission rate ratio of VOCs released from each furniture types: Aromatic (AR) versus
non-aromatic (non-AR).

To learn more about the relative role of the AR group from all our target furniture products exam-
ined in this study, the emission rates of individual components in the AR are compared to each other be-
tween different furniture types. In light of absolute dominance of aromatics, the emission patterns of VOCs
can be examined between individual aromatics and all the remaining components (Figure 5). The predom-
inance of toluene is seen from 4 products (desk chair, bedside table, sofa, and cabinet). In contrast, the
pattern for dining table is fairly comparable between different components. This unique pattern of relative
compositional changes between different furniture products suggests that the different emission signatures
of furniture products can be maintained through time in a relative maintenance sense.

3.4. Factors Affecting Emission Rates from Furniture

The selected furniture for this study consists of the primary components of MDF, HDF, PP, and several coat-
ing materials (e.g., PU leather, PVC, and LPM). The use of MDF, HDF, and PB is found in a wide range of
household tools and building decoration materials. Wood-based panels, wood-based composites, laminated
office furniture, laminate flooring, and engineer flooring are the common form of furniture products made by
MDF, HDF, and PB (e.g., [19, 22, 30, 31]). The results showed that a large number of VOCs can be emitted
from the furniture made of such materials. Reference [32] reported that unfinished PB and MDF made from
North America emitted several types of VOCs, although HDF did not contribute to indoor VOCs emission.

In this study, we intended to investigate the emission rates of VOCs from diverse furniture products.
Among the VOCs detected, toluene and «-pinene from a sofa sample recorded the largest mean equilibrium
concentrations (353 and 189 ug/m3, resp.). Reference [33] used the toluene and «-pinene to evaluate VOC
emission rates from a number of potential sources, including wool carpet, nylon carpet, and cotton curtain.
These authors conducted two types of experiments to induce both adsorption (in which toluene and «-pinene
were introduced into the chamber) and desorption (in which only clean air was brought in). The results of
this study indicated that the adsorption of a-pinene was higher than that of toluene for all testing materials,
while the desorption of these 2 chemicals was not greatly influenced by the materials. In addition to toluene
and a-pinene, other major VOCs found indoor (e.g., from solvent-based alkyd paint used indoor) commonly
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include carbonyl compounds (i.e., acetone, hexanal, pentanal, heptanal, nonanal, octanol, decanal, etc.) [20].
The primary VOC components (i.e., formaldehyde, benzene, toluene, ethylbenzene, styrene, and xylene)
emitted from PP flooring, wallpaper assemblies, and plywood assemblies (residential house units) were,
however, reduced considerably after a bake-out procedure [23]. In our experiment, as the ending period
(14 days) approached, the target furniture products generally showed a several-fold reduction in emission
magnitude (Figure 5). VOC levels from our PB furniture products were not high with equilibrium emission
rates of 0.78 (bedside table) and 0.39 mg/unit/h (cabinet). In contrast, [22] found that the PB specimens
emitted greater amounts of VOC that are comparable to engineered flooring. In addition, dining table and
sofa made of foam and PU were found to exhibit greatly enhanced VOC levels relative to the others.

Typically, the surface of furniture is coated with some feasible coating agents for aesthetic purposes
as well as to prevent damage. Initially, it was expected that the VOC levels released from coated furniture
(bed-site table and cabinet’s surfaces: LPM, PVC, and PP) should be different from those uncoated ones
(e.g., surface of table chair, dining table, and sofa made of foam and PU leather). However, the results
of our study indicated that there were no significant differences in the emission strengths of uncoated
and coated furniture in terms of magnitude. In compliance with our findings, TVOC emission rates of
nonveneered MDF and PB (such as low-pressure melamine, decorative Im, and UV curable vanish) were
not much different from the patterns of coated products [22]. In addition, VOC emission rates of wood-
based panels generally exhibited gradually decreasing trends through time, although their highest values
were most commonly seen a day after installation [30]. This pattern is thus highly comparable to that seen
in this study.

3.5. Comparison of VOC Emission Rates between Different Studies

To learn more about the emission patterns of VOCs from diverse furniture and materials used in households
or buildings, the results of TVOC and individual aromatics measured from previous studies are compiled
in Table 6. Although these emission data are often expressed in different units (g m™ and pgm=2h™1),
these values are used directly to assess their emission patterns in association with diverse experimental
setups used for each study. The results show that there are moderate differences among different types of
components determined via the chamber study. Most importantly, toluene is commonly recorded as the
predominant component in furniture used in both public facilities and in private housing units ([23, 35], this
study). However, the measurements made in home and office environments did not provide a quantitative
basis for the quantification of toluene [34]. Depending on coating conditions of the furniture type (polishing,
varnishing, or noncoating), the concentration levels of these components can widely vary by such factors
as agitation [39, 40] and temperature [23]. The emission data were further compared by the magnitude
(ugm~2h~!) of a number of wood-based products. However, the patterns were seen to deviate greatly
among furniture types [30, 36, 38]. Note that emissions of hardwood and softwood are not coincident with
the patterns seen in other studies. Instead, their emissions were dominated by acid acetic and terpenes [37].
As such, the emission characteristics of VOCs from different furniture types are suggested to be affected
mainly by the type of materials used for their construction and the way those sampling units are deployed.

4. CONCLUSIONS

In this paper, the emission rates of VOC from common furniture used in households and buildings were
measured by using 5 furniture samples (desk chair, bedside table, dining table, sofa, and cabinet) through
time (up to 14 days) after two weeks of their production. The results showed that toluene and «-pinene
were the most dominant components of emission, and most VOCs exhibited similarly decreasing trends
through time. The relative ordering of emission rates for all five furniture types, if assessed in terms of
TVOCs, was highly consistent through time: dining table > sofa > desk chair > bedside table > cabinet.
This comparison is extended further to different chemical groups; their relative ordering can be arranged in

1618



TheScientificWorldJOURNAL (2011) 11, 1597-1622

. 61L°0 10°0 o[} 100 [AUIA
[8¢] Suex pue sowef 682 poTEOT-oImssolg ()
) i 00F1< souadio) (901nds ‘ourd) poomijog
[L€] 'Te 10 uRWIPUNS-W[OYSTY 0007< ondoe poe  (AI99U0 “YBO) POOMPIRE] (©)
(Kep 1 191Je
‘[oued paseq-poom)
log] umord 0¢01 09 QIMIUING OYJO MIN @
¥'or + 001 III preogpieHq
G'LS F6°€6T II preoqpleH
[9¢] 'Te 10 ono 6L°0¢ F $°65C 1 pieoqpieH
! CL'TF1S°¢S poomA|d (D
¥'CCl F9L°C9 pieoq HAd
L'YL F 6898 pIeoqo[onled
:syonpoid poom passaig
SouaIROY DJOAL QUAUIJ-0 QUIIAX-0 dUaIK)S QUQAX-d ouozuaq [A)g Quon[o], Quazuog so1m0g °pI0
punodwo)
(aypmun/3ur) sHOA Jo xny uoissrwg (q)
“JIWI UONIA)IP MO[I .
[¢z] 'Te 1o Suey 89LC I'6L €LT L98C1 9C Jun Jursnoy JuapIsay ()
(eamyruany
[cE] ‘e 10 PARISBALIS Surysturea pue Surysrjod) ©
70S—9'8L1 9-¢6¢C £'86-96°¢TC »1dd L'€8—68'IS #'06C—L8'C  AIRIQI[ [2NUSD PAIRAOUY
) S09 06’9 9SNOY JOYOWSUON
[¥€] ‘Te 19 onn
g9 ¢o'11 99JO @
Apms sty 8¢01 1'0S (4% 98L 6'96 9! (193 LT'1 SImIuIng MIN (D
DOAL  QUAUIJ-© QUSJAX-0 QUaIK)g oud[AX-d ouozuaq [Ay)g  ouanjog, uazuag 90IN0S 19pI0

QOURIJY puno QEOU

( mE\wiv SDOA JO suonenuaouo)) (&)

"saIpn]s snoiraid pue Juesaid sy} WoJj PaINSesw SONBWOIR [BNPIAIPUI pUB DOAL 40 uosuedwo) :9 319VL

1619



TheScientificWorldJOURNAL (2011) 11, 1597-1622

the following order: AR > TER > CBN > others > PR > HOL > HPR. The relative dominance of tol-
uene and a-pinene among all individual components emitted from diverse testing samples is suspected to
be caused by PU leather and foam, while those made by others (MDF, HDF, PP, and coating agents (PVC
and LPM)) were not distinctive enough to influence the overall emission rates. It is thus necessary to un-
derstand that signatures of VOC emissions can exist in a highly delicate manner between different kinds of
furniture. In light of the human health risks associated with VOCs pollution in indoor environments, a bet-
ter knowledge of emissions from diverse furniture types, as investigated in a limited scale in this study, are
greatly needed to properly maintain a healthy indoor environment for human being.
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