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Abstract
This paper presents a novel tractography algorithm for more accurate reconstruction of fiber
trajectories in low SNR diffusion-weighted images, such as neonatal scans. We leverage
information from a later-time-point longitudinal scan of the neonatal image to obtain more reliable
estimates of local fiber orientations. Specifically, we determine the orientation posterior
probability at each voxel location by utilizing prior information given by the longitudinal scan,
and with the likelihood function formulated based on the Watson distribution. We incorporate this
Bayesian model of local orientations into a state-space model for particle-filtering-based
probabilistic tracking, catering for the possibility of fiber crossings by modeling multiple
orientations per voxel. Regularity of fibers is enforced by encouraging smooth transitions of
orientations in subsequent locations traversed by the fiber. Experimental results performed on
neonatal scans indicate that fiber reconstruction is significantly improved with less stray fibers and
is closer to what one would expect anatomically.

1 Introduction
The human brain is a complex system that is capable of integrating massive amount of
information with startling efficiency. A comprehensive description of the architecture of the
anatomical connectivity patterns is therefore fundamentally important in cognitive
neuroscience and neuropsychology, as it reveals how functional brain states emerge from
their underlying structural substrates and provides new mechanistic insights into the
association of brain functional deficits with the underlying structural disruption [1].

The neonatal brain provides a window for insights into perhaps the most important phase of
human brain development. For this purpose, diffusion-weighted imaging (DWI) plays an
indispensable role in the in vivo characterization of brain structural circuity relating different
functional regions. However, the utilization of DWI on neonatal subjects for the purpose of
connectivity analysis is often impeded by the unreliability of neuronal fiber trajectory
reconstruction due to the inherent lower quality of the diffusion-weighted scans. Noisy
estimates of local fiber orientations can propagate and accummultate in the course of
trajectory reconstruction, especially if the tractography algorithm is greedy in nature,
rendering the validity of subsequent tract-based analysis questionable. We present in this
paper a remedy to this problem by leveraging prior information from longitudinal scans to
improve the accuracy of local fiber orientation estimates for more accurate trajectory
reconstruction of the neuronal fibers.

Cook et al. [2] proposed an atlas based approach for better tractography outcome by
modifying the stochastic white matter tractography algorithm developed by Friman et al. [3].
An atlas was first generated by computing for each voxel the dyadic tensor of the principal
directions from a set of diffusion tensor images. The atlas encapsulates the mean local fiber
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orientations as well as their degrees of dispersion, serving as prior information to the
Bayesian stochastic tractography framework in [3]. This approach, while effective, has two
shortcomings: 1) Its formulation is limited to one single orientation per voxel, seriously
limiting the ability of the algorithm in accounting for fiber crossing, branching or kissing,
and 2) The atlas is not subject-specific, causing loss of fiber tracts in regions where the
subject and the atlas disagree.

The contributions of this paper are: 1) The formulation and evaluation of a fiber
tractography algorithm that is guided by longitudinal prior information for more robust fiber
trajectory reconstruction especially in images with lower SNR, and 2) The evaluation of
how modeling multiple fiber orientations per voxel improves tractography outcome in
regions with complex diffusion architecture.

2 Approach
2.1 Modeling Local Fiber Orientations

A white matter fiber can be modeled as a finite-length path parameterized by a train of unit
length vectors. We use the following notation for such a path: v(1:T) = {v(1), … , v(T)}. We
further assume that a fiber path can be traced by tracking the trajectory of a particle
travelling in a continuous directional field. Each particle is endowed with an initial speed in
an appropriate direction. It then moves with constant speed to position x(t) according to

(1)

where t is the time index and s is the step length. To reconstruct the fiber trajectories, we
need to determine the probability density function (PDF) of the local fiber orientations
f(v(t)ǀv(t–1), θ(t), θ’(t), D(t)), where D(t) = 1, … , Ω is the orientation index. Each voxel may
contain up to Ω orientations, as is in the case of high angular resolution diffusion imaging
(HARDI). Sets θ(t) and θ’(t) are collections of the orientations, and their strengths, in the
neighborhood of x(t) of the neonate and its longitudinal scans, respectively. Specifically, we
define a neighborhood N(x(t)) (e.g., a 3 × 3 × 3 neighborhood) in the vicinity of x(t) and, for

voxel i in the neighborhood, collect all the corresponding orientations  and their

strengths  (e.g., magnitudes of the orientation distribution functions), spatially
weighted by a Gaussian kernel so that voxels further away from the neighborhood center
will be deemphasized. The orientations are first sorted to avoid the bias discussed in [4].
Applying Bayesian theorem, we have

(2)

Since the orientations in both images are estimated independently in a voxel-wise fashion,
f(θ(t)ǀv(t), v(t–1), θ’(t), D(t)) = f(θ(t)ǀv(t), D(t)) and f(θ(t)ǀv(t–1), θ’(t), D(t)) = f(θ(t)ǀD(t)). The
equation can then be written as

(3)
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The factor f(θ(t)ǀD(t)) normalizes the posterior probability function to have a unit volume and
can thus be written as the integral of the numerator

(4)

In what follows, we will discuss how the likelihood f(θ(t)ǀv(t), D(t)) and prior f(v(t)ǀv(t–1),
θ’(t), D(t)) can be computed.

Likelihood—We assume that the orientations observed in the neighborhood of x(t) can be
regarded as noisy observations of v(t), characterized by the Watson distribution with
probability density function (PDF) [5]

(5)

The parameter μ is a unit vector called the mean orientation and κ is a positive constant
called the concentration parameter. The Watson distribution can be thought of as a
symmetrization of the Fisher-Von Mises distribution [6] for unit vectors on the sphere. The
squared exponential in (5) ensures that the distribution is antipodal symmetric. The density
has maxima at ±μ and becomes more concentrated around ±μ as κ increases. The density is
also rotationally invariant around ±μ. C(κ) is a normalizing constant to ensure that the
density function integrates to unity over the unit sphere. By letting μ = v(t), the joint
distribution, or the likelihood, of the observed orientations θ(t) can be written as

(6)

where  is a subset of θ(t) consisting only of the group of orientations specified by D(t).
This equation is substituted into the equation for the posterior distribution in (3).

Priors—Via the probability function f(v(t)ǀv(t–1), θ’(t), D(t)), we encode our prior knowledge
about fiber regularity and about orientation from the longitudinal scan. We define the prior
probability function as

(7)

The first term on the right enforces the regularity constraint during fiber reconstruction. The
second term transfuses orientation information from the longitudinal scan. The Watson

distribution is used to represent the distribution of the orientations in , with mean

orientation  and concentration parameter . Maximum likelihood estimates of the
these parameters can be obtained using the method described in [5].
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2.2 State-Space Model
Tractography is assumed to be a stochastic process that can be represented using a state-
space model with the local fiber orientation v(t) as the observation, and the orientation index
D(t) as the state. Given the previous oriention v(t–1) and the current state D(t), the observation
probability is defined according to (3). Noting that the posterior probability for selection of a
particular value of the orientation index D(t) is

(8)

and by letting

(9)

the transition probability can be defined as

(10)

where  denotes the average strength of . To perform the sequential sampling of
fiber paths, we need to draw random samples of the fiber direction from the observation
probability (3) and transition probability (10). For drawing samples from complicated and
high dimensional PDFs, one can always resort to Markov Chain Monte Carlo (MCMC)
techniques. The probability of a path of a given length T is

(11)

Tracking is stopped if the trajectory reaches a voxel with orientation coherence [7]

(12)

falling below a predefined threshold β0, or simply when the brain boundary is encountered.

The λ’s are the eigenvalues of the dyadic tensors of  and  [2, 4]. Perfect
alignment of the orientations in group D(t) results in β[D(t)] = 1 and an uniform distribution
of orientations results in β[D(t)] = 0.

3 Results
3.1 Materials

Diffusion-weighted images of 10 infants were acquired at two time points: one month and
one year after birth. Diffusion gradients were applied in 42 non-collinear directions with
diffusion weighting b = 1000 s/mm2, repetition time (TR) = 7,680 ms and echo time (TE) =
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82 ms. The scans covered the whole brain with a resolution of 2 × 2 × 2 mm3. Data post-
processing includes brain skull removal, motion correction and eddy current correction
using algorithms developed and distributed as part of the FMRIB Software Library (FSL)
package. Each neonatal (one month) scan was co-registered with their respective
longitudinal scan so that they reside in a common space.

3.2 Tractography
To evaluate the effectiveness of the proposed method, we performed tractography based on
seeds placed at the points where the midline crosses the splenium of the corpus callosum.
3000 trajectories were initiated from each seed point. The step size was fixed at 1 mm. The
maximum allowable orientation coherence was set to 0.1. Various configurations were used:

a. Tractography on the neonatal image alone with no prior information from the
longitudinal scan.

b. Tractography on the neonatal image guided by prior information from the
longitudinal scan.

c. Tractograph on the longitudinal scan.

d. Tractography on the neonatal image using only the first principal orientation with
no prior information.

e. Tractography on the neonatal image guided by longitudinal prior information from
the longitudinal scan using only the first principal orientations.

f. Tractography on the longitudinal scan using only the first principal orientations.

The respective results, shown in Fig. 1, indicate the proposed method (Fig. 1(b)) gives
reasonable results. Tractography, when performed based on the orientation information
given by the neonate image alone, results in noisy fiber tracts (Fig. 1(a) and Fig. 1(d)). This
is not surprising since the neonatal scans typically suffer from lower SNR. The results were
improved remarkably by employing prior information given by the longitudinal scan (Fig.
1(c) and Fig. 1(f)). The reconstructed trajectories are generally cleaner with less stray fibers
and are in higher agreement with our anatomical understanding of the fibers. Note that by
allowing only one orientation per voxel, major fibers are lost. Fig. 1(e) shows that, despite
with longitudinal guidance, fibers connecting one of the occipital lobes cannot be correctly
preserved and reconstructed.

3.3 Multi- and Single-Orientation Schemes
For quantification of the effect of using multi-orientation and single-orientation per voxel on
the reconstructed trajectories, various measures were employed. First, we compared the
average length of the reconstructed trajectories. A longer length average generally indicates
that fiber reconstruction is less likely to be terminated prematurely, which can be due to
noisy local fiber orientations. Fig. 2(a) shows that the proposed method results in on average
longer trajectories, hinting that by allowing more than one orientation per each voxel results
in less chances of premature termination at fiber crossings.

Anatomical scans (e.g., T1-weighted and T2-weighted images) of the brain indicate that the
brain is mostly symmetrical between the hemispheres. Therefore, one would expect that, to
be anatomically sound, the reconstructed trajectories should exhibit some degree of
symmetry. For our purpose, we evaluated the degree of symmetry of the reconstructed
trajectories by computing the degree of correlation of the connectivity matrices related to the
fibers between the left and right hemispheres. Specifically, this was done by parcellating the
brain into 116 regions according to the Automated Anatomical Labelling (AAL) atlas [8],
computing the connectivity matrix for each hemisphere based only on the (116/2 = 58) ROIs

YAP et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in that particular hemisphere and then computing the normalized scalar product of
connectivity matrices of both hemispheres. Each element of the (58 × 58) connectivity
matrix records the number of fibers connecting a pair of ROIs. The results, shown in Fig.
2(b), indicates the multi-orientation scheme yields higher inter-hemispheric accuracy
compared with the single-orientation scheme, again validating that modelling complex
orientation information can be conducive to more accurate reconstruction of fiber
trajectories.

Major fiber bundles known to exist in all subjects can be used to test fiber tracking
consistency across subjects. Since the seeds used in our evaluation were placed on a major
white major structure, we expect the reconstructed trajectories to be relatively consistent
across subjects. We tested this by using a similar methodology described in the previous
paragraph. But instead of generating the connectivity matrix for each hemisphere separately,
we generated a whole brain connectivitiy matrix by considering both hemispheres at the
same time. We then computed the mean connectivity matrix over all the 10 subjects. The
connectivity matrix of each subject was then compared with this mean matrix (via
normalized scalar product) as an indicator of consistency. The higher the similarity of all
individual connectivity matrices with the mean matrix, the greater is the consistency. Fig.
2(c) indicates that great consistency can be achieved using the multi-orientation scheme,
again validating the effectivenes of the proposed method.

4 Conclusion
We have presented a tractography algorihtm that caters especially for low SNR diffusion-
weighted images by leveraging prior information from the respective longitudinal scans.
Experimental results performed using neonatal scans indicate that the proposed method
yields fiber trajectories that are more consistent with our anatomical understanding. The
ability of taking into account multi-orientation information gives further improvement over
previous methods by allowing more accurate modeling of complex white matter architecture
involving fiber crossings. Precise performance evaluation of tractography algorithms remain
difficult since ground truth data are still lacking. Future work entails more extensive
assessment of the algorithm based on histological data obtained from excised brains of
canine subjects, which will be available in the future as part of the ongoing projects in our
group.

Acknowledgments
(This work was supported in part by NIH grants: EB006733, EB008374, EB009634, MH088520, HD05300,
MH064065 and NS055754)

References
1. Sporns O, Tononi G, Kötter R. The human connectome: A structural description of the human

brains. PLoS Computational Biology. 2005; 1(4):e42. [PubMed: 16201007]
2. Cook, PA.; Zhang, H.; Awate, SP.; Gee, JC. Atlas-guided probabilistic diffusion-tensor fiber

tractography. IEEE International Symposium on Biomedical Imaging (ISBI’08); 2008. p. 951-954.
3. Friman O, Farnebäck G, Westin CF. A bayesian approach for stochastic white matter tractography.

IEEE Transactions on Medical Imaging. 2006; 25:965–977. [PubMed: 16894991]
4. Basser PJ, Pajevic S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background

noise. Magnetic Resonance in Medicine. 2000; 44:41–50. [PubMed: 10893520]
5. Schwartzman A, Dougherty RF, Taylor JE. False discovery rate analysis of brain diffusion direction

maps. Annals of Applied Statistics. 2008; 2(1):153–175.
6. Banerjee A, Dhillon I, Gosh J, Sra S. Clustering on the unit hypersphere using von mises-fisher

distributions. Journal of Machine Learning Research. 2009; 6:1345–1382.

YAP et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Zhang H, Yushkevich PA, Alexander DC, Gee JC. Deformable registration of diffusion tensor mr
images with explicit orientation optimization. Medical Image Analysis. 2006; 10(5):764–785.
[PubMed: 16899392]

8. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B,
Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15:273–289. [PubMed:
11771995]

YAP et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Comparison of the different tractography schemes. (a) Neonate alone, (b) Neonate +
Longitudinal Scan, (c) Longitudinal scan alone, (d) Neonate alone (single orientation), (e)
Neonate + Longitudinal Scan (single orientation), and (f) Longitudinal scan alone (single
orientation).
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Fig. 2.
Comparison between the multi- and single-orientation schemes using different statistics.
Each bar indicates the mean value, and the error bar indicates the corresponding standard
error.
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