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Abstract
Traditional neuroimaging studies in Alzheimer’s disease (AD) typically employ independent and
pairwise analyses between multimodal data, which treat imaging biomarkers, cognitive measures,
and disease status as isolated units. To enhance mechanistic understanding of AD, in this paper,
we conduct a new study for identifying imaging biomarkers that are associated with both cognitive
measures and AD. To achieve this goal, we propose a new sparse joint classification and
regression method. The imaging biomarkers identified by our method are AD-sensitive and
cognition-relevant and can help reveal complex relationships among brain structure, cognition and
disease status. Using the imaging and cognition data from Alzheimer’s Disease Neuroimaging
Initiative database, the effectiveness of the proposed method is demonstrated by clearly improved
performance on predicting both cognitive scores and disease status.

1 Introduction
Neuroimaging is a powerful tool for characterizing neurodegenerative process in the
progression of Alzheimer’s disease (AD). Pattern classification methods have been widely
employed to predict disease status using neuroimaging measures [2, 3]. Since AD is a
neurodegenerative disorder characterized by progressive impairment of memory and other
cognitive functions, regression models have been investigated to predict clinical scores from
individual magnetic resonance imaging (MRI) and/or positron emission tomography (PET)
scans [8, 9]. For example, in [9], stepwise regression was performed in a pairwise fashion to
relate each of MRI and FDG-PET measures of eight candidate regions to each of four Rey’s
Auditory Verbal Learning Test (RAVLT) memory scores.

Predicting disease status and predicting memory performance, using neuroimaging data, are
both important learning tasks. Prior research typically studied these tasks separately. One
example is to first determine disease-relevant cognitive scores and then identify imaging
biomarkers associated with these scores so that interesting pathways from brain structure to
cognition to symptom can potentially be discovered. However, a specific cognitive function
could be related to multiple imaging measures associated with different biological pathways
(some of them are not related to AD). As a result, the identified imaging biomarkers are not
necessarily all disease specific. To have a better understanding of the underlying mechanism
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specific to AD, an interesting topic would be to only discover imaging biomarkers
associated with both cognitive function and AD status.

To identify AD-sensitive and cognition-relevant imaging biomarkers, we propose a new
joint classification and regression learning model to simultaneously performing two
heterogeneous tasks, i.e., imaging-to-disease classification and imaging-to-cognition
regression. We use magnetic resonance imaging (MRI) measures as predictors and cognitive
memory scores and disease status as response variables. For each individual regression or
classification task, we employ a multitask learning model [1] in which tasks for predicting
different memory performances (or those for predicting AD and control dummy variables in
classification) are considered as homogeneous tasks. Different to LASSO and other related
methods that mainly find the imaging features correlated to each individual memory score,
our method selects the imaging features that tend to play an important role on influencing
multiple homogenous tasks.

Our new method utilizes the sparse regularization to perform imaging biomarker selection
and learn a sparse parameter matrix under a unified framework that integrates both
heterogeneous and homogenous tasks. Specifically, by recognizing that the formation [6]
and maintenance [4] of memory are synergically accomplished by a few brain areas, such as
medial temporal lobe structures, medial and lateral parietal, as well as prefrontal cortical
areas, we use the ℓ2,1-norm regularization to select features that can predict most memory
scores and classify AD versus control. Empirical comparison with the existing methods
demonstrates that the proposed method not only yields improved performance on predicting
both cognitive scores and disease status, but also discovers a small set of AD-sensitive and
cognition-relevant biomarkers in accordance with prior findings.

2 Sparse Model for Joint Classification and Regression
When we study either regression or classification via a multi-task learning model, given a
set of input variables, (i.e., features, such as imaging biomarkers), we are interested in
learning a set of related models (e.g., associations between image biomarkers and cognitive
scores) for predicting multiple homogenous tasks (such as predicting cognitive scores).
Since these homogenous tasks are typically interrelated, they share a common input space.
As a result, it is desirable to learn all the models jointly rather than treating each task as an
independent one. Such multi-task learning methods can help discover robust patterns,
especially when significant patterns in a single task become outliers for other tasks, and
potentially increase the predictive power.

To identify AD-sensitive and cognition-relevant biomarkers from imaging data, we
formulate a new problem to jointly learn two heterogeneous tasks: classification and
regression. We propose a new sparse model for joint classification and regression to perform
multivariate regression for cognitive memory scores predictions and logistic regression for
disease classification tasks simultaneously.

Notation
We write matrices and vectors as bold uppercase and lowercase letters respectively. Given a
matrix M = [mij], we denote its i-th row as mi and j-th column as mj. The Frobenius norm of
the matrix M is denoted as ||M||F, and the ℓ2,1-norm [5] of M is defined as

.
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2.1 Objective of Sparse Joint Classification and Regression
First, logistic regression is used for disease classification. Given the training data X = [x1,
…,xn] ε ℝd×n, each data point xi is associated with a label vector yi = [yi1,…,yic1] ε ℝc1. If
xi belongs to the k-th class, yik = 1, otherwise yik = 0. We write Y = [(y1)T,…,(yn)T]T ε
ℝn×c1. In traditional multi-class logistic regression, under a projection matrix W ε ℝd×c1, we
have

where p (k | xi, W) is the probability that xi belongs to the k-th class, and p (yi | xi, W) is the
probability that xi is associated with the given label yi. Therefore, the multi-class logistic
loss that maximizes the Log-likelihood can be achieved by minimizing:

(1)

In AD classification, we have two classes, i.e., AD and health control (HC).

Second, we use multivariate least square regression to predict cognitive scores, which
minimizes:

(2)

where X is the data matrix, Z = [(z1)T,…,(zn)T]T ε ℝn×c2 is the label matrix for the c2
regression tasks, and P ε ℝd×c2 is the projection matrix.

The objective for joint classification and regression to identify AD-sensitive and cognition-
relevant imaging biomarkers can now be formulated as follows:

(3)

where V = [W P] ε ℝd×(c1+c2). Thanks to the ℓ2,1-norm regularization on V [1], the
biomarkers are identified across all tasks so that they are not only correlated to cognitive
scores but also discriminative to disease status.

2.2 An Efficient Iterative Algorithm
Due to the non-smoothness of the ℓ2,1-norm term, J in Eq. (3) is hard to solve in general.
Thus we derive an efficient iterative algorithm as follows.

Taking the derivatives of J w.r.t. W and P, we set them to be zeros:

(4)

where D is a diagonal matrix whose k-th diagonal element is . Because D depends on V,
it is also an unknown variable. Following standard optimization procedures in statistical
learning, we alternately optimize V and D.
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First, we randomly initialize V ε ℝd×(c1+c2), upon which we calculate D. After obtaining D,
we update the solution V = [W P] using Eq. (4). To be more precise, P is updated by P =
(XXT + γD)−1 XZ. Because we cannot update W with a closed form solution upon Eq. (4),
we employ Newton’s method to obtain updated W by solving the following problem: minW
l1 (W) + γ tr (WT DW).

Once we obtain the updated V = [W P], we can calculate D. This procedure repeats until
convergence. The detailed algorithm is summarized in Algorithm 1, whose convergence is
proved as following.

Lemma 1—For any vector v and v0, we have . Proof is
available in [5].

Theorem 1—Algorithm 1 decreases the objective value of J in every iteration.

Proof: In each iteration, denote the updated W as W̃, the updated P as P̃, thus the updated V
is Ṽ = [W̃ P̃]. According to step 3 of Algorithm 1, we have

(5)

According to step 4 we know that

(6)

According to the definition of D and Lemma 1, we have the following inequality:

(7)

Because tr (VT DV) = tr (WT DW) + tr (PT DP), by adding Eqs. (5–7) at the both sides, we
arrive at

(8)

Thus, Algorithm 1 decreases the value of J in Eq. (3) in every iteration.

Because J in Eq. (3) is obviously lower-bounded by 0, Theorem 1 guarantees the
convergence of Algorithm 1. In addition, because J is convex, Algorithm 1 converges at the
global optimum of the problem.

3 Experimental Results
We evaluate our method by applying it to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort. The goal is to select a compact set of AD-sensitive and cognition-relevant
imaging biomarkers while maintaining high predictive power.
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Data preparation
We downloaded data from the ADNI database (http://adni.loni.ucla.edu). We used baseline
MRI data, from which we extracted 56 volumetric and cortical thickness values (Fig. 1)
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu), as described in [7]. We included
memory scores from three different cognitive assessments including Mini-Mental State
Exam (MMSE), Rey’s Auditory Verbal Learning Test (RAVLT), and TRAILS. Details
about these assessments are available in the ADNI procedure manuals (http://www.adni-
info.org/Scientists/ProceduresManuals.aspx).

3.1 Biomarker Identification
The proposed method aims to identify imaging biomarkers that are associated with both
disease status and cognitive scores in a joint classification and regression framework. Here
we first examine the identified biomarkers. Fig. 1 shows a summarization of selected
features for the three experiments (one for each type of cognitive scores) where the
regression/classification weights are color-mapped for each feature and each task. Fig. 2
visualizes the cortical maps of selected features for both classification and regression in
different tasks.

Fig. 1 and Fig. 2 show that a small set of MRI measures are identified, including
hippocampal volume (HippVol), entorhinal cortex thickness (EntCtx), amygdala volume
(AmygVol), inferior parietal gyrus thickness (InfParietal), and middle temporal gyrus
thickness (MidTemporal). These are all well-known AD-relevant biomarkers. Our method
also shows that these markers are jointly associated with one or more memory scores.
Although we know that MRI measures, cognitive scores and diagnosis are highly correlated,
the complex relationships among them remain to be discovered for a better understanding of
AD mechanism. This is one major focus of our work. As shown in Fig. 1, different AD-
sensitive MRI measures could be related to different cognitive tasks. The proposed sparse
method for joint classification and regression enables us to sort out MRI-cognition
relationships while focusing on AD-sensitive markers.

3.2 Improved Prediction Performance
Now we evaluate the performance of joint classification and regression for AD detection and
cognitive score prediction using MRI data. We performed standard 5-fold cross-validation,
where the parameter γ of our method in Eq. (3) was fine tuned in the range of {10−5,…, 1,
…, 105 }by an internal 5-fold cross-validation in the training data of each of the 5 trials. For
classification, we compared the proposed method against two baseline methods including
logistic regression and support vector machine (SVM). For SVM, we implemented three
different kernels including linear, polynomial and Gaussian kernels. For polynomial kernel,
we searched the best results when the polynomial order varied in the range of {1, 2,…, 10};
for Gaussian kernel, we fine tuned the parameter α in the same range as that for our method
and fixed parameter C as 1. For regression, we compared our method against two widely
used methods including multivariate regression and ridge regression. For the latter, we fine
tuned its parameter in the same range as that for our method. The results are reported in
Table 1.

Table 1 shows that our method performs clearly better than both logistic regression and
SVM, which are consistent with our motivations in that our method classifies participants
using the information from not only MRI measures but also the reinforcement by cognitive
score regression. In addition, the cognitive score regression performances of our method
measured by root mean squared error (RMSE) outperform both multivariate regression and
ridge regression, supporting the usefulness of joint classification and regression from
another perspective. Ridge regression achieves close but slightly worse regression
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performance. However, it lacks the ability to identify relevant imaging markers. All these
observations demonstrate the effectiveness of the proposed method in improving the
performances of both AD detection and cognitive score prediction.

Mild cognitive impairment (MCI) is thought to be the prodromal stage of AD. Including
MCI in this type of analyses will be an interesting future direction to help biomarker
discovery for early detection of AD. We performed an initial analyis on three-class
classification for AD, MCI and HC: the accuracy of our method was 0.663 and the best of
other tested methods was 0.615. Apparently this is a much harder task and warrants further
thorough investigation.

4 Conclusions
We have proposed a new sparse model for joint classification and regression and applied it
to the ADNI cohort for identifying AD-sensitive and cognition-relevant imaging biomarkers.
Our methodological contributions are threefold: 1) proposing a new learning model, joint
classification and regression learning, to identify disease-sensitive and task-relevant
biomarkers for analyzing multimodal data; 2) employing structural sparsity regularization to
integrate heterogenous and homogenous tasks in a unified multi-task learning framework; 3)
deriving a new efficient optimization algorithm to solve our non-smooth objective function,
and coupling this with rigorous theoretical analysis on global optimum convergency.
Empirical comparison with the existing methods demonstrates that our method not only
yields improved performance on predicting both cognitive scores and disease status using
MRI data, but also discovers a small set of AD-sensitive and cognition-relevant imaging
biomarkers in accordance with prior findings.
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Fig. 1.
Weight maps of the joint classification and regression tasks. One binary classification task
for AD and HC. Three different groups of cognitive scores for regression: (a) MMSE score,
(b) RAVLT score, (c) TRAILS score. “−L” indicates the FreeSurfer biomarkers at the left
side, and “−R” indicates those at the right side.
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Fig. 2.
Cortical map of selected features for cognitive score prediction using FreeSurfer measures in
the three joint classification and regression tasks.
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Algorithm 1

An efficient algorithm to solve Eq. (3).
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