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Abstract

Carbon monoxide (CO) dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-c (PPARc) and
p38 mitogen-activated protein kinase (MAPK) dependent manner. Previously, we demonstrated that CO inhibits
lipopolysaccharide (LPS)-induced expression of the proinflammatory early growth response-1 (Egr-1) transcription factor
in macrophages via activation of PPARc. Here, we further characterize the molecular mechanisms by which CO modulates
the activity of PPARc and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARc which we find was
attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARc-K365R mutant partially
abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARc-K77R mutant did not
impair the effect of CO. In addition to PPARc SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression.
Blocking both CO-induced PPARc SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory
gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO
as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2). Macrophages
derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp22/2), produced significantly less ROS
with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated
Egr-1 repression. Collectively, these results indentify p38 activation, PPARc-SUMOylation and ROS formation via UCP2 as a
cooperative system by which CO impacts the inflammatory response.

Citation: Haschemi A, Chin BY, Jeitler M, Esterbauer H, Wagner O, et al. (2011) Carbon Monoxide Induced PPARc SUMOylation and UCP2 Block Inflammatory
Gene Expression in Macrophages. PLoS ONE 6(10): e26376. doi:10.1371/journal.pone.0026376

Editor: Ben C. B. Ko, Chinese University of Hong Kong, Hong Kong

Received June 28, 2011; Accepted September 26, 2011; Published October 25, 2011

Copyright: � 2011 Haschemi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant LS07-031, Vienna Science and Technology Fund and Austrian Science Fund (W1205, CCHD Ph.D. program), as well as
grants 5R01GM088666 (National Institutes of Health) and Department of Defense (Center for Integration of Medicine and Innovative Technology) to LEO. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: martin.bilban@meduniwien.ac.at

. These authors contributed equally to this work.

Introduction

Carbon monoxide (CO) arises physiologically in cells during the

oxidative catabolism of heme by heme oxygenase (HO) enzymes

[1]. CO administered exogenously to cells or animals at low

concentrations exerts anti-inflammatory effects in a number of

preclinical models [2,3,4,5,6,7]. Previously, we demonstrated that

CO suppresses LPS-induced expression of Egr-1, a key transcrip-

tion factor in the generation of the inflammatory response [8] via

activation of the nuclear hormone receptor PPARc [9] (reviewed

in [1,10]). Since CO treatment alone does not result in generation

of PPARc ligands, activity-modulating posttranslational modifica-

tions of PPARc in response to CO may occur, such as

phosphorylation or SUMOylation. Recent genetic, molecular,

and biochemical studies support the idea that PPARc inhibits

inflammatory gene expression in activated macrophages through a

SUMOylation-dependent pathway [11,12,13]. SUMOylation is a

protein modification involving a covalent conjugation of the

polypeptide SUMO to lysine residues of target proteins [14].

SUMOylation has emerged as a significant regulatory mechanism

in cell physiology as it relates to processes such as inflammation.

SUMO modification can affect, in a target-specific fashion, a

protein’s subcellular and subnuclear localization as well as its

ability to interact with other proteins and/or its activity in

transcriptional processes [14,15,16]. SUMOylation of PPARc
targets it to co-repressor complexes that are bound to inflamma-

tory response gene promoters and, as such prevents their signal-

dependent clearance that is normally a prerequisite for transcrip-

tional activation. As a consequence, genes remain in a repressed

state [11].

Accumulating evidence suggests that CO, particularly in

macrophages, signals in part through a brief but marked

generation of mitochondrial-derived ROS (reviewed in [1] and

[17]). Importantly, this transitory ROS burst by CO exposure

selectively augments LPS-induced p38 phosphorylation as well as

PPARc activation; both events are fundamental for CO to

suppress proinflammatory gene expression in macrophages

[2,3,9,18]. The source of mitochondrial-derived ROS involves
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the family of uncoupling proteins (UCP) [19]. There are three

known UCP proteins; UCP1, 2 and 3, each postulated to be

involved in regulating respiration, thermogenesis, fatty acid

oxidation and metabolism [20,21]. UCP can modulate excessive

ROS generation originating from complexes I and III of the

mitochondrial respiratory chain [22]. Conversely, ROS such as

superoxide was demonstrated to induce UCP2-mediated proton

leak in cultures of isolated mitochondria [25] suggesting the

plausibility that CO-induced transitory ROS burst may indirectly

influence UCP function. Nevertheless, the detailed molecular

mechanism leading to augmented ROS in response to CO remain

unclear.

In this study, we extend our previous observations and have

identified CO-induced PPARc-SUMOylation as a novel mecha-

nism by which CO regulates PPARc and thereby the acute

inflammatory response in macrophages. We show for the first time

that Ucp2 is indeed critical for CO to enhance mitochondrial

ROS formation. Moreover, ROS mediated p38 activation and

PPARc-SUMOylation by CO cooperate to repress inflammatory

gene expression.

Materials and Methods

Cell culture
RAW 264.7 mouse peritoneal macrophages and human

embryonic kidney 293FT cells from ATCC (Rockville, MD) were

cultured in DMEM containing 10% FBS and 50 mg/ml

gentamicin. Cells were exposed to CO (250 ppm) or air as

previously described [2] for indicated times. Following pretreat-

ment of RAW264.7 cells with CO, LPS (10 ng/ml E. coli serotype

O127:B8; Sigma, St Louis, MO) was added as indicated in the

text. Ucp2 gene KO mice (Ucp22/2) were a kind gift or Dr. Brad

Lowell (Division of Endocrinology, Department of Medicine, Beth

Israel Deaconess Medical Center and Harvard Medical School,

Boston, MA, USA) and described previously [23]. Bone Marrow

Derived Macrophages (BMDM) were isolated from C57/BL6 or

Ucp22/2 mice (Jackson Laboratory, Bar Harbor, Maine, USA)

and differentiated as previously described [24]. All animal work

was approved by the Institutional Animal Care and Use

Committee at the Beth Israel Deaconess Medical Center (Protocol

number: 090-2008).

SUMOylation assays
As SUMOylation assay, we preferably employed the well

established in vivo (in cells) SUMO-model than the common in vitro

(cell-free) model. This in vivo SUMO-model was previously

described and is widely accepted for SUMOylation research

[11–13,15] Briefly, 293FT cells were transfected in 10 cm dishes

with HA-tagged wild-type PPARc (kindly provided by B. M.

Spiegelman, Dana-Farber Cancer Institute & Department of Cell

Biology, Harvard Medical School, Boston, MA, USA), Myc-

tagged SUMO-1 (kindly provided by C.K. Glass; Department of

Medicine, University of California, San Diego, La Jolla, CA) and

Protein inhibitor of activated STAT, 1 (PIAS1; kindly provided by

Dr. Tony Hollenberg, Department of Endocrinology, Beth Israel

Deaconess Medical Center, Harvard University, Boston, MA,

USA). 36 hours later, cells were treated with air, CO (250 ppm) or

Rosiglitazone (5 mM; BioMol, Plymouth Meeting, PA) or N-

Acetylcysteine (NAC; Sigma) for 16 hrs. Thereafter, cells were

washed twice with NEM-PBS buffer (20 mM N-ethylmaleimide,

Sigma, in PBS) and lysed in lysis buffer containing 0.1% SDS,

0.5% deoxycholate, 0.5% TritonX-100, 1 mM EDTA, 20 mM N-

ethylmaleimide, 20 mM Tris-HCl pH 7.4, 150 mM NaCl and

complete protease inhibitor cocktail (Roche). 250 mg cell lysates

was immunoprecipitated for 4 hours with either polyclonal anti-

PPARc, or SUMO-1 antibody (Abcam, Cambridge, MA, USA)

coupled to Protein G sepharose (Sigma) and washed four times in

lysis buffer. Immunoprecipitates were resolved by SDS–PAGE.

CO exposure
Cells were exposed to CO, using a bioactive gas-controlling

system custom designed and built by Biospherix. To achieve a

concentration of 250 ppm, CO (Lifegas) was mixed with 5%

CO2/20.8% O2/74% N2 and controlled by Watflow Anafaze

software.

ROS measurement
Mitochondrial superoxide generation was assessed using

MitoSOX Red superoxide indicator (Invitrogen, Carlsbad, CA).

MitoSOX Red reagent is live-cell permeable and selectively

targeted to the mitochondria. Once in the mitochondria,

MitoSOX Red reagent is oxidized by superoxide, the predomi-

nant ROS in mitochondria, and exhibits red fluorescence. Briefly,

bone marrow derived macrophages (BMDM) were incubated with

5 mM MitoSOX for 30 min at 37uC prior to harvest. The cells

were then washed, exposed to air or CO for 5–120 min,

resuspended in FACS buffer (PBS+1%FBS), and analyzed on a

fluorescent activated cell sorter (FACS), (BD Biosciences, San

Diego, CA). Forward and side scatter gates were set to include cells

but to exclude debris and remaining unbound particles. Excita-

tion/Emission was set at 488/580 nm (MitoSOX). Each exper-

imental set was performed 3 times, and the data analyzed with

CellQuestTM software (BD Biosciences, San Diego, CA, USA).

SDS-PAGE and Western blotting
Cell lysates were separated by SDS-PAGE and blotted onto

Polyvinylidene fluoride (PVDF)-membranes (GE Healthcare,

Amersham, Buckinghamshire, UK) as described previously [9].

After blocking, blots were incubated overnight (4uC) with primary

rabbit anti Egr-1, or mouse anti HA-tag (Santa Cruz Biotechnol-

ogy). Membranes were then washed in TBST (Tris-Buffered

Saline+0.05% Tween-20) and visualized using HRP-conjugated

antibody against rabbit or mouse IgG and the ECL reagents

(Amersham, Piscataway, NJ), per manufacturer’s instructions. To

confirm equal loading, blots were re-probed with mouse

monoclonal antibody targeting b-actin (Abcam Inc.). Densitom-

etry analysis was done with Quantity One (Bio-Rad).

Real-time PCR
Total RNA was extracted from RAW 264.7 cells using the

Rneasy mini kit (Qiagen) according to manufacturer’s protocol.

1 mg total RNA was reverse transcribed into cDNA by MMLV

enzyme (Promega, Mannheim, Germany) with random hexamers

(1 mg/mg total RNA). The reaction mixture was incubated at 37uC
for 45 minutes followed by 15 min at 45uC and 20 min at 70uC.

All PCRs were performed using the SYBR Geen kit (BioRad,

Hercules, CA, USA). Primers for selected genes were designed via

the Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/

primer3_www.cgi) and are as follows: iNOS (forward: 59-

AATCTTGGAGCGAGTTGTGG-39; reverse: 59-CAGGAAG-

TAGGTGAGGGCTTG-39); Rplp0 (forward: 59-GCCAATAA-

GGTGCCAGCTGCTG-39; reverse: 59- GAAGGAGGTCTT-

CTCGGGTCCTAG-59). Using the ABI Prism 7700 sequence

detection system (PE Applied Biosystems, Warrington, UK), PCR

cycling conditions were as follows: initial denaturation at 95uC for

10 min, followed by 40 cycles at 94uC for 30 seconds, 60uC for 15

seconds and 72uC for 30 seconds and a 10 minutes terminal
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incubation at 72uC. Sequence Detector Software (SDS version

1.6.3, PE Applied Biosystems) was used to extract the PCR data,

which were then exported to Excel (Microsoft, Redmond, WA) for

further analyses. Expression of target genes were normalized to

Arp expression levels. Data were analyzed according to the

22DDCT method.

Vector construction, transient transfection & Egr-1
luciferase reporter assays

The murine Egr-1 promoter/luciferase construct (pGL3-Egr1)

containing nt 2617 to 27 from the 59upstream region was cloned

in the luciferase vector pGL3 (Promega, Wallisellen, Switzerland)

with XhoI and HINDIII into the corresponding sites. RAW 264.7

cells were seeded into 48well plates and transfected 1 day there-

after at 1.0 mg/well with consisting of 0.6 mg of either pcDNA3.1

(Invitrogen, Carlsbad, CA), PPARc-K77R, PPARcK365R (kindly

provided by C.K. Glass; Department of Medicine, University of

California, San Diego, La Jolla, CA) along with 0.4 mg pGL3-Egr1

and 0.02 mg phRL-TK (Promega) using Superfect reagent (Qiagen)

according to the manufacturer’s instructions. The mutants are

characterized by lysine-to-arginine amino acid substitutions

(K77R and K365R), which impair ligand-dependent PPARc
transactivation or transrepression, respectively, and were success-

fully tested for expression at the protein level [11]. 24 hrs later,

cells were treated with CO, Rosiglitazone (BioMol, Plymouth

Meeting, PA), SB203580 (25 mM; Calbiochem), U0126 (25 mM,

Cell Signaling, Boston, MA) or vehicle (Dimethyl sulfoxide). After

6 hrs, protein extracts were assessed for luciferase activity

(Promega).

Statistical Analysis
All data unless otherwise indicated are shown as mean values 6

standard error of the mean (SEM) and tested statistical using two-

tailed Student’s t test or ANOVA. All figures and statistical

analyses were generated using GraphPad Prism 4. p,0.05 was

considered to indicate statistical significance.

Results

CO treatment increases SUMOylation of PPARc
dependent on ROS

In order to understand the mechanism by which CO activates

PPARc we tested for PPARc SUMOylation. As a model we

reverted to the standard SUMO-assay in HEK293FT cells. HA-

tagged PPARc, Myc-tagged SUMO1, PIAS1 or pcDNA3.1 (as a

control vector) were efficiently co-transfected in cells and

subsequently the SUMO-target PPARc was affinity-purified with

an antibody directed against PPARc and further subjected to

western blot analysis. By anti-HA antibody incubation the

presence of HA-tagged PPARc was verified in all immunoprecip-

itates (Fig. 1A). When PIAS-1 was co-expressed, additional slower

migrating PPARc bands with a molecular mass of approximately

140–150 kDa were detected (indicated by ‘SuPPARc’ in Fig. 1A).

Treatment with Rosiglitazone, a selective ligand of PPARc known

to induce SUMOylation, increased the intensity of SuPPARc.

Treatment with CO also increased this high molecular weight

PPARc (Fig. 1A). To ensure that the slower migrating bands

indeed represented PPARc conjugated to SUMO-1 we repeated

immuno-precipitations with an anti-SUMO1 antibody instead of

anti-PPARc to capture SUMOylated proteins. Probing these

SUMO-precipitates using an anti-HA detection antibody resulted

in the very same high molecular weight bands as seen for PPARc
immuno-precipitation and thereby ensured specific detection of

SUMOylated PPARc by this method (Fig.1A right panel).

Because CO induces a transient burst of mitochondrial ROS that

leads to increased PPARc expression [9], we hypothesized that

CO-induced ROS may also be responsible for PPARc-SUMOyla-

tion. In the presence of the ROS scavenger N-Acetyl-Cysteine

(NAC), CO exposure no longer resulted in PPARc-SUMOylation

(Fig. 1B). This identified PPARc SUMOylation by CO as a

process dependent on ROS formation.

SUMOylation of PPARc by CO is required for suppression
of proinflammatory genes

Next, we determined the functional significance of CO-induced

PPARc SUMOylation by introducing PPARc mutants that

cannot be SUMOylated. As a readout we established a

transrepression assay based on LPS induced Egr-1 promotor

activation. RAW 264.7 macrophages were co-tranfected either

with PPARc-K77R, PPARc-K365 or empty vector along with an

Egr-1 luciferase reporter before cells were stimulated with 10 ng/

ml LPS, in the absence or presence of CO (250 ppm). LPS

treatment resulted in a strong upregulation of the Egr-1 promoter,

which was inhibited by CO exposure (Fig. 2A). Ectopic expression

of PPARc-K77R in RAW cells did not affect the inhibitory

Figure 1. CO treatment enhances SUMOylation of PPARc. (A)
293FT cells were transfected in 10 cm dishes with mixtures of
expression plasmids, consisting of 2.5 mg HA-PPARc, 5.5 mg myc-
SUMO-1, and 2.0 mg of PIAS1 as indicated. 24 hours after transfection,
cells were incubated for 12–18 hours with Rosiglitazone and/or CO
(250 ppm) followed by immunoprecipitation of PPARc (left panel) or
SUMO-1 (right panel) from cell lysates and immunoblotting for HA-tag.
The western blots are representative of three independent experiments.
(B) 293FT cells transfected with the expression plasmids for HA-PPARc,
myc-SUMO-1 and PIAS1 were incubated for 12–18 hours with or
without CO (250 ppm) in the presence or absence of N-Acetylcysteine
(10 mM). SUMOylated PPARc was calculated as the ratio of SUMOylated
PPARc versus total PPARc form pull-down assays. Shown are mean +/2
SEM densitometry values of three independent experiments.
doi:10.1371/journal.pone.0026376.g001
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potential of CO on Egr-1 expression in LPS-activated cells.

However, inhibition was partially reversed in RAW264.7 cells

expressing PPARc-K365R, suggesting a causative role of CO-

mediated PPARc SUMOylation at amino acid residue 365, but

not 77, in reducing Egr-1 activation (Fig. 2B). In order to explore

whether these results were limited to Egr-1 or reflected a

widespread requirement for PPARc-SUMOylation in regulating

inflammatory genes, we measured iNOS mRNA expression. As

previously reported, LPS treatment caused strong upregulation of

iNOS mRNA, which was blunted in the presence of a CO

(Fig. 2C). This CO-mediated iNOS inhibition was partially

reversed in PPARc-K365R expressing cells (Fig. 2C). These

results show for the first time that CO is able to functionally

regulate PPARc activity by promoting K365 SUMOylation.

CO-mediated PPARc SUMOylation and p38 MAPK
cooperate to Suppress Egr-1

Previously, we demonstrated that CO induces mitochondrial

ROS and thereby hyperphosphorylation of p38 MAPK, which is

required for suppression of LPS-induced TNFa secretion in RAW

264.7 macrophages (2, 18). In respect to Egr-1 expression, p38

hyperactivation by CO has not been evaluated as a possible

regulator. To test for a possible role for p38 in CO-mediated

suppression of LPS-induced Egr-1 expression we examined LPS-

activated macrophages treated with air or CO in the presence of

pharmacologic inhibitors for MAPKs. LPS treatment resulted in a

robust increase in Egr-1 protein expression, which was blunted

when cells were pretreated with CO (Fig. 3A). Pharmacologic

blockade of ERK-1/2 with U0219 completely blocked Egr-1

expression irrespective of CO treatment. p38 inhibition partially

reversed CO-mediated ablation of Egr-1 expression, whereas no

effect of p38 blockade was observed in control cells. This clearly

indicated CO-induced p38 activation as an additional mechanism

as to how CO exposure results in Egr-1 repression. To interrogate

the nature of the cooperative effect between PPARc-SUMO and

p38 mediated Egr-1 repression, we individually and jointly

blocked the respective pathways in the presence of CO. We

measured Egr-1 expression in LPS-activated and CO exposed

macrophages either pretreated with a specific inhibitor of p38

MAPK (p38a, p38b and p38b2) activity, SB203580 and/or

transfected with PPARc-K365R mutant. RAW 264.7 cells treated

with LPS substantially upregulated Egr-1 promoter activity, which

was blocked when cells were pretreated with CO (Fig. 3B).

SB203580 treatment, to block p38, as well as transfection PPARc-

K365R mutant only partially reversed the CO effect. However,

p38 MAPK inhibition in PPARc-K365 expressing cells fully

ablated repression of Egr-1 luciferase activity (Fig. 3B). This

identified CO mediated Egr-1 repression as a process dependent

on prior p38 activation and PPARc SUMOylation.

CO regulates ROS via UCP2 to suppress LPS-activated
Egr-1 expression

We considered ROS formation by CO as possible key upstream

signaling molecule, as ROS mediates both CO-induced p38

activation and PPARc SUMOylation. CO treatment results in the

rapid generation of mitochondrial ROS at complex III of the

electron transport chain [18]. Because UCP2 has been implicated

in mastering mitochondrial ROS [25], we hypothesized that

UCP2 might be involved in the ability of CO to increase ROS. To

determine mitochondrial ROS generation, we utilized the

mitochondrial ROS detection reagent MitoSOX. This approach

specifically detects ROS originating from mitochondria. First, we

tested if UCP2 is indeed involved in ROS production by CO

Figure 2. CO requires SUMOylated PPARc to suppress proin-
flammatory gene expression. (A) RAW 264.7 cells were transiently
transfected with pcDNA3.1 along with a firefly luciferase reporter
construct under the control of the murine Egr-1 promoter (pGL3-Egr1)
and pRL-TK as internal control followed by treatment with LPS (10 ng/
ml) in the absence or presence of CO (250 ppm). Note that LPS
provoked a strong and robust Egr-1 luciferase signal which was
inhibited in the presence of CO. (B) RAW 264.7 cells were transiently
transfected with a SUMOylation-defective PPARc mutants (PPARc-
K365R or PPARc-K77R) or pCDNA3.1 control vector followed by
treatment with LPS in the absence or presence of CO (250 ppm). Total
proteins were harvested at 6 hr post induction and dual luciferase
activities determined. The value of firefly luciferase was normalized by
the rennila luciferase to generate the relative luciferase activity. (C) RAW
264.7 cells were transiently transfected with a SUMOylation-defective
PPARc mutant (PPARc-K365R) or pCDNA3.1 control vector ( = ctrl)
followed by treatment with LPS in the absence or presence of CO
(250 ppm). RNA was extracted and iNOS mRNA levels (normalized to
the Rplp0 gene) measured by real-time PCR. Bars represent mean values
6 SEM of three independent experiments.
doi:10.1371/journal.pone.0026376.g002
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exposure and second if CO-induced ROS is mastering Egr-1

repression, a process dependent on p38 activation and PPARc
SUMOylation. Consistent with a report by Arsenijevic et al. [25],

we demonstrate here that macrophages from Ucp22/2 animals

produce higher basal superoxide levels compared to macrophages

from wild-type animals (Fig. 4A, Basal). However, CO exposure

of BMDM from wild type mice led to a doubling of MitoSOX Red

fluorescence after 15 min, peaking at 30 min and starting to

normalize by 2 hrs. Ucp22/2 macrophages revealed an ablation of

this CO effect and thereby supporting a functional role of UCP2 in

promoting CO-induced mitochondrial ROS (Fig. 4A). Given that

the MitoSOX Red reagent is readily oxidized by superoxide and

not by other ROS or reactive nitrogen species (RNS)–generating

systems, we conclude that superoxide is the most likely ROS

generated by CO. To ultimately test for CO-induced ROS a key

trigger in Egr-1 suppression we again employed Ucp22/2 BMDM,

Figure 3. CO-mediated PPARc-SUMOylation and p38MAPK
activity cooperate for full suppression of LPS-induced Egr-1
promoter activity. (A) RAW 264.7 cells were pretreated with 250 ppm
CO or Air for 3 hours, followed by a further 30 min incubation with
MAPK inhibitors for p38 (SB203580) or ERK1/2 (U0126) prior to
stimulation with LPS (10 ng/ml) for 1 hour. Egr-1 protein expression
was analyzed by western blotting and b-actin was used as a loading
control. The western blot is representative of three independent
experiments. (B) RAW 264.7 cells were transiently transfected with
PPARc-K365R or pcDNA3.1 control vector along with pGL3-Egr1 and
phRL-Tk. Thereafter, RAW 264.7 cells were pretreated with 250 ppm CO
or Air for 3 hours, followed by a further 30 min incubation with
SB203580 or vehicle (DMSO) prior to stimulation with LPS (10 ng/ml).
Total proteins were harvested at 6 hr postinduction and dual luciferase
activities determined. The value of firefly luciferase was normalized by
the rennila luciferase to generate the relative luciferase activity. Bars
represent mean values 6 SEM of three independent experiments
(*P,0.05).
doi:10.1371/journal.pone.0026376.g003

Figure 4. CO increases ROS levels via UCP2 to inhibit Egr-1
expression. (A) Bone-marrow derived macrophages from wild-type
(open bars) or Ucp22/2 (filled bars) mice were treated with CO
(250 ppm) and ROS formation was measured with MitoSOX at indicated
times by FACS analysis. MitoSOX is specific for mitochondria-derived
ROS. Left, the basal effect of UCP2 loss was compared to control cells.
Right, we show the effect of CO on ROS formation in Ucp22/2 and wild-
type macrophages. (C) Bone-marrow derived macrophages from wild-
type or Ucp22/2 mice were pretreated with 250 ppm CO or Air for
3 hours, prior to incubation with LPS (10 ng/ml) for indicated times.
Egr-1 protein expression was analyzed by western blotting and b-actin
was used as a loading control. (D) The bar graph represents
densitometry analysis of western blots after 1 hr LPS stimulation in
the presence or absence of CO. Depicted western blot is one of three
representative experiments. Bar graphs indicate mean fold change 6
SEM of three independent experiments (*P,0.05 and **P,0.001).
doi:10.1371/journal.pone.0026376.g004

Anti-Inflammatory Effects of Carbon Monoxide
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which we show are deficient in producing ROS by CO. As

expected, LPS added to BMDM provoked a strong increase in

Egr-1 protein expression in wild-type and Ucp22/2 macrophages

which peaked 1 hr post stimulation (Fig. 4B). CO suppressed

LPS-induced Egr-1 expression in wild-type macrophages, as we

previously reported, but not in Ucp22/2 macrophages (Fig. 5A).

Densitometric analysis of western blot experiments revealed a total

loss of CO mediated effects by blocking UCP2 dependent ROS

formation (Fig. 4C). Of note, induction of Egr-1 by LPS was not

regulated by UCP2. Collectively, these data suggested that CO

requires UCP2 to generate mitochondrial ROS and to elicit and

impact down stream effects such as Egr-1 repression.

Discussion

Our most important mechanistic findings in this study include (i)

CO treatment resulted in mitochondria driven ROS-dependent

SUMOylation of PPARc and (ii) UCP2 in the mitochondria was

in part responsible for ROS generation by CO. Blocking both

resulted in nearly a complete loss of CO induced Egr-1 gene-

repression. Interestingly, primary Ucp22/2 macrophages con-

firmed a total loss of CO on ROS formation and consequently on

Egr-1 repression – compared to the partial blockade achieved by

individual inhibition of p38 and PPARc-SUMOylation. Blocking

both resulted in a complete loss of CO induced Egr-1 gene-

repression. It is important to point out that the exact reactive

species responsible for the observed CO effects cannot be

conclusively identified given that the fluorescence dyes employed

are at best selective and not specific. Additionally, using the

antioxidant, glutathione precursor, N-AcetylCysteine (NAC), to

selectively scavenge ROS, including superoxide and peroxides, we

demonstrate that PPARc-SUMOylation is contingent upon CO-

induced ROS formation (Fig. 1B). These studies with NAC

identified (or confirmed) PPARc SUMOylation by CO as a

process dependent on ROS formation likely superoxide or

peroxide. Sugimoto et al. [28] had utilized this strategy to

demonstrate ‘proof-of-concept’ increases in the levels of intracel-

lular GSH in THP-1 and Jurkat cell lines. Nevertheless, this series

of events explains in part the mechanism by which CO regulates

inflammation (Figure 5).

The nuclear hormone receptor PPARc exerts potent anti-

inflammatory effects in macrophages [11] and accounts in large

part for the anti-inflammatory effects of CO in vitro and in vivo

[1,9,10,26,27]. Transrepression of inflammatory genes such as

iNOS by PPARc in macrophages depend on SUMOylation at

specific amino acid residues of PPARc [10,11,13]. PPARc
contains two possible SUMOylation sites located at K77 and

K365. By using PPARc mutants (i.e. lysine-to-arginine), we

demonstrated that SUMOylation of PPARc by CO is functionally

important for the ability of CO to inhibit LPS-induced Egr-1

transactivation in macrophages. These experiments suggested the

involvement of K365 rather than K77 SUMOylation as

overexpression of PPARc-K77R mutant failed to perturb Egr-1

repression by CO. This notion is further supported by our finding

that CO did not suppress LPS-induced iNOS in PPARc-K365R

mutants, which is in line with previous observations on

SUMOylation dependent transrepression of inflammatory gene

promoters [11]. However, our studies cannot exclude the

possibility that CO increases PPARc-SUMOylation at K77, but

at least this seems not to be sufficient to inhibit Egr-1 expression

under our experimental conditions. Because CO acts as a

pleiotropic signaling molecule [1], we speculate that CO regulates

inflammation, proliferation and apoptosis in part by SUMOyla-

tion of other yet-to-be identified protein targets. How exactly CO

increases PPARc SUMOylation remains to be identified, but one

likely mechanism may include modification of the SUMO

pathway enzymes by ROS [15] originating from mitochondria

following exposure of cells to CO [1,9,17,18,28,29,30]. In this

context it’s important to mention that the SUMO conjugation and

deconjugation machinery is highly sensitive to ROS and that

increased oxidative stress triggers SUMOylation [31,32,33].

Indeed, addition of the ROS scavenger NAC partially blocked

PPARc SUMOylation in response to CO.

The inhibitory effect of CO on LPS-induced Egr-1 gene

expression was not completely reversed in the presence of

SUMOylation-defective PPARc mutants. Additional mechanisms

may exist including differential regulation of scaffold regulatory

corepressors/coactivators such as PGC-1, nuclear receptor

corepressor (NcoR), silencing mediator for retinoid and thyroid

hormone receptors (SMRT), or phosphorylation by MAP kinases

[34]. PPARc-independent but ROS-dependent mechanisms could

include p38MAPK, because (i) anti-inflammatory effects of CO

depend on both, ROS and p38 [2,18,37] and (ii) we observed a

partial loss of CO induced Egr-1 gene-repression upon pharma-

cological inhibition of p38 MAPK. Future studies shall determine

potential links/crosstalks between p38 and PPARc signaling in the

anti-inflammatory actions of CO. Furthermore, there may be

synergistic or additive effects of activating both molecules.

Another unresolved issue has been the detailed molecular

mechanism underlying increased mitochondrial ROS in response

to CO. Suliman et al. [29] reported previously that CO induced

UCP2 in H9c2 rat heart cells. In macrophages, CO treatment

transiently, but significantly, inhibits cytochrome c oxidase

resulting in a hyperpolarization of mitochondrial membrane

potential and backup of electrons at complex III of the respiratory

chain leading to superoxide production [1,17,18]. The physiolog-

ical function of UCP2 is subject of intense debate as multiple

functions have been ascribed to this protein including uncoupling

of respiration, as well as Ca++ flux [22]. Our findings that CO

Figure 5. Schematic diagram describing the effects of CO on
LPS-activated macrophages. Exposure of macrophages to CO leads
to an increase in mitochondria-derived reactive oxygen species (ROS),
which in turn drives SUMOylation of PPARc and activation of p38
mitogen-activated protein kinase. The activation of PPARc and p38
both contribute in part to modulation of the inflammatory response.
doi:10.1371/journal.pone.0026376.g005
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requires in part UCP2 is in line with reports showing that

uncoupling of inhibited mitochondria enhances ROS [22,35,36].

How CO modulates UCP2 remains to be identified. Likely

candidates include availability of Coenzyme Q, nucleotides, fatty

acids in addition to allosteric regulation or phosphorylation of

consensus sites within UCP2 by protein kinases [22,36,37].

In conclusion, our data continue to expand our understanding

as to how CO modulates the remarkable plasticity of macrophages

associated with decreased proinflammatory gene expression and

restoration of homeostasis. We provide evidence that Ucp2 is

involved in CO-increased ROS, which results in PPARc
SUMOylation and p38 hyperphosphorylation, that perhaps act

synergistically or additively downstream to block Egr-1 and NOS2

expression (Figure 5). CO, which is currently in clinical trials as

an inhaled therapeutic, may evolve as an important homeostatic

molecule in the treatment of inflammatory disorders.
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