The primary structure of the larval β_1 -globin gene of Xenopus laevis and its flanking regions

Wolfgang Meyerhof¹, Stella Klinger-Mitropoulos¹, Jürg Stalder², Rudolf Weber² and Walter Knöchel¹

¹Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-1000 Berlin 33, FRG, and ²Zoologisches Institut, Abteilung für Zell- und Entwicklungsbiologie, Universität Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland

Received 23 July 1984; Revised and Accepted 26 September 1984

ABSTRACT

We present the complete nucleotide sequence of the larval B_1 -globin gene of Xenopus laevis including 240 nucleotides of the 5' flanking region and 594 nucleotides beyond the polyadenylation site. The site of transcription initiation was mapped by S_1 nuclease, and the site of polyadenylation was determined by comparison with corresponding cDNA clones.

The larval Xenopus B_1 -gene shows the same internal structure as the B-globin genes of higher vertebrates, viz. 3 exons interrupted by 2 intervening sequences. The first intervening sequence, which is of exceptional length, spans over 564 nucleotides and interrupts the coding sequence at amino acid 30, whereas the second one comprises 968 nucleotides and is located between the amino acids 104 and 105. The second intervening sequence contains a long inverted repeat of almost perfect homology.

The 5' flanking region contains a TATA- and a CAAT-box at positions -33 and -58, respectively. An additional TATA-box is located at -197 and two more CAAT-boxes occur at positions -105 and -237.

INTRODUCTION

Sequential changes in hemoglobin synthesis are a common feature of vertebrate development and reflect differential expression of the globin genes which encode the polypeptide subunits of hemoglobin. In the South African Clawed Toad (<u>Xenopus</u> <u>laevis</u>) the switch from larval to adult hemoglobin occurs at metamorphosis (1) and is characterized by the complete replacement of the larval by adult globin chains (2, 3). Therefore the <u>Xenopus</u> globin system represents an attractive model for investigating expression of developmentally regulated genes.

Analysis of cDNA clones, derived from anemic animals, revealed four larval and four adult globin sequences, which in each stage comprise two closely related α - and two closely related ß-sequences (4). In contrast to higher vertebrates, whose α - and ß-globin genes are arranged in clusters on different chromosomes, the α - and ß-genes of <u>Xenopus laevis</u> are linked (5, 6). According to a recent study the <u>Xenopus laevis</u> globin gene family comprises at least 12 genes, which are symmetrically arranged in two clusters. Each cluster carries the linked adult α - and ß-genes which at the 5' end are flanked by two larval α -genes and at the 3' end by two larval ß-genes (7).

To date the nucleotide sequences are available of cDNA clones corresponding to the adult α - and β -sequences as well as those of the larval α_I and β_I -sequences (8-12). Moreover, the complete sequence of the adult β_I -gene was reported by Patient et al. (13), and part of the adult α_I -gene was sequenced by Patient and Baralle (14).

Comparative studies on the fine structure of <u>Xenopus</u> <u>laevis</u> globin genes may provide information on the role of DNA sequences in the developmental control of gene expression. Since the <u>Xenopus</u> <u>laevis</u> globin genes are as yet the only globin genes available from lower vertebrates, they are also of interest in the study of gene evolution. To elucidate further the molecular basis of developmentally controlled expression of the <u>Xenopus</u> <u>laevis</u> globin genes, it was of interest also to analyze the structure of a larval gene with its flanking regions. In this paper we now present the complete nucleotide sequence of the larval B_{I} -gene including 240 nucleotides of the 5' and 594 nucleotides of the 3' flanking regions together with the amino acid sequence of the corresponding polypeptide.

MATERIALS AND METHODS

Isolation of phage and plasmid DNAs

 λ recombinant phage DNA was isolated by the glycerol step gradient procedure (15). Plasmid DNAs and phage M13 RF DNAs were prepared by the rapid alkaline extraction method (16) and further purified on CsCl gradients. Single stranded M13 phage DNA was prepared by polyethylene glycol precipitation and subsequent phenol extraction. Restriction enzyme digestions and ligation of DNAs were performed according to the recommendations of the suppliers (BRL, Boehringer). <u>Subcloning</u>

 λ XG4 DNA was digested with Eco RI and ligated into the Eco RI site of plasmid pUC8. After propagation of bacteria the DNA of the clone containing the larval β_{I} -globin gene was isolated and a restriction map was established. For subcloning in M13 phages appropriate restriction fragments were electrophoretically separated on low melting temperature agarose gels and ligated without removal of agarose (17) into the corresponding cleavage sites of M13 mp8 or M13 mp9 DNA (18). Sequence analysis

Nucleotide sequences were determined by the dideoxy chain termination method (19) using sets of deletion mutants which had been isolated by nuclease Bal 31 digestion (20).

Mapping mRNA start point

Cytoplasmic RNA was extracted from red blood cells of anemic tadpoles (4) at stages 53 - 54 (21). Polyadenylated RNA was purified by oligo(dT)-cellulose chromatography (22). Radiolabelled probes for nuclease S_1 mapping (23) were prepared by the prime cut method according to the protocol given by Ackerman (24). We used a DNA fragment extending from the Pvu II site in exon I to the 5' Eco RI site (clone 841P1). DNA was digested with Hinf I, which cuts at position -47. The labelled DNA strand was isolated from a denaturing polyacrylamide gel and annealed (approximately 5 x 10⁴ cpm) in 50 % formamide at 44 °C to RNA isolated from a total of 10 tadpoles. S_1 -nuclease digestions (BRL) were performed at 20 °C or 37 °C, respectively. Protected fragments were run together with control reactions and with sequencing reactions as size markers on 0.4 mm polyacrylamide gels (25).

Preparation, identification and sequencing of cDNA clones

cDNA clones from mRNA of tadpole red blood cells were prepared exactly as described for adult animals (9). Clones pVD12 and pVC9 were identified to encode larval B_I -globin structural gene sequences by hybridization with a labelled probe derived from plasmid p41 (see Figure 1). Restriction fragments to be sequenced were either 5' end labelled by polynucleotide kinase with ${}^{32}P-\gamma$ ATP or 3' end labelled by terminal transferase with 32 P-cordycepin and, after cleavage with a second restriction enzyme, submitted to the chemical sequencing reactions (26).

RESULTS AND DISCUSSION

Sequencing strategy

The larval β_{I} -globin gene of <u>Xenopus laevis</u> was isolated from a genomic DNA library (27). Figure 1 shows the restriction map of the recombinant phage λ XG4 (7). The 5.1 KB Eco RI fragment containing the gene was cloned in plasmid p41. Four fragments have been subcloned in phage M13 mp8 to obtain initial data of nucleotide sequences. According to the restriction map clone 841P1 contains the 2.5 KB Pvu II/Eco RI fragment, clone 841P2 the 1.4 KB Pvu II fragment, clone 841B1 the 3.5 KB Bgl II/Eco RI fragment and clone 841B2 the 1.6 KB Bgl II/Eco RI fragment, respectively. The inserts of the clones 841B1 and 841B2 were trimmed with the exonuclease Bal 31 from their 3' and 5' ends and recloned into M13 mp8 or M13 mp9. Overlapping clones of both strands were sequenced using the dideoxy chain termination method (19).

841P1 was used to prepare the labelled probe for mapping the mRNA start point and 841P2 was isolated to determine the nucleotide sequence surrounding the Bgl II site.

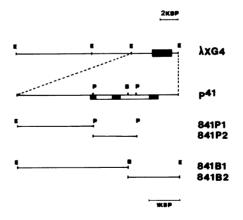


Figure 1: Genomic clone (λ XG4) and derived subclones used for sequencing.

Restriction enzyme cleavage sites are (E) Eco RI, (B) Bgl II, (P) Pvu II. The solid boxes in p41 represent exons, and the open boxes indicate intervening sequences.

- 24	o	- 230	- :	220	- 210	- 200	- 190	-180	- 170	
	TC/EA		CATTI	SATGTOS	GTTIAAGTT	TCATGTTGT	ATAAAGAAT	CAACTTTACAA	TTTAAGAACT	ATATGG
-16	o	- 150	-:	140	-130	- 120	-110	- 100	- 90	
		CACATATA	CAAAA	мтатат	TAGETTAAG	GTTAAAAATT	TATTTGA	GECAATAGOGT	GGGGTGGAG	-
- 8	6	- 70	-	- 60	- 50	- 40	- 30	- 20	-10	
	0ATA1	GACACAG	CAGAAA	TGCACAA	GEGTETEA	CTCAGCATOG	CCATATA	GCAAGGCCAAC	AACTCAAAGG	AACAGC
					Hin	fI				
	*	10		20	30	40	50		HIS LEU SE	
	AGCCI	CTTACTT	CTGCCA	TTTGAAG	STCTTAGCAG	CTACTCCCAT	CTACAGCC4	CC ATG GTG	CAC CTG TC	ABCT
									P	VU II
								ASN ILE OLU		
	GAT J	GAG AAA	TCC G	CC ATT	AAC GCC G	TA TGG TCA	AAG GTC	AAC ATT GAA	AAT GAT G	IGC CAT
		ALA LEU			156	166	176	186	196	206
	GAT	GCC CTG	ACC A	G GTAA	CTTGAAGCA	CATTOCTAAT	TACTTACA	ATAGTTTTATT	TTAGGGGTT1	TGAGAC
		216	-	26	236	246	256	266	276	286
	TGTT	TOTATATG	TGTTTG	TTTGTA	TATGTGTTGA	TTACAAAAG	CAGCAACAT	TAAACATAATCI	ICCTTATATO	TTGAAG
		296	-	06	316	326	336	346	356	366
	TTAA	TTTGGCCA	CATCCG	TTGCGC	TTCCTCTGTA	CCTGTAAAT	TTAACTTTT	TCCATGTTGTG	ATTTCAACA	TAAATG
		376		06	396	406	416	426	436	446
	TAGU	IGGIAAN	ATAATG	AHUUAIA		AAAA TATTI F	ICAT IC IGG	ACAATGATGCO	CAGCUAGAGO	ACCTTT
		456		66	476	486	496	506 TTOCAGTCCAA	516	526
	AGAT	99190190	ACTATE	HUAAUU	ACCATTIATA	1101101404	AACTAGTAG	TUCAGICCAA	SAACACICCI	STIECCC
								586	596	606
	CATO	536	-	546	556	566	576	386 TTTTGCATGAT		
	CATG	HO I GH I GF	***	1111-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	CCIAITIC	HIHCHCIGH	1411000			1 (Gridtini
		616	4	26	636	646	656	666	676	686
								CTTTAACATTG		
		696	-	706	LEUL	EU VAL VAL	PHE PRO	TRP THR GLN		
	CATO							TBB ACC CAR		
	SER	PHE GL1	AGN L	.EU SER	ASN VAL	ALA ALA IL	E SER GLY	ASN ALA LY	s val arg	ALA HIS
	AGC	TTT GG4	AAC		AAT GTG	GCT GCC AT	C TCT GGA	AAT GCC AA	G GTT CGT	GCC CAT

GLY L	YS LYS	VAL	LEU	SER	ALA	VAL	ASP	GLU	SER	ILE	HIS	HIS	LEU	ASP	ASP	ILE	LYS	ASN
GGC A	AG AAG	GTT	TTG	тст	GCC	GTC	GAT	GAA	тсс	ATC	CAC	CAT	TTA	GAT	GAT	ATC	AAG	AAC
	EU SER	001		CEP	тыр	1.75	LITE	~ ~	GL 11	au	. 511	11 5		ASP	PRO	6 1 11		PHF
	TC TCT																	
		UTH		HOC	HCO	HHU	CHC	GCT	040	OHH	cic	CHC	010	onc		Unn		
						_					-							
.YS		44		954			64		974			84		994		10		
AAG G	TACGTGT	TATC	ACCT	TATA	ATGT	тстт	AGGC	ACAC	TTT	TCIG	TICA	GGGT	1111	AIAI	TATT	TGAA	TTAC	AATA
	1020		1030		104			1050		10			1070		10			1090
TATATA	ATTCAA	CACA	ATTC.	TGTA	TGAG	ATA	ATAA	AGAA	rccc	CCCA	GTAT	TTAT	TTCA	TGAT	TACA	GAAT	сттт	AATT
	1100		1110		112			1130		114			1150		11			1170
ACAAA	AGTECAC	CAGC	AGAG(CTAA	CCAT	ATCA	ACCA	ATGA	SCAA'	TTTG	TTTT	SATC	AGTG	FACT	TCAA	ATTA	AAAT	ATAA
	1190		1190		12	00		1210		12	20		1230		12	40		1250
AGTCA	AGATCT	GATT	GGTT	GCTA	TGGG	TACC	TTGT	TGTG	CTAG	TAGA	TCAG	тстт	TTAG	TTTT	TCAT	ACTA	ATTT	ATTA
	Bgl II																	
	1260	:	1270		128	30		1290		13	00		1310		13	20		1330
AAATGO	SAATCAT	TAATA	ATCG	ACTA	AAAT	STAA	TGGA	GGAT	ATT	төтт	TTTG	ACAA	ATAG	STTT	GTTA	TAT	TATT	TTTT
	1340		1350		13	60		1370		13	80		1390		14	00		1410
сттт	AATTGTI						TAGG	GTTT	GTCA	AACA	GATT	CAGT	TTAC	тата	GTTT	CGAT	TACG	TTTT
		0.12.1	2															
	1420		1430		14			1450			60		1470			80		1490
	1420				14													
ATAAT	ممدوورد			ATEC					RTRC	TTRA	GAAC	τάτα	GTGA	GATT	TRET	TTOC	TATT	
ATAAT	AACGGCC			ATGC	ACAC	ATAG	ACAC	AGCT	GTGC	TTGA	GAAC	TATA	GTGA	GATT	TGGT	TTGC	TATT	
ATAAT		TCCC	ΤΤΤΑ				L	vu I:	ן נ								ТАТТ	CETE
	1500	TCCC	TTTA 1510		15	20	P	vu I : 1530	ן נ	15	40		1550		15	60		CGTG 1570
		TCCC	TTTA 1510		15	20	P	vu I : 1530	ן נ	15	40		1550		15	60		CGTG 1570
	1500 TTGCATC	TCCC	ттта 1510 Атбт	ACTO	15 ATGA	20 GTTT	P	VU I: 1530	י נ דדדד	15 AAGG	40 11110	GTTA	1550 ATAT	00 07	15 TTGT	60 AATA		CGTG 1570
TGTGC	1500 TTGCATC 1 58 0	TAAA	TTTA 1510 ATGT 1590	ACTO	15 :ATGA 16	20 GTTT 00	L P	vu I: 1530 ATTCA 1610	י נ זדדדד	15 AAGG 16	40 11110 20	GTTA	1550 ATAT 1630	AAA T	15 TTGT 16	60 AATA 40	AATA	CGTG 1570 17444 1650
TGTGC	1500 TTGCATC	TAAA	TTTA 1510 ATGT 1590	ACTO	15 :ATGA 16	20 GTTT 00	L P	vu I: 1530 ATTCA 1610	י נ זדדדד	15 AAGG 16	40 11110 20	GTTA	1550 ATAT 1630	AAA T	15 TTGT 16	60 AATA 40	AATA	CGTG 1570 17444 1650
төтөс	1500 TTGCATC 1 58 0	TAAA	1510 ATGT 1590	ACTO	15 ATGA 16 CTTCC	20 GTTT 00 TAAT	L P	VU I: 1530 ATTCA 1610 CATAA	 TTTTT 6TGA	15 AAGG 16 GTAG	40 1TTTC 20	GTTA	1550 ATAT 1630 ATTT	АААТ АТАА	15 TTGT 16	60 AATA 40	AATA	CGTG 1570 1570 1650 17776
TGTGC TTACT	1500 TTGCATC 1580 TTCTGTT 1660	TAAA	1510 ATGT 1590 TAAT	ACAC	15 :ATGA 16 :TTCC 16	20 GTTT 00 TAAT	L P	VU I: 1530 ATTCA 1610 CATAA 1690	LI TTTT GTGA	15 AAGG 16 GTAG	40 11110 20 4616	GTTA ПТСТС І	1550 ATAT 1630 ATTT 1710		15 TTGT 16 ACAG	60 AATA 40 T666	юата ICATA	CGTG 1570 1570 1650 1770 1770
TGTGC TTACT	1300 TTGCATC 138 0 TTCTGTT	TAAA	1510 ATGT 1590 TAAT	ACTO	15 ATGA 16 TTCC 14 ACTAT	20 GTTT 00 TAAT	L P	VU I: 1530 ATTCA 1610 CATAA 1690	LI TTTT GTGA	15 AAGG 16 GTAG	40 11110 20 4616	GTTA ПТСТС І	1550 ATAT 1630 ATTT 1710		15 TTGT 16 ACAG	60 AATA 40 T666	юата ICATA	CGTG 1570 1570 1650 1770 1770
TGTGC TTACT	1500 TTGCATC 1580 TTCTGTT 1660	TAAA	1510 ATGT 1590 TAAT	ACTO	15 :ATGA 16 :TTCC 16	20 GTTT 00 TAAT	L P	VU I: 1530 ATTCA 1610 CATAA 1690	LI TTTT GTGA	15 AAGG 16 GTAG	40 11110 20 4616	GTTA ПТСТС І	1550 ATAT 1630 ATTT 1710		15 TTGT 16 ACAG	60 AATA 40 T666	юата ICATA	CGTG 1570 1570 1650 1770 1770
TGTGC TTACT CACCT	1500 TTGCATC 1580 TTCTGTT 1660 GGGCAG1 1740		1171A 1510 ATGT 1590 TAAT 1670 CCATA 1750	ACAC	15 CATGA 16 CTTCC 16 ACTAT ► 17	20 GTTT 00 TAAT 80 TCAC	L P TTGC	vu I: 1530 1610 1610 1690 1690	L TTTTT GTGA	15 AAGG 16 GTAG 17 17 17	40 11110 20 44616 200 11116		1550 ATAT 1630 ATTT 1710 ATTT 1710		15 TTGT 16 ACAG 17 17 2AGT1 18	60 AATA 40 TBBB 220 GBGT1 CO		CGTG 1570 1650 1776 1730 1996 1810
TGTGC TTACT	1500 TTGCATC 1580 TTCTGTT 1660 GGGCAG1		1171A 1510 ATGT 1590 TAAT 1670 CCATA 1750	ACAC	15 CATGA 16 CTTCC 16 ACTAT ► 17	20 GTTT 00 TAAT 80 TCAC	L P TTGC	vu I: 1530 1610 1610 1690 1690	L TTTTT GTGA	15 AAGG 16 GTAG 17 17 17	40 11110 20 44616 200 11116		1550 ATAT 1630 ATTT 1710 ATTT 1710		15 TTGT 16 ACAG 17 17 2AGT1	60 AATA 40 TBBB 220 GBGT1 CO		CGTG 1570 1650 1776 1730 1996 1810
TGTGC TTACT CACCT	1500 TTGCATC 1580 TTCTGTT 1660 GGGCAG1 1740		1171A 1510 ATGT 1590 TAAT 1670 CCATA 1750	ACAC	15 CATGA 16 CTTCC 16 ACTAT ► 17	20 GTTT 00 TAAT 80 TCAC	L P TTGC	vu I: 1530 1610 2016 2016 2016 2016 2016 2016 201	L TTTTT GTGA	15 AAGG 16 GTAG 17 17 17	40 11110 20 44616 200 11116		1550 ATAT 1630 ATTT 1710 ATTT 1710		15 TTGT 16 ACAG 17 17 2AGT1	60 AATA 40 TBBB 220 GBGT1 CO		CGTG 1570 1650 1776 1730 1996 1810
TGTGC TTACT CACCT	1500 TTGCATC 1580 TTCTGTT 1660 GGGCAG1 1740		1171A 1510 ATGT 1590 TAAT 1670 CCATA 1750		15 16 16 16 16 16 16 16 16 16 16	20 GTTT 00 TAAT 80 TCAC	L P TTGC	vu I: 1530 1610 2016 2016 2016 2016 2016 2016 201		15 14 96746 17 17 17 17	40 11110 20 44616 200 11116		1550 ATAT 1630 ATTT 1710 ATTT 1710	ATAA ATAA CATTC	15 116 ACAG 17 2.AGT1 18 36CT4	60 AATA 40 TBBB 220 GBGT1 CO		CGTG 1570 1650 1776 1730 1996 1810

1900	ARG LEU	ALA ASP VAI	LEU VAL	ILE VAL LE	U ALA GLY	LYS LEU GL	YALA
TCACTTTCACAG	CGT CTT	GCT GAT GT	в ств втв	ATT GTC TT	G GCT GGC	AAA CTG GG	A GCT
ALA PHE THR F							
GCC TTC ACT C	CI CAA GI	L CAG GCT G	CC IGG GA	G AAA TTC	AGC GCT GG		GCT GCT
LEU SER HIS (GLY TYR FH	E	2040	2050	2060	2070	2080
CTT AGC CAT (GC TAC TT	C TAA AGA	ATTTCATTC	CATGCAAAGC	CCAATATCTG	CTCGCCTGCA	ACAAAGA
2090	2100	2110	2120	2130	2140	2150	2160
CAACTCTCACAAT	AGTGCATTG	сттоттото	TAAAGATTT	CTTGTCAAAC	TGCTAAAAAA	AATTGTTTTT	CAATTA
2170	2180	2190	2200	2210	2220	2230	2240
TTCAAGAAGAATTA			7			TACAATCTAT	
			J				
2250	2260	2270	2280	2290	2300	2310	2320
ATATTGGTAATAA	JATATTAAAT	IGITATCAGA	TATTIAAACT	TAAGGAACC	GIATATIAAT	GIGAAIGIGA	AIGATAA
2330	2340	2350	2360	2370	2380	2390	2400
AAAAAACATECCA	TCCCTAATGT	CATCATTACT	3AAATATTAT	ATAACACAGT	GTAGATTTAA	TTACATTTTA	TTCAGTA
2410	2420	2430	2440	2450	2460	2470	2480
TGTCACAAAATAC	CAACATTACT	CTAACTTTAG	CATTCCACAG	CAATCTTGAT	ATTATTGTTG	CAATACCAGT	TAAATAC
2490	2500	2510	2520	2530	2540	2550	2560
ATACACAAATTAT							
2570	2580	2590	2600	2610	2620	2630	2640
CCTAACTATCTTT	LITIGGIATT	TAGTTGCATT	GIITGCATCO	CITGTATCCC	TICAGAGTGA	MAACACAAGTA	GCACCTT
2650	2660	2670	2680	2690	2700	2710	2720
TT GGGG GACACGG	ATCAAACCTA	CCATGTGGTG	CAGCATATAA	ATGTTTCTCC	ATTTACCAAT	TCTAACAAAA	ACTGATT

2730 TGCATGGAATTC Eco RI

Figure 2: Nucleotide sequence of the <u>Xenopus</u> <u>laevis</u> larval B_{T} -globin gene. The nucleotide sequence of the anticoding strand is shown from 5' to 3' including the flanking regions. The mRNA start point is indicated by an asterisk. The mRNA 3' terminus is indicated by a vertical arrow. Nucleotides which diverge from pXG&T1 (11) are underlinded, and putative signal sequences are boxed (for explanation see text). Within the coding region the amino acid sequence is given above the nucleotide sequence. Horizontal arrows indicate an inverted repeat within IVS II. Restriction sites, referred to in the text, are indicated.

Mapping of the larval B_T-globin gene

The complete nucleotide sequence and the derived amino acid sequence of the larval B_{τ} -globin gene is shown in Figure 2. The start point of the mRNA was determined by S, nuclease mapping. From single-stranded DNA of the M13 clone 841P1 we synthesized a complementary DNA strand uniformly labelled with ${}^{32}\mathrm{p}$ dCTP. This probe extends from the universal 17 nucleotide M13 primer to the Hinf I site located 14 nucleotides upstream of the TATA box. S. digestions of hybrids with larval globin mRNA were carried out at 20 °C and 37 °C using various amounts of enzyme (20, 200, 2000 and 10 000 U). In contrast to incubations at 37 $^{\rm O}$ C more reproducible results were obtained at 20 $^{\rm O}$ C with 2000 U of enzyme. As shown in Figure 3, a protected fragment of 71 nucleotides was found. This fragment extends from the Pvu II site to an A residue (designated by an asterisk in Figure 2). This corresponds to the rule that transcription is usually initiated at an adenine (28).

To determine the 3' end of exon III we compared the gene sequence with those from our cDNA clones pVD12 and pVC9 derived from larval β_{I} -globin mRNA (unpublished) and with the published cDNA sequence pXG&T1 (11). However, the precise location of the 3' end of exon III was not possible, because 19 nucleotides 3' to the polyadenylation signal we find a T followed by a tract of eight A residues in the gene sequence; a T also precedes the poly(A) tail of the mRNA sequence. Therefore, each of the A residues or the preceding T could be used as the poly(A) addition site. However, since exon III of the adult β_{I} -gene also ends with CTA and the A was suggested to be the polyadenylation site (13), the first A in the anticoding strand of the larval gene sequence may, indeed, have the same function.

The sequence of 2972 nucleotides shown in Figure 2 thus includes 240 nucleotides of the 5' flanking region, 2138 nucleotides of the gene and 594 nucleotides of the 3' flanking sequence.

The exons

The exons of the gene perfectly match to the sequence of our larval cDNA clones pVD12 and pVC9 (unpublished). In contrast, we note 3 base changes compared with the cDNA sequence

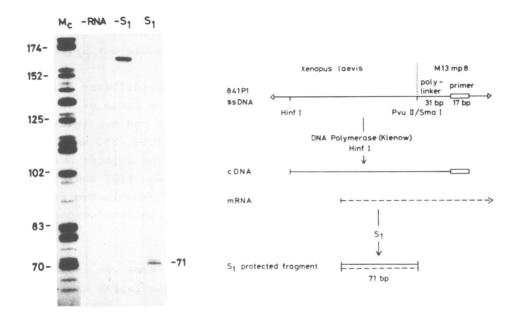


Figure 3: Determination of the mRNA start point. The experimental strategy is schematically outlined. Polyadenylated RNA was isolated from red blood cells of anemic tadpoles. As labelled probe we used a single stranded transcript of template DNA from clone 841P1, which was isolated from a denaturing polyacrylamide gel after Hinf I cleavage. Including the 17 bp primer the M13 mp8 sequence to the Pvu II/Sma I cleavage site contains 48 nucleotides. Lane M_C shows the C-track of a sequencing reaction of a DNA fragment used as size marker (lengths in nucleotides). Lane S_1 shows the protected fragment of 71 nucleotides extending from the Pvu II site to the mRNA start point. Lane $-S_1$ shows the labelled probe without S_1 digestion. Lane -RNA shows a control without addition of RNA prior to incubation at annealing conditions and subsequent S_1 digestion.

pXGET1 recently published by Banville et al. (11), which, based on the restriction map, was suggested to be identical to the larval β_2 -globin cDNA clones described by Widmer et al. (4) and therefore corresponds to the larval β_1 -gene (7): The first exchange in triplett 107 is a G--C transversion resulting in an amino acid exchange Gly-Ala, the second one is a silent mutation at the third position of codon 138 (C---G) and the third one is a T---C transition in the 3' untranslated region. These differences in sequence may reflect polymorphism in the <u>Xenopus</u> <u>laevis</u> population. The amino acid exchange from Gly₁₀₇ to Ala₁₀₇ is probably not of physiological importance. Although it involves one of the α 1&1 contact sites in hemoglobin (29), both Gly and Ala are neutral amino acids, which should not affect protein conformation.

The 5' untranslated region, exclusive the initiator ATG, comprises 55 nucleotides, which is in the same range as in other ß-globin genes (30, 31). Between the cap site and the initiator ATG we find at position +10 a sequence 5'-CTTCTG -3'. An almost identical sequence occurs at a similar position in most eucaryotic mRNAs (32, 31) including both the adult B_{I} - (13) and the adult α_{I} -globin genes of <u>Xenopus laevis</u> (our unpublished result). This sequence element is assumed to be involved in ribosome binding (33).

The intervening sequences

The internal structure of the larval B_I -gene was established by comparing its sequence with those of our larval B_I -globin cDNA clones; this allows positioning of the intervening sequences within the gene. Like all known B-globin genes of vertebrates the <u>Xenopus laevis</u> B_I -globin gene contains two intervening sequences. IVS I interrupts the coding region at codon 30. This is also the case for the chicken embryonic \mathcal{P} - and \mathcal{E} -genes (30). Although two different splicing frames are possible for generation of the mRNA sequence, we favour the frame shown in Figure 2, because it is consistent with the observation that intervening sequences as a rule start with GT and end with AG (34).

A striking feature of the larval β_{I} -globin gene is the length of IVS I which consists of 564 nucleotides. The unusual length of IVS I confirms previous measurements of R-loops (7) which showed that very large IVS I sequences are a common feature in all larval <u>Xenopus laevis</u> globin genes. Large intervening sequences of σ -globin genes have already been reported for the embryonic human zeta-gene (35) and the chicken π '-gene (36), respectively. Whereas the IVS I of the human zeta-gene contains a several fold reiterated short DNA sequence, there is no evidence of repeated sequences within IVS I of the larval β_{I} -gene; this also holds true for the IVS I of the chicken π 'gene (36). Furthermore, there is no evidence of insertion elements within the IVS I of the larval <u>Xenopus</u> β_{I} -gene, as it was described for the IVS II of the goat γ -globin gene (37).

The second intervening sequence (IVS II) interrupts the coding region between amino acid positions 104 and 105. Its length of 968 nucleotides is similar to the IVS II of several mammalian ß-like globin genes (31) and is only slightly longer than the IVS II of the adult <u>Xenopus laevis</u> β_{I} -gene (13). The IVS II of the larval <u>Xenopus laevis</u> β_{I} -gene contains an almost perfect inverted repeat of 50 nucleotides (indicated by arrows in Figure 2) which even extends for another 30 nucleotides although at a reduced homology.

The 5' flanking region

The DNA region preceding the site of transcription initiation of polymerase II genes contains highly conserved sequence motifs which are essential for gene expression (for review see: 38). A first motif is the TATA-box which is located in most eukaryotic polymerase II dependent genes about 30 nucleotides upstream the site of transcription initiation. In the larval <u>Xenopus</u> β_{I} -globin gene this sequence is found at position -33, and an additional TATA-box occurs further upstream at position -197.

The CCAAT-box is another highly conserved sequence which in many eukaryotic genes occurs 70 - 90 nucleotides in front of the transcription start. The larval <u>Xenopus</u> B_I -gene does not contain the complete CCAAT-box, but, as already known from other eukaryotic genes, a modified CAAT-box, of which three copies occur at positions -58, -105 and -237 respectively.

Interestingly, absence or modification of CCAAT homologies in ß-globin genes are known to occur in pseudogenes like the rabbit β_2 -gene (39) and a lemur ß-pseudogene (40). The CCAATbox is also modified in the human **6**-globin gene which is only expressed at a very low level (41).

On the other hand, recent studies of the Herpes simplex virus thymidine kinase gene promoter revealed that the adjacent sequences of the CCAAT-box may be even more important for transcriptional efficiency (42). In view of this, the homology of the sequence 5' GGGTGGGGTGGAG 3' immediately following the CAATsignal at -105 with the sequence 5' GGGTGGGGAGGAG 3' at corresponding positions in the embryonic chicken ρ - and ξ -globin genes is striking. The conserved sequence of the embryonic β -like chicken globin genes is part of an inverted repeat which may represent a promoter element (30). In the larval <u>Xenopus</u> β_{I} -gene the -105 CAAT-motif and the adjacent conserved sequence are flanked by an inverted repeat of 6 nucleotides. The resulting sequence 5' TATTTTNNNNCAATAGGGTGGGGTGGAGNNNNAAAATA 3' shows an obvious homology with the putative promoter element of the embryonic chicken globin genes.

In some eukaryotic genes the -100 and further upstream regions contain sequences which modulate transcriptional efficiency (43). In the avian and mammalian β -globin genes there are short homologous sequences within this region (44, 45), yet such motifs are lacking in both the larval and the adult β genes of <u>Xenopus laevis</u>.

As mentioned above the larval <u>Xenopus</u> β_{I} -gene contains a second TATA-box (at -197) preceded by a further CAAT-box (at -237). Similar findings were reported for the human \mathcal{E} -, \mathcal{B} - and γ -globin genes (46-48). In these instances alternative sites of transcription initiation were found. On the other hand, no additional transcription start has as yet been detected in the larval <u>Xenopus</u> β_{I} -gene. Even if the labelled probe only extends to the Hinf I cleavage site at -47 (-44 on the coding strand), additional further upstream initiation should result in another S_{1} protected fragment of 115 (71+44) nucleotides. This was not observed. However, we would like to mention that the sensitivity of our S_{1} -mapping experiment should still be improved to exclude minor initiation sites.

The 3' flanking region

Although various conserved sequences, including inverted repeats, were found in the 3' flanking regions of many eukaryotic genes, the functional significance of these elements is as yet not well understood. Apart from the putative polyadenylation signal AATAAA the larval <u>Xenopus</u> B_I -gene contains additional conserved sequences in the 3' flanking region. In fact, the sequence 5' TTTCAAGAA 3' (boxed in Fig. 2) which shows some homology to a sequence of the <u>Xenopus laevis</u> U2 snRNA genes is also present in the 3' region of many eukaryotic polymerase II genes (49). Moreover, the partially overlapping sequences 5' TGTGTTTAC 3' and 5' TACCTAATA 3', located 63 nucleotides downstream of the polyadenylation signal, are closely related to sequence motifs discovered in the 3' flanking regions of human interferon genes (50-53), the rabbit β -globin gene (54), chicken ovalbumin gene (55) and even the SV40 early functions (56). However, the functional significance of these sequences remains to be demonstrated.

REFERENCES

- Just, J.J., Schwager, J. and Weber, R. (1977) Wilhelm Roux's Archives 183, 307-323. 1.
- Hentschel, C.C., Kay, R.M. and Williams, J.G. (1979) Dev. 2. Biol. 72, 350-363.
- 3. Hosbach, H.A., Widner, H.J., Andres, A.-C. and Weber, R. (1982) in Embryonic Development Part A: Genetic Aspects, Burger, M.M. and Weber, R. (eds.) Alan R. Liss, New York, 115-125.
- 4. Widmer, H.J., Andres, A.-C., Niessing, J., Hosbach, H.A. and Weber, R. (1981) Dev. Biol. 88, 325-332.
- Jeffreys, A.J., Wilson, V., Wood, D., Simons, I.P., Kay, R.M. and Williams, J.G. (1980) Cell 21, 555-564. Patient, R.K., Banville, D., Brewer, A.C., Elkington, J.A., 5.
- 6. Greaves, D.R., Lloyd, M.M. and Williams, J.G. (1982)
- Nucleic Acids Res. 10, 7935-7945. Hosbach, H.A., Wyler, T. and Weber, R. (1933) Cell 32, 45-7. 53.
- Williams, J.G., Kay, R.M. and Patient, R.K. (1980) Nucleic 8. Acids Res. 8, 4247-4258.
- Knöchel, W., Meyerhof, W., Hummel, S. and Grundmann, U. 9. (1983) Nucleic Acids Res. 11, 1543-1553.
- 10. Kay, R.M., Harris, R., Patient, R.K. and Williams J.G. (1983) Nucleic Acids Res. 11, 1537-1542.
- 11. Banville, D., Kay, R.M., Harris, R. and Williams, J.G. (1983) J. Biol. Chem. 258, 7924-7927.
- 12. Andres, A.-C., Hosbach, H.A. and Weber, R. (1984) Biochim. Biophys. Acta 781, 294-301.
- Patieut, R.K., Harris, R., Walmsley, M.E. and Williams, J.G. (1983) J. Biol. Chem. 258, 8521-8523.
 Partington, G.A. and Baralle, F.E. (1981) J. Mol. Biol.
- 145, 463-470.
- 15. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning. Cold Spring Harbor Laboratory.
- 16. Birnboim, H.C. and Doly, J. (1979) Nucleic Acids Res. 7, 1513-1523.
- Crouse, G.F., Frischauf, A. and Lehrach, H. (1980) Meth. Enzym. 101, 78-89.
 Messing, J. and Vieira, J. (1982) Gene 19, 269-276.

- Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
 Poncz, M., Solowiejczyk, D., Ballantine, M., Schwartz, E. and Surrey, S. (1982) Proc. Natl. Acad. Sci. USA 79, 4298-4302.

- 21. Nieuwkoop, P.D. and Faber, J. (1956) Normal table of Xenopus laevis (Daudin) North-Holland, Amsterdam.
- 22. Aviv, H. and Leder, P. (1973) Proc. Natl. Acad. Sci. USA 69. 1408-1412.
- 23. Weaver, R.F. and Weissmann, C. (1979) Nucleic Acids Res. 7, 1175-1193.
- 24. Ackerman, E. (1983) EMBO J. 2, 1417-1422.
- 25. Sanger, F. and Coulson, A.R. (1978) FEBS Letters 87, 107-110.
- 26. Maxam, A.M. and Gilbert, W. (1980) Meth. Enzym. 65, 499-560.
- May, F., Westley, B. and Weber, R. (1982) Nucleic Acids Res. 10, 2791-2807. 27.
- Lewin, B. (1980) Gene Expression, Eukaryotic Chromosomes, 28. 2nd. edn. pp. 668-675, John Wiley and Sons, Inc. 29. Fermi, G. (1975) J. Mol. Biol. 97, 237-256.

- Boll, G. (1976) 5. Molt. Biol. 57, 257-256.
 Dodgson, J.B., Stadt, S.J., Choi, O.R., Dolan, M., Fischer, D.H. and Engel, J.D. (1983) J. Biol. Chem. 258, 12685-12692.
 Efstratiadis, A., Posakony, J.W., Maniatis, T., Lawn, R.M., O'Connell, C., Spritz, R.A., DeRiel, J.K., Forget, B.G., Weissman, S.M., Slightom, J.L., Blechl, A.E., Smithies, O., Baralle, F.R. Shoulders, C.C. and Droudfoot, N.I. (1980) Baralle, F.E., Shoulders, C.C. and Proudfoot, N.J. (1980) Cell 21, 653-668.
- 32. Baralle, F.E. and Brownlee, G.G. (1978) Nature 274, 84-87.
- 33. Hagenbüchle, O., Sauter, M., Steitz, J.A. and Mans, R.J. (1978) Cell 13, 551-563.
- Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. and Chambon, P. (1978) Proc. Natl. Acad. Sci. USA 75, 4853-4857.
- 35. Proudfoot, N.J., Gil, A. and Maniatis, T. (1982) Cell 31, 553-563.
- 36. Engel, J.D., Rushing, D.J., McCeme, K.C. and Dodgson, J.B. (1983) Proc. Natl. Acad. Sci. USA 80, 1392-1396.
- 37. Schon, E.A., Cleary, M.L., Haynes, J.R. and Lindgrel, J.B. (1981) Cell 27, 359-369.
- 38. Breathnach, R. and Chambon, P. (1981) Ann. Rev. Biochem. 50, 349-383.
- 39. Lacy, E. and Maniatis, T. (1980) Cell 21, 545-553.
- 40. Jeffreys, A.J., Barrie, P.H., Harris, S., Fawcelt, D.H., Nugent, Z.J. and Boyd, A.C. (1982) J. Mol. Biol. 156, 487-503.
- 41. Spritz, R.A., DeRiel, J.K., Forget, B.G. and Weissman, S.M. (1980) Cell 21, 639-646.
- 42. McKnight, S. and Kingsbury, R. (1982) Science 217, 316-324. 43. Grosschedl, R. and Birnstiel, M.L. (1980) Proc. Natl.
- Acad. Sci. USA 77, 7102-7106.
- Dierks, P., van Ooyen, A., Cochran, M.D., Dobkin, C., Reiser, J. and Weissmann, C. (1983) Cell 32, 695-706.
 Hardison, R.C. (1983) J. Biol. Chem. 258, 8739-8744.
- 46. Allan, M., Grindlay, G.J., Stefani, L. and Paul, J. (1982) Nucleic Acids Res. 10, 5133-5147.
- 47. Allan, M., Lanyon, W.C. and Paul, J. (1983) Cell 35, 187-197.
- 48. Grindlay, G.J., Lanyon, W.G., Allan, M. and Paul, J. (1984) Nucleic Acids Res. 12, 1811-1820.
- 49. Mattaj, I.W. and Zeller, R. (1983) EMBO J. 2, 1883-1891.

- Taya, Y, Devos, R., Tavernier, J., Cheroutre, H., Engler, G. and Fiers, W. (1932) EMBO J. 1, 953-958.
- 51. Nagata, S., Mantei, N. and Weissmann, C. (1980) Nature 287, 401-408.
- 52. Lawn, R.M., Gross, M., Houck, C.M., Franke, A.E., Gray, P.V. and Goeddel, D.V. (1981) Proc. Natl. Acad. Sci. USA 78, 5435-5439.
- 53. Degrave, W., Derynck, R., Tavernier, J., Haegeman, G. and Fiers, W. (1981) Gene 14, 137-143.
 54. Van Ooyen, A., Van den Berg, J., Mantei, N. and Weissmann, C. (1979) Science 206, 337-344.
- 55. Benoist, C., O'Hare, K., Breathnach, R. and Chambon, P. (1980) Nucleic Acids Res. 8, 127-142.
- 56. Fiers, W., Contreras, R., Haegeman, G., Rogiers, R., Van de Voorde, A., Van Henverswyn, H., Van Herreweghe, J., Volckaert, G. and Ysebaert, M. (1978) Nature 273, 113-120.