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Abstract
Association studies of risk factors and complex diseases require careful assessment of potential
confounding factors. Two-stage regression analysis, sometimes referred to as residual- or
adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide
polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is
calculated from a regression of the outcome variable on covariates and then the relationship
between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the
adjusted-outcome on the SNP. In this paper, we examine the performance of this 2-stage analysis
as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP
and a covariate are correlated, the 2-stage approach results in biased genotypic effect and loss of
power. Bias is always toward the null and increases with the squared-correlation between the SNP

and the covariate . For example, for , 0.1 and 0.5, 2-stage analysis results in,
respectively, 0%, 10% and 50% attenuation in the SNP effect. As expected, MLR was always
unbiased. Since individual SNPs often show little or no correlation with covariates, a 2-stage
analysis is expected to perform as well as MLR in many genetic studies; however, it produces
considerably different results from MLR and may lead to incorrect conclusions when independent

variables are highly correlated. While a useful alternative to MLR under , the 2-stage
approach has serious limitations. Its use as a simple substitute for MLR should be avoided.
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1. BACKGROUND
Confounding may occur when independent variables (predictors) are associated with one
another and with the outcome of interest [Hennekens, et al., 1987]. If not appropriately
accounted for, confounding factors can lead to biased results and misleading conclusions.
Bias due to confounding can be minimized or controlled by a study design or by employing
appropriate data analysis methods such as multiple regression, propensity score, or
stratification analyses [Rothman & Greenland, 1998].

For an association study of a quantitative outcome and a genetic risk factor, multiple linear
regression (MLR) analysis can be employed to effectively adjust for covariates to reduce
variation or to minimize confounding effects. Environmental or biological variables, such as
dietary factors, smoking, age, and sex, are often used as covariates in MLR with the goal of
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reducing noise in the outcome variation and estimating the genotype effect more precisely
[Christenfeld et al., 2004]. As an alternative to multiple linear regression analysis, increasing
numbers of studies use a 2-stage approach, where at stage one a residual variable (also
referred as an ‘adjusted’ outcome) is obtained from a linear regression of the outcome
variable on potential confounding factors and at stage two the relationship between the
adjusted-outcome and the exposure variable is evaluated using a simple linear regression
analysis. This approach has many attractive practical advantages over multivariable analysis
(e.g., computational and data management efficiencies in large-scale genome-wide
association studies). But its validity relies on the assumption that covariates and the risk
factor of interest are uncorrelated. When this assumption is not met, as may be the case
when a covariate under consideration is a principal components (PC) of ancestry to account
for potential confounding effects of population stratification [Price et al., 2006] or another
SNP in linkage disequilibrium with the primary SNP of interest (e.g., in conditional
analysis), the 2-stage analysis can produce biased results because it does not fully take into
account the multivariable relationship among all study-variables.

The present study was conducted to examine a 2-stage approach as compared with MLR
analysis in the context of a population-based association study of a genetic marker and a
quantitative trait.

2. METHODS
In this section we present a brief review of the linear regression method within the context
of partial and semi-partial correlations [Kleinbaum et al., 1988] and illustrate the
relationship between MLR and 2-stage analyses using two independent variables, S and C,
and an outcome variable Y; where S is the exposure variable of interest (SNP genotype) and
C is a potential confounding factor or covariate (genetic or environmental factor) that may
or may not be associated with Y and S. Although only two independent variables are
considered for illustrative purposes, the results and discussions can be generalized to studies
of multiple independent variables.

2.1 Multiple Linear Regression (MLR) (a single-stage procedure)
A regression model with two independent variables, S and C, and an outcome variable Y is
given by

(1)

where βi (i = 0,1,2) are unknown parameters that may be estimated using the least squares
method which minimizes the sum of squared deviations of the residuals; and ε is a random
error that accounts for unexplained random variation in Y. Following regression and
correlation theories, βi’s can be represented in terms of means, standard deviations (SDs)
and partial correlation coefficients [Kleinbaum et al., 1988]. Accordingly, the additive effect
of the SNP (S) in Eq. (1) can be given by

(2)

Where ρYS|C is the partial-correlation for Y and S adjusting for C; and σY|C and σS|C are
conditional standard deviations of Y and S given C, respectively. An important observation
from Eq. (2) is that the parameter of effect for S is a function of the partial-correlation
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(ρYS|C, correlation that removes the covariate effect from both Y and S) and the SDs of both
Y and S conditional on C.

2.2 Two-stage residual-outcome regression
In addition to the above three variables (Y, S and C), consider a residual-outcome variable
(or ‘adjusted’ outcome) denoted by Z. In a 2-stage analysis, the residual variable (Z = Y − Ŷ)
is obtained at stage one from a linear regression of the outcome variable on the potential
confounding factor (Y = a0 + a1C + e) and the relationship between the residual and the
exposure variable S is evaluated at stage two using a simple linear regression model

; where a0 and a1 are unknown parameters and e is a random error in the first
stage and  are unknown parameters and ε* is a random error in the second stage.
Similar to the representation given in Eq. (2),  can be expressed as follows:

(3)

Note that ρZS is the semi-partial correlation between Y and S where only Y is adjusted for C
(ρ(Y|C)S); σZ is the conditional SD of Y given C (σY|C); and σS is the unconditional SD of S.
Thus, the regression parameter for S in this two-stage residual-outcome analysis, Eq. (3), is a
function of the semi-partial correlation (correlation that removes the covariate effect only
from the outcome), the conditional SD of Y given C, and the unconditional-SD of S.

2.3 Relationship between 2-stage regression and MLR: Parameter Estimate
By solving Eqs. (2) and (3) it can be shown that the relationship between the regression
parameters from MLR (β1) and 2-stage  regression models can take the form

 the squared correlation between S and C (see Appendix for
details). Consequently, the following conclusions can be drawn:

1. 2-stage analysis is unbiased and has an identical solution to that of MLR when S is
not associated with C:

2. 2-stage analysis is biased and underestimates the exposure effect when S is
correlated with C:

3. For β1 ≠ 0, the expected bias due to 2-stage analysis ( is the
2-stage estimator of the parameter β1) is independent of the association between the
outcome and the covariate. Thus, even when confounding is not present in the data,
bias can be introduced simply as a direct consequence of performing a 2-stage
analysis.

2.4 Relationship between 2-stage regression and MLR: F statistic
A simple null hypothesis of the form H0:β1 = 0 in MLR can be tested with the F-test (or
equivalently with the t-test). The F-statistic can be expressed as
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If the null hypothesis is true, then F follows an F-distribution with (1, n−2) degrees of
freedom, where n is the number of observations. Similarly, in a 2-stage residual outcome

analysis  follows an F-distribution with (1, n−2) degrees of freedom
under the null hypothesis 

As in the case of the regression parameters, the F-statistics from MLR and 2-stage also have

a simple form of relationship that can be given by .

When , the two approaches produce identical results. With increase in , however,
the two F-statistics can lead to substantially different conclusions. For example, for a SNP

effect of , 0.2, 0.5, 0.8, the correction factors would be ,

0.789, 0.497, and 0.198, respectively. For , for example, the F-statistic in a 2-stage
analysis will be attenuated approximately by 21%.

3. Example: Genome-wide association study of femoral neck length (FNL)
To illustrate the two approaches (MLR and 2-stage), we considered a genome-wide
association study of femoral neck length (FNL, cm) in the Framingham Osteoporosis Study.
FNL is one of several hip geometry phenotypes that have been implicated to play an
important role in fracture risk [Kaptoge et al., 2008]. The design and methods of the
Framingham Osteoporosis Study, an ancillary study of the Framingham Heart Study (FHS),
have been described elsewhere in detail [Karasik et al., 2010, Hsu et al., 2010]. Briefly,
members of the Framingham Osteoporosis Study are participants of the Original and
Offspring cohorts of FHS who had scans of the femur measured by DXA with a Lunar
DPX-L (Lunar Corp., Madison, WI, USA). Scans were performed between 1996 and 2001
for the Offspring cohort and 1992 and 1993 for Original cohort and a hip structure analysis
program (HSA) [Khoo et al., 2005] was used to derive FNL measures. Information on age,
sex, height, and body mass index (BMI) was obtained for each participant at the time of the
DXA measurement. Genotyping was conducted by the Framingham SHARe (SNP Health
Association Resource) project, for which 549,827 SNPs (Affymetrix 500K mapping array
plus Affymetrix 50K gene center array) were genotyped. For genome-wide association
analysis, a total of 2,543,887 autosomal SNPs were imputed by MACH2
(http://www.sph.umich.edu/csg/abecasis/MACH/) using HapMap phased haplotypes
(release 22, build 26, CEU population) as a reference panel. A principal component analysis
was performed to derive principal components of ancestry [Price et al., 2006]. Since our
theoretical analyses assumed independence, we limited our analyses of FHS data here to
2173 (1235 women) unrelated subjects selected from the Original and Offspring cohorts
who provided blood samples for DNA and had scans of the femur measured by DXA. The
study was approved by the Institutional Review Boards for Human Subjects Research at
Boston University and the Hebrew Rehabilitation Center.

Genome-wide association analysis of femoral neck length (FNL, cm) was conducted using
MLR and 2-stage regression and adjusting for age, sex, height, BMI, and the first four
principal components (PC1–PC4) of ancestry to account for confounding due to potential
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population substructure. We analyzed 2,144,878 SNPs after excluding SNPs with low minor
allele frequency (< 5%) and low imputation quality (<0.3) as measured by the ratio of the
empirically observed dosage variance to the expected (binomial) dosage variance.

Consistent with our theoretical findings, p-values (and effect sizes) from the 2-stage analysis
were weaker than those obtained from MLR. While the p-values of the 2-stage were
systematically weaker than those of MLR, no substantial differences were observed for the
association of any single SNP and FNL as associations between the covariates and SNPs
across the genome were only minimal. Among SNPs with p<0.05, the strongest SNP-
covariates association was observed for rs17615220 (squared multiple correlation of r2)
resulting in only minor differences between the MLR and the 2-stage results: the regression
parameter estimate, t-statistic, and p-value for rs17615220 and FNL association were 0.081,
2.43, and 0.015 for MLR and 0.068, 2.24, and 0.025 for 2-stage.

To further illustrate differences between MLR and 2-stage in the presence of stronger
correlations between independent variables, we also performed association analyses of FNL
and arbitrarily selected SNPs with varying degrees of linkage disequilibrium (LD, r2). This
approach could occur in a conditional analysis, where residuals adjusting for known variants
are generated for a two-stage approach. For illustrative purposes, we selected rs764300, the
most significant SNP on chromosome 14, as the SNP of interest and performed association
analysis with FNL conditional on covariates (age, sex, height, BMI, and PC1–PC4) only and
then additionally adjusting for each of the following SNPs: rs4902067, rs12883544,
rs912343, rs1016247, having LD with rs764300 ranging between r2 =0.0 and 0.53 (Table 1).
As expected, when r2 is close to 0 (rs4902067), associations between the index SNP and
FNL in MLR and 2-stage approach were nearly identical (P-value=3.0E-05, parameter
estimate=0.09). On the other hand, when r2 between the index SNP and the other SNP in the
model is high (r2 =0.53, rs1016247), the conditional association from the 2-stage was
substantially different from MLR (2-stage P-value =0.0538, parameter estimate=0.042, and
t-statistic=1.93; MLR P-value =0.0047, parameter estimate=0.089, and t-statistic=2.83). As
shown in our theoretical presentation, the effect size (parameter estimate) from the 2-stage
analysis was attenuated by 53%.

4. CONCLUSION
We examined the performance of a 2-stage residual-outcome analysis as compared with
multiple linear regression (MLR) analysis and showed that the two approaches can produce
vastly different results. Our results showed that compared to MLR a 2-stage residual-
outcome analysis can markedly underestimate and fail to detect a SNP effect. Unlike MLR
analysis which removes the contribution of a covariate from both the outcome and exposure
variables, the 2-stage residual-outcome analysis removes a covariate effect only from the
outcome variable. An important issue of whether a covariate effect should be adjusted only
from the outcome (adjusted-outcome), only from the exposure (adjusted-exposure) or from
both the outcome and exposure variables (adjusted-outcome and adjusted-exposure) must be
determined according to the goal of the analysis. In doing so, however, it is critical to make
distinctions between a 2-stage approach and MLR and select the appropriate method. This is
especially important when a study involves correlated independent variables in which the
two approaches are expected to be incongruent.

There are valid and useful applications to a 2-stage residual-based analysis. In nutritional
epidemiologic studies, for example, residuals or energy-adjusted nutrient values are created
prior to the main analysis to remove variations due to energy intake from nutrients [Willett
WC; 1998]. This approach is used to obtain a measure of a nutrient intake independent of
total energy to minimize issues related to collinearity, to obtain association estimates of total
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energy that are not adjusted for specific nutrients and to reduce correlations among nutrients
by removing co-variation due to shared measurement errors in self-reported nutrients and
energy intake [Willett WC, 2001; Michels et al., 2004].

Residual-outcome (adjusted-outcome) analysis has been also very popular in genetic linkage
and family–based association studies [Rabinowitz and Laird, 2000; Family-Based
Association Tests and FBAT-toolkit, FBAT, http://www.biostat.harvard.edu/~fbat /fbat.htm;
Lunetta et al., 2000; Slager et al. 2003; Zeegers et al. 2004]. Based on empirical data, many
studies indicate findings from 2-stage residual-outcome analysis to be comparable to those
obtained from a single-stage method that jointly analyze the study variables. For sib-pair-
linkage studies, a simulation study by Zeegers et al. demonstrated that a residual-outcome
analysis performs as well as a joint analysis of an outcome, a quantitative trait locus and
covariates. In general, however, little is known about how well a 2-stage residual-outcome
analysis performs under various scenarios and different study designs.

In this report our focus was on a 2-stage residual-outcome approach for analysis of potential
confounding effects, SNPs, and quantitative outcome variables in a population-based
association study. We showed, using theoretical analysis and empirical data, that the
treatment of confounding effects by a 2-stage residual-outcome analysis is inconsistent with
that of multiple linear regression analysis.
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Appendix

Relationship between 2-stage regression and MLR parameter estimates
This section uses classical linear regression and correlation theories (e.g., Kleinbaum et al.,
1988) to derive a simple relationship between regression parameters from MLR and 2-stage

regression models, β1 and , and show that  the squared
correlation between S and C.

From Eq. (3), 

.

Where ρYS|C is the partial correlation between Y and S (both adjusted for C) and  the
squared correlation between S and C

In addition, the variance of S can be given by 

Thus,
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