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Abstract
Ultrasound-Fluoroscopy fusion is a key step toward intra-operative dosimetry for prostate
brachytherapy. We propose a method for intensity-based registration of fluoroscopy to ultrasound
that obviates the need for seed segmentation required for seed-based registration. We employ
image thresholding and morphological and Gaussian filtering to enhance the image intensity
distribution of ultrasound volume. Finally, we find the registration parameters by maximizing a
point-to-volume similarity metric. We conducted an experiment on a ground truth phantom and
achieved registration error of 0.7±0.2 mm. Our clinical results on 5 patient data sets show
excellent visual agreement between the registered seeds and the ultrasound volume with a seed-to-
seed registration error of 1.8±0.9 mm. With low registration error, high computational speed and
no need for manual seed segmentation, our method is promising for clinical application.

1 Introduction
Low dose rate prostate brachytherapy is a treatment for prostate cancer involving permanent
implantation of radioactive seeds of 125I or 103Pd inside the prostate and periprostatic tissue.
The seeds are implanted using needles that pass through a guiding template, according to a
plan, to create an appropriate dose distribution inside and around the prostate. The procedure
is performed under transrectal ultrasound (TRUS) visual guidance. C-arm fluoroscopy
images are frequently used for gross visualization of the implant. The treatment quality
depends on accurate seed placement which is a challenging task due to problems such as
prostate motion and deformation during insertion, needle deflection and edema. Seed
misplacement can cause excessive radiation to the healthy tissue that leads to consequent
complications, or can result in insufficient radiation to the cancerous prostate (producing
“cold spots”) that leads to treatment failure.

Intraoperative dosimetry and planning has the potential to overcome the seed misplacement
problem and improve the treatment quality by intermittently calculating the delivered dose
and optimizing the treatment plan in order to compensate for the emerging cold spots [1].

★E. Dehghan was supported as an Ontario Ministry of Research and Innovation Fellow. G. Fichtinger was supported as Cancer Care
Ontario Research Chair. This work was also supported by National Institutes of Health/National Cancer Institute (NIH/NCI) under
Grants 2R44CA099374 and 1R01CA151395.

NIH Public Access
Author Manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 October
25.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2011 ; 14(Pt 2): 615–622.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although TRUS enables visualization of prostate boundary, seed segmentation in TRUS is
not robust due to significant number of seed-like artifacts (false positives) created by
calcifications and needle tracks, and also missing seeds [2]. However, C-arm images can be
used to localize the seeds in 3D space (henceforth, called reconstructed seeds) [3, 4]. Spatial
registration of reconstructed seeds to the prostate – delineated in the TRUS - can combine
the benefits of these two imaging modalities and provide intraoperative dose evaluation.

Lead markers attached to the probe [5] or radio-opaque fiducials attached to the guiding
template [6] have been proposed in the past for ultrasound-fluoroscopy registration.
However, markers or fiducials need segmentation and their images may overlap with the
seeds and complicate the seed reconstruction. Moreover, the radio-opaque fiducial cannot
compensate for the prostate motion caused by probe retraction. As a solution, Su et al. [7]
and Tutar et al. [8] used point-to-point registration and registered the reconstructed seeds to
a set of manually segmented seeds from TRUS images. Manual seed selection in TRUS is
tedious as TRUS images are rife with false positives. Fallavollita et al. [9] proposed
intensity-based registration of CT or fluoroscopy to TRUS. Their method showed successful
registration between CT and TRUS in a phantom study and qualitative agreement between
the reconstructed seeds and TRUS for a single patient data set.

In this paper, we introduce a point-to-volume intensity-based rigid registration method with
application to prostate brachytherapy. We use image thresholding combined with
morphological and Gaussian filtering to enhance the quality of TRUS images – without
removing the false positives. Except for manual selection of the region of interest, our
algorithm is fully automatic and eliminates the need for seed segmentation.

Our registration results on phantom and patient data sets not only show excellent visual
agreement between the reconstructed seeds and TRUS images, but also show quantitative
registration errors below clinically acceptable levels. In contrast to the work of Fallavollita
et al. [9], we use different preprocessing steps, similarity metric, and optimizer. In addition,
our trials on patient data show smaller registration error and faster computational speed.
Considering its low registration error, robustness, and high computational speed, our method
is suitable for intraoperative dosimetry.

2 Methods
The following work-flow is envisioned for data acquisition for intraoperative dosimetry. The
physician acquires several slices of TRUS images by retracting the probe from the prostate
base to its apex (41–57 slices with spacing of 1 mm in this work). In a preprocessing step,
these slices are processed and compounded into a volume. The probe is fully retracted and
several C-arm images are taken from different angles. The seeds are reconstructed from 5–6
images in 3D using available methods such as [3, 4]. The reconstructed seeds comprise a set
of 3D points that should be registered to the ultrasound volume.

2.1 Preprocessing
In the preprocessing phase, we follow several steps, as shown in Fig. 1, to enhance the
quality of TRUS images. A region of interest is manually selected from a mid-gland slice of
the TRUS volume to limit the search region during optimization and increase the likelihood
of convergence. This is the only manual intervention needed in our registration method.
Corresponding regions are cropped in all the slices and compounded together to create the
volume of interest (VOI). Although calcifications and air bubbles trapped in the needle
tracks have strong reflections, most of the bright areas in TRUS images belong to seeds.
Based on this intuition, we apply a threshold (T) to the images to enhance seed visibility (see
Fig. 1(b)). We define:
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(1)

where, μ and σ are the mean and standard deviation of intensity in the VOI, respectively, and
α is a parameter chosen based on the characteristics of the TRUS images (α = 3 in this
work). Note that we do not try to remove false positives such as calcifications or air bubbles.
The thresholded images are then dilated using a disk structural element (r = 3 pixels in this
work) to increase the size of the bright areas (see Fig. 1(c)). Finally, the dilated images are
filtered using a Gaussian filter (standard deviation = 10 pixels) in order to spread the bright
areas (see Fig. 1(d)). The Gaussian filter is applied to provide a smooth change of intensity
in the image in order to increase the capture range and enhance the convergence of the
optimization algorithm (details in Sec. 2.2). The image dilation and Gaussian filtering are
applied slice by slice. We sub-sample the filtered TRUS slices with a factor of 2 to gain
computational speed.

2.2 Intensity-based Point-to-Volume Registration
Since transformation of a set of points is computationally faster than the transformation of a
volume, we consider the ultrasound VOI as the fixed volume and register the reconstructed
seeds to this volume.

The transformation from the C-arm homogeneous coordinate system to the TRUS
homogeneous coordinate system is defined as T (θ, δ), where θ = [θR, θP, θY] represents the
roll, pitch and yaw angles, respectively, and δ = [δx, δy, δz] represents the translation along x,
y and z axes, respectively. We assume that the x axis is parallel to the horizontal axis of the
template, the y axis is parallel to the vertical axis of the template from bottom to the top, and
the z axis is parallel to the long axis of the probe from the base of the prostate to its apex.
Now, consider a mapping Ψ from every point in the TRUS coordinate system to the indices
of the voxel corresponding to that point in the VOI. Therefore, the indices of the voxel
corresponding to each reconstructed seed can be calculated as:

(2)

where  is the coordinates of the nth seed in the C-arm homogeneous coordinate system, vn
represents the indices of the voxel corresponding to this point in the VOI (henceforth a seed
voxel) and N is the number of implanted seeds. We assume rectangular cuboids with
dimensions of (2qi + 1) × (2qj + 1) × (2qk + 1) voxels centered at each seed voxel. The
integers qi, qj and qk are calculated so that each cuboid has dimensions of approximately
2×2×6mm3 (slightly thicker and longer than a seed). The similarity metric is evaluated as:

(3)

where, I(·) is the VOI intensity at given indices. In other words, the similarity metric is the
summation of the intensities of the voxels inside all cuboids around all the seed voxels. This
similarity metric quantifies the overlap between the cuboids and bright regions in the VOI
and hence, guides the reconstructed seeds toward the center of the bright regions.
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We employ the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10] in order
to maximize the similarity metric. CMA-ES is a stochastic optimization method suitable for
nonlinear and non-convex problems and was previously used for registration purpose in
[11]. This algorithm samples the search region using a normal distribution, the covariance
matrix of which is adapted iteratively. If the bright regions in the VOI are not expanded and
spread using image dilation and Gaussian filtering, the changes in the optimization
parameters may result in insignificant or no change in the similarity metric since the bright
regions are sparsely located in the VOI. Therefore, it is difficult for the optimization
algorithm to select the path to improve the similarity metric. However, image dilation and
Gaussian filtering provide a smooth and discernible change of similarity metric over the
VOI and help the optimization algorithm to hone in on the optimal parameters.

3 Results
3.1 Phantom Study

First, we tested our registration method on a phantom implanted with 48 dummy seeds. Both
TRUS and CT images of the phantom were acquired. The registration ground truth between
the TRUS and CT volumes was established using a tracked probe and fiducials that were
attached to the phantom box [9]. The seeds in the CT volume were segmented using
thresholding to yield a set of points similar to the outcome of seed reconstruction using C-
arm imaging. These seed positions were assumed to be the ground truth. We applied
independent perturbations of −10 to 10 mm, with steps of 1 mm, along each axis and
rotations of −10° to 10°, with steps of 1°, around each axis to the ground truth seeds and
tried the registration algorithm. The registration algorithm successfully converged close to
the ground truth for all of the perturbations. The registration error defined as the distance
between the registered seeds and the ground truth was on average 0.7 mm (STD = 0.2 mm).
The successful convergence of the algorithm to the global optimum despite the applied
perturbations shows its robust performance and wide capture range. Figure 2(a) shows the
ground truth and registered seeds overlaid on a slice of ultrasound volume.

3.2 Study on Clinical Data
We also applied our algorithm to clinical data sets. We collected data from 5 patients
implanted with 64 to 105 103Pd seeds. The transverse images – acquired using a BK Pro
Focus (BK Medical, Peabody, MA) ultrasound machine - were automatically captured at 1
mm intervals by reading the TRUS stepper position from the encoder while the surgeon
continuously retracted the TRUS probe from the prostate base to apex. The transverse slices
were processed and compounded into a volume. Several C-arm images were acquired from
different angles within a 20° cone around the anterior-posterior axis (AP-axis) using a pre-
calibrated GE OEC 9600 mobile C-arm. The C-arm poses were computed using a radio-
opaque fiducial [12] that was attached to the template. The C-arm images were preprocessed
to correct the image distortion, segment the 2D seed locations and estimate the image poses.
The seeds were reconstructed in 3D from 5–6 images by solving a seed matching problem
using a dimensionality reduced linear programming algorithm (called REDMAPS) [4].

The registration algorithm was initialized by coinciding the center of mass of the
reconstructed seeds with the center of the VOI. The initial rotation angles were provided by
the radio-opaque fiducial which was attached to the guiding template. The registration
results showed excellent visual agreement between the reconstructed seeds and the TRUS
images as it can be seen in Fig. 2(b). Since no ground truth was available at this stage, we
manually identified several seeds from the TRUS images (henceforth called the selected
seeds) and measured their distances from the closest registered seed. The average and
standard deviation of these seed-to-seed distances are reported in Table 1. The registration
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error had an overall average of 1.8 mm (STD = 0.9 mm). We also reported the mean and
standard deviation of the magnitude of the registration error vectors projected along each
axis as shown in Table 1. The registration error along the long axis of the probe (the z axis)
is the most significant error.

4 Discussion
Su et al. showed that the deviation in D90 (the minimum dose delivered to 90% of the
prostate volume) is less than 5% for seed localization errors of less than 2 mm [13]. Our
registration errors for 4 of the 5 patients studied are below this limit. Patient 3 had an
average registration error slightly greater than 2 mm. This patient had a relatively large
prostate that was significantly deformed by the probe pressure. Such patients require a
deformable registration between the reconstructed seeds and the TRUS volume. We expect
to describe the statistical pattern of deformation from a handful of patients, as the boundary
conditions are fairly similar across cases. We also suspect that, in addition to statistical
observation, a simple deformation model will explain the primary effect of the probe
pressure. Note that we need a registration error smaller than 2 mm [13] for which, a 1D
deformation model along the AP-axis can suffice. Alternatively, as recommended in [14],
the physician can lower the probe posteriorly in order to decrease the pressure on the
prostate. The prostate deformation for the other patients was negligible as the small
registration errors along x and y axes confirm.

As it can be seen in Table 1, the error along the z axis is on average 1.2 mm, while the error
along x and y axes are on average less than 1 mm. It should be noted that our TRUS volume
has a slice spacing of 1 mm along the z axis. In addition, it is difficult to accurately select the
center of a 5 mm long seed image which is usually elongated by needle tracks. Therefore our
manual seed segmentation can have an error of the same order of magnitude along the z axis,
that contributes to the measured registration error.

The algorithm was programmed in MATLAB on a computer with an Intel Core 2 CPU (2
GHz) with 2 GB of RAM. The registration – excluding the manual VOI selection - runs, on
average, in approximately 40 s. Our seed-to-seed registration error is less than or equal to
the results reported in [7, 8]. Note that [7] and [8] are based on manually selected seeds in
TRUS images. Our registration error is also smaller than 2.8 mm reported by Fallavollita et
al. [9]. The registration speed, accuracy and robustness are vital in a clinical setting. Our
registration method with low registration errors, wide capture range and fast computational
speed is promising for clinical application.

We reported our results based on 5 patient data sets. We expect to get similar results for a
larger number of patients. However, we will test our algorithm on a statistically more
significant number of patient data sets in the future as data collection is currently underway.

5 Conclusions and Future Work
We presented an intensity-based method for registration of ultrasound to fluoroscopy for
intraoperative dosimetry in prostate brachytherapy. Our method obviates the need for
tedious manual seed segmentation required for seed-based registration. We applied
thresholding, and morphological and Gaussian filtering to the TRUS images to enhance the
quality of the images and increase the capture range of the algorithm without removing the
false positives or identifying the missing seeds. On a ground truth phantom, the algorithm
converged to an average registration error of 0.7 mm despite perturbations of −10 to 10 mm
along each axis and −10° to 10° around each axis. This demonstrates the wide capture range
and robustness of our algorithm. In a clinical study on 5 patient data sets, we achieved
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average registration error of 1.8 mm in approximately 40 s that shows the feasibility of our
method for clinical application.

Extensive tests on more clinical data sets, automatic selection of region of interest and
accommodation of prostate deformation as well as sensitivity analysis to the chosen
parameters are parts of the future work.
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Fig. 1.
Preprocessing steps.
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Fig. 2.
Registered seeds overlaid on TRUS images. (a) Phantom result. Green diamonds are ground
truth seeds, yellow squares are registered seeds. (b) Patient result. Yellow squares are
registered seeds.
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