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Abstract
Hypertension, diabetes, obesity, and dyslipidemia are risk factors that characterize metabolic
syndrome (MetS), which increases the risk for stroke by 40%. In a preliminary study, our aim was
to evaluate cerebrovascular reactivity and oxygen metabolism in subjects free of vascular disease
but with one or more of these risk factors. Volunteers (n=15) 59±15 (mean±SD)years of age clear
of cerebrovascular disease by magnetic resonance angiography but with one or more risk factors
were studied by quantitative positron emission tomography for measure ment of cerebral blood
flow, oxygen consumption, oxygen extraction fraction (OEF), and acetazolamide cerebrovascular
reactivity. Eight of ten subjects with MetS risk factors had OEF >50%. None of the five without
risk factors had OEF >50%. The presence of MetS risk factors was highly correlated with OEF
>50% by Fisher's exact test (p<0.007). The increase in OEF was significantly (P<0.001) correlated
with cerebral metabolic rate for oxygen. Increased OEF was not associated with compromised
acetazolamide cerebrovascular reactivity. Subjects with one or more MetS risk factors are
characterized by increased cerebral oxygen consumption and ischemic stress, which may be
related to increased risk of cerebrovascular disease and stroke.
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Background
Metabolic syndrome (MetS) describes a constellation of vascular risk factors including
central obesity, hypertension, dyslipidemia, and insulin resistance [1, 2]. It increases the risk
of vascular disease, including stroke and ischemic heart disease [3–5]. The prevalence of
MetS in patients with a history of stroke is 44% compared to 23% without stroke [4]. MetS
increases risk of asymptomatic infarcts and leukoaraiosis on magnetic resonance imaging
(MRI) [6–8]. MetS and risk of vascular disease and stroke are believed to be a consequence
of a multifaceted consequence of hypertension and microvascular injury and dysfunction
leading to insulin insensitivity [9–11] combined with dyslipidemia [12–14] resulting in
atherogenesis and the prothrombotic state, but the early physiological mechanisms
responsible for these changes leading to increased risk of stroke are unknown.

We studied a group of volunteers who served as controls for a study on cerebral
atherosclerotic occlusive vascular disease and recurrent stroke, and most of whom although
clear of cerebrovascular disease had one or more of the risk factors associated with MetS.
We report evidence of ischemic stress on the basis of high oxygen extraction fraction (OEF)
significantly related to high cerebral metabolic rate for oxygen (CMRO2).
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Methods
Subject Recruitment

Fifteen volunteers aged 59±5 (mean±SD) and verified free of cerebrovascular disease by
magnetic resonance angiography were studied under protocol number 0505101 approved by
the Institutional Review Board of the University of Pittsburgh and IND #71,894 for the use
of 15O2 gas and H2O15 water for use in the correlation with recurrent stroke. A waiver of
informed consent for the screening of the subject's medical records for inclusion–exclusion
criteria for the study was obtained. In this study, the risk factors of hypertension, diabetes
mellitus type 2, and dyslipidemia were assigned and were subject self-report.

Inclusion Criteria
• Age within the selected age range of the patient population up to the point of entry

into the study;

• Gender that matches the gender distribution of the patient population up to the
point of entry into the study;

• Healthy, active lifestyle with no major health problems including cardiovascular,
pulmonary, and other major organ problems;

• Free of cerebral occlusive vascular disease as determined by no-contrast MRI
angiography and perfusion MRI;

• No claustrophobia.

Exclusion Criteria
• Claustrophobia;

• Chronic medication that would impact the cerebrovascular response to
acetazolamide or cerebral metabolism;

• Pregnancy;

• Occlusive vascular disease by magnetic resonance angiography;

• Recent radiation exposure that would disqualify the subject for positron emission
tomography (PET) scans;

• Respiratory or other major organ disease;

• Metal prosthesis that would exclude from MRI scans;

• Neurologic or cerebrovascular disease;

• Did not agree to follow up;

• Volunteer is breast-feeding an infant;

• Volunteer is on quinidine and amphetamines or high dose aspirin (>625 mg/day);

• Volunteer has a history of medical problems including liver disease, renal disease,
adrenal cortical insufficiency, hyperchloremic acidosis, hypokalemia,
hyponatremia, or other electrolyte imbalances.

Magnetic Resonance Imaging (MRI)
MRI scans were performed on either a 3.0 Tesla (Siemens Medical Solutions, Malvern, PA,
USA) or 1.5 Tesla whole body MRI scanner (General Electric Medical Systems, Milwaukee,
WI, USA), equipped with echo planar imaging (EPI) capabilities and operating under
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version VH3 of the scanning software. The scanner has peak gradient strength of 4 G/cm
and peak slew rate of 15,000 G/cm/s. The standard radiofrequency (RF) birdcage coil was
used for scanning the subjects. The imaging protocol consisted of standard imaging
sequences used for the evaluation of anatomical detail and magnetic resonance angiography
and diffusion tensor imaging. A single-shot EPI spin echo sequence modified to include
diffusion-sensitizing gradients in arbitrary directions was used to acquire the diffusion tensor
imaging data. A minimum of 18 slices with a thickness of 5 mm and an inter-slice gap of 1.5
mm was acquired for each subject. Axial 3-mm T1-weighted images, FLAIR, T2, proton
density, diffusion-weighted imaging, apparent diffusion coefficient images of the brain, and
time-of-flight angiography of cervical and intracranial arteries images were acquired and
reviewed by a certified neuroradiologist to exclude subjects with subclinical cerebrovascular
disease, atherosclerotic stenosis, and asymptomatic infarcts and to review for unanticipated
findings. The MRI data were transferred to the PET Facility over an electronic network and
registered with the PET data on a SPARC station with software routinely used for this
purpose.

The registered MRI was used as an individualized anatomic map for analysis by (1)
parametric three-dimensional threshold, and (2) middle cerebral artery territories regions of
interest (ROI) averaged over each level for hemispheric analysis (Fig. 1).

Positron Emission Tomography (PET)
A Siemens/CTI HR+, high-resolution tomograph was performed with 15O-water to measure
cerebral blood flow (CBF) and 15O-oxygen to measure cerebral metabolic rate of oxygen
(CMRO2) as previously described [15, 16]. The paradigm for the PET studies was 15O-
oxygen/15O-water/ acetazolamide 15 mg/kg i.v./15O-water/15O-oxygen. 15O-oxygen
measurements began 25 to 30 min after acetazol-amide with 3 min of data acquisition and
within 45 min maximal vasodilatory effect of acetazolamide [17]. OEF was calculated after
measurement before and after acetazolamide (Diamox) challenge given 15 mg/kg, i.v OEF
threshold was set at 50% based on previous studies [15, 16].

The procedures in the PET scans were as follows: The PET facility nurse inserted a venous
catheter, and a physician co-investigator inserted an arterial catheter. An arterial blood
sample was obtained for measurement of arterial blood gas analysis (PaO2, PaCO2, pH,
Na+, K+, Ca+, glucose, HbO2 saturation, total O2 content, and base excess), and the study
commenced after the chemistry profile and arterial blood gas analyses were verified within
normal limits by a physician co-investigator who remained present during administration of
acetazolamide.

Briefly, the PET scan procedures were as follows: The subjects were comfortably placed on
the PET scanning table with molded padding placed under the knees and small of the back
and a thermoplastic mask molded to the contours of the head and face. This mask has precut
eye, ear, and mouth holes and is well tolerated while greatly reducing head movement. The
subject undergoes a 10-min transmission scan and two [15O]-tracer scan sessions 15 min
apart. The first measured baseline CMRO2; and the second, baseline CBF. Acetazolamide
15 mg/kg, i.v., was administered over 3 and 10 min after the first CBF measurement. A
repeat CBF [15O] water measurement was made 10 min after acetazolamide infusion. A
[15O]-oxygen CMRO2 measurement was repeated 15 min after the [15O] water CBF
measurement.

Indirect blood pressure via automatic sphygmomanometry was used to monitor blood
pressure recorded during the PET scan. In addition to the blood sample obtained before
initiation of the scan, arterial blood gas samples were obtained between the first [15O]
oxygen and [15O] water measurements and again after the second measurements post-
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acetazolamide for measurement of arterial oxygen content by co-oximetry for CMRO2
calculations.

CBF measurement CBF measurements began with 75 mCi [15O] water in 5–7 cm3 saline
injected as an intravenous bolus. Continuous arterial sampling at 6 ml/min upon injection
was by a Master flex peristalsis pump (model #7550-90) through a Siemens Liquid Activity
Counter. Blood withdrawal continued for 30 s after the end of the PET scan for a total
withdrawal time of about 210 s or a total of blood volume of about 20 ml per CBF
measurement. Blood activity data was automatically accumulated in a Sun SPARC station
for later processing. All PET images of CBF and CMRO2 as well as the MRI images of a
given patient were registered and resliced to a reference PET image set, typically the first
PET water scan obtained on each patient which was centered.

Calculation of CBF was done using a two-compartment model approach using the
operational equation [18]:

where A*(T) is the radioactivity of the ROI at T, Ca*(t) the radioactivity in blood at the brain
capillary, K1

W the unidirectional blood–brain clearance rate constant of water (CBF), k2
W,

the fractional brain–blood clearance rate constant of water, and v0 the correction constant for
the intravascular radioactivity. In order to obtain Ca*(t), the measured radioactivity in
arterial blood was corrected for external dispersion and temporal displacement [19].

CMRO2 measurements were initiated with arterial blood sampling as previously described.
As before, we had permission to perform one extra 100-mCi injection of [15O] oxygen and
75 mCi [15O] water before and after acetazolamide in the event of problems with the
delivery and/or data acquisition. Calculation of CMRO2 was performed using a two-
compartment model approach [20, 21]. Using estimates of K1

O (unit: ml/g/min), rCMRO2
(unit: μmol/100 g/min) will be calculated as CMRO2=K1

O·CaO2×100, where CaO2 is the
arterial oxygen content (unit: mls O2/ml). In addition, voxel-by-voxel images of CMRO2
were constructed by the WILT method [22].

Calculation of OEF OEF was calculated as the K1
O–K1

W ratio for individual regions. In
addition, voxel-by-voxel images of OEF was reconstructed by dividing K1

O parametric
images by K1

W images, after the images of two variables were aligned to each other. Voxels
outside the brain, including the ventricles, will be given zeros.

Calculation of CVR Cerebrovascular reserve (CVR) was calculated as the percentage
increase in CBF after acetazolamide as defined by

Statistical analyses were done using Fisher's exact test for comparisons of risk factors, and
linear regression was used for linear regression analysis. A P value of <0.05 was considered
statistically significant.
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Results
The risk factor distribution among the 15 subjects shows that subjects with OEF >50% had
12 of the MetS-associated risk factors, and the group with OEF <50% had four of the MetS-
associated risk factors (Table 1).

The increased OEF was significantly associated with the presence of stroke risk factors as
determined by Fischer's exact test (Table 2). However, the study was too underpowered to
associate increased OEF with any one risk factor over another.

A plot of baseline OEF (BOEF) versus CMRO2 in the 15 subjects studied (Fig. 1) shows
that increased OEF indicative of increased ischemic stress was significantly (P<0.01)
associated with increased CMRO2 described by a linear regression equation:

Every one of the subjects with one or more of the risk factors associated with the MetS had a
high OEF.

The increase in OEF associated with increased CMRO2 was not associated with
compromised acetazolamide cerebrovascular reactivity and, in fact, appeared to be
associated with an exaggerated CVR, which was, however, not significant (Table 3).

Discussion
The subjects enrolled in this study with OEF >50% did not meet at least three of the five
criteria to qualify as MetS as defined by the National Cholesterol Education Program ATPIII
[23]. However, the absence of high OEF in those without these risk factors supports the
notion that these risk factors may be linked to increased OEF secondary to an increase in
CMRO2. This preliminary observation needs confirmation in a larger cohort of subjects that
would allow identification of the components of MetS that are specifically associated with
increased CMRO2 and OEF.

The increased ischemic stress (high OEF) in these individuals is associated with increased
CMRO2 but with normal or even exaggerated CVR, which provides some insight into the
mechanism of increased OEF in the face of increased CMRO2. This suggests that the
mechanism of ischemic stress is likely not related to atherosclerosis, vascular stenosis, or
compromised collateral circulation but rather, an active vasoconstriction. Leptin stimulates
brain metabolic rate [24, 25] and induces activation of the pituitary adrenal sympathetic
system and the rennin-angiotensin system [26–30]. Increased plasma norephinephrine and
angiontensin II causes vasoconstriction through NADPH oxidase [31]. Which also increases
oxygen demand through activation of uncoupling of mitochondrial oxidative
phosphorylation by uncoupling proteins [32, 33] activated by free fatty acids [34]. This
sequence of events through NADPH oxidase could lead to injury-induced neointimal
proliferation [35].

Since our study is a cross-sectional observation at one time point, the meaning of the high
OEF in this population needs to be assessed in a cohort study with follow-up stroke event as
endpoint. High OEF has associated with higher stroke risk in a cohort of patients with
carotid artery occlusion [36]. This finding associating MetS risk factors and with high OEF
also needs to be confirmed in a larger sample of subjects, with further identification of
association with particular risk factors or metabolism syndrome criteria. If MetS is found to
be associated with non-atherosclerotic mechanism in increasing vascular disease risk,
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intervention in the specific hormonal and pathophysiological mechanisms may be important
in reducing complications. The finding would also apply in identifying high-risk population
within those with risk factors.

In summary, this is the first observation of increased ischemic stress in cerebrovascular
disease-free subjects with MetS and stroke-associated risk factors which may provide insight
into the evolution of the pathogenesis of the disease and a means by which the patients at
high risk for stroke may be identified beyond population-wide risk factor evaluation. A
larger study verifying these observations and the ability to predict stroke risk at an early
stage is warranted.
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Fig. 1.
Linear regression analysis of the relationship between hemispheric baseline oxygen
extraction fraction (BOEF) in percent versus cerebral metabolic rate for oxygen (CMRO2) in
14 subjects (N=24 hemispheres) with (triangles) and without (squares) metabolic syndrome-
associated risk factors. One subject with metabolic syndrome risk factors not included had
CMRO2 of 8–9 ml/100 g/min and OEF of 56% and 62% and not included in the plot
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Table 1

Risk factor distribution with oxygen extraction fraction

OEF >50% (elevated) OEF ≤50% (normal)

Hypertension 4 2

Diabetes mellitus type 2 2 0

Dyslipidemia 4 1

Obesity 2 1
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Table 2

Subjects with elevated oxygen extraction fraction

Risk factor present Risk factor absent Fisher's exact test

Hypertension 4/6 (66%) 4/9 (44%) 0.61

Diabetes mellitus 2/2 (100%) 6/13 (46%) 0.47

Hyperlipidemia 4/5 (80%) 4/10 (40%) 0.28

Obesity 0/1 (0%) 8/14 (57%) 0.47

Any risk factor 7/9 (78%) 1/6 (17%) 0.04
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Table 3

Comparison of cerebrovascular reserve (CVR) in subjects with oxygen extraction fraction (OEF) greater or
less than 50%

OEF >50% (elevated) OEF <50% (normal) P value

Age (years) 60±14 57±17 0.64

CVR (%) 85±79 52±36 0.185

OEF (%) 63±9 38±9 0.001
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