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Abstract

The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more
than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles
of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not
been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target
genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c,
fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray
analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-
activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these
three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2.
Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted
in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled
by factors other than Nrf2.
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Introduction

Nrf2 is a transcription factor that binds to the antioxidant

response element (ARE) and transactivates cytoprotective genes

[1,2]. In basal conditions, Nrf2 is degraded via the Keap1-

dependent proteasome pathway, while it is stabilized after cells are

exposed to electrophilic or oxidative stress, which transactivates its

target genes. Many studies have identified the Keap1-Nrf2 system

to have multiple sensor sites to a variety of stresses [3,4] and more

than one hundred target genes [5,6]. Conservation of the Keap1-

Nrf2 system has been demonstrated in vertebrates including

zebrafish [7,8], which is a well-established research model.

Through previous studies, we noticed that the expression of

gstp1, a major target gene for zebrafish Nrf2, is not ubiquitous as

expected, but is rather restricted in the nose, gill, and liver [8–13].

It is unclear whether this tissue-restricted induction is specific for

gstp1 or a common feature for Nrf2 target genes, since gstp1 was the

only gene available in our study that was suitable for WISH

analysis. In addition, most studies related to Nrf2 target genes have

been performed on cultured cells or a specific murine tissue, and

therefore the tissue specificity of Nrf2 target genes has not yet been

well characterized, even in other animals. In this paper, we

identified seven zebrafish genes appropriate for WISH using

microarray analysis and examined their tissue-specific expression

in zebrafish larvae. Induced expression of all these genes was

restricted to the nose, gill, and/or liver with gene-specific

variations in tissue specificity. These results indicate tissue-

restricted induction to therefore be a common feature of Nrf2

target genes, which can be a critical issue for both the

pharmacological and clinical applications of Nrf2-activating

compounds.

Materials and Methods

RT-PCR and WISH analyses
Zebrafish embryos and larvae were obtained by natural mating.

All experiments were carried out using a wild-type AB strain. For

induction studies, embryos or larvae were placed in culture dishes

containing 100 mM DEM (Wako, Osaka, Japan) or 40 mM

sulforaphane (LKT laboratories, St. Paul, MN). RT-PCR analysis

was performed as described previously [8] using PCR primers

listed in Table S1. WISH analysis was carried out as described

previously [14] with slight modifications in the fixation step.

Briefly, the larvae were fixed with 4% paraformaldehyde (PFA) in
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PBS overnight at 4uC, and washed twice in PBS, once in 50%

methanol, and twice in 100% methanol, and cooled to –20uC for

at least 3 hours. Fixed larvae were then brought back to room

temperature (RT), washed twice in PBT (0.1% Tween 20/PBS) for

5 minutes, and immersed for 2 hours in 9% hydrogen peroxide in

PBT. After immersion, the larvae were washed twice in PBTw

(0.2% bovine serum albumin in PBT), treated for 20 minutes with

50 mg/ml proteinase K (Sigma-Aldrich, St. Louis, MO), and fixed

with 4% PFA/PBS for 20 minutes at RT.

Microarray analysis
A microarray analysis was performed using custom-made 16 K

MZH chips. The MZH chips contained in a total of 16399 probes of

a 65 oligonucleotides in length purchased from Sigma-Aldrich. The

collected zebrafish embryos were quickly homogenized with 1 ml of

QIAzol reagent (Qiagen, Hilden, Germany), and subsequently

stored at -80uC. Total RNA was extracted according to the

manufacturer’s instructions. Isolated total RNA was then further

purified using the RNAeasy mini kit (Qiagen). Amino-allyl-modified

amplified RNA was synthesized in one amplification round from

1 mg of purified total RNA using the amino-allyl RNA amplification

kit (Sigma-Aldrich). Subsequently, 5 mg of amino-allyl-modified

amplified RNA was used for coupling of monoreactive Cy3 and

Cy5dyes (GE Healthcare, Little Chalfont, UK) and column purified.

Dual-color hybridization of the MZH chips was performed

according to the manufacturer’s instructions for the AceGene

DNA microarray (Hitachi Solutions, Tokyo, Japan). Each experi-

ment was repeated in triplicate. After hybridization, MZH chips

were scanned using the Affymetrix 428 array scanner (Affymetrix,

Santa Clara, CA). The microarray data were processed from raw

data image files with Affymetrix Jaguar (Affymetrix) and normalized.

The processed data were subsequently imported into Excel

(Microsoft, Redmond, WA) to compare expression profiles of

DEM-treated samples to control samples. The cut-offs for

significance regarding the ratios of DEM-treated samples vs control

samples were set at a 2-fold change.

We have deposited the raw data at GEO under accession

numbers (GSM799460, GSM799461, GSM799462, GSM799463),

and we can confirm all details are MIAME compliant.

Plasmid construction
cDNA clones were prepared of the following transcripts by RT-

PCR using total RNA from 5 days post-fertilization (dpf) zebrafish

larvae: gstal, zgc:158387 (mgst3b), sepw2b, bcat1, zgc:110343 (prdx1),

zgc:163022 (frrs1c), zgc:92066 (fthl), gclc, gclm, and hmox1 (hmox1a).

Specific primers were designed based on cDNA information

(http://zfin.org), and cDNA products were subcloned into the

pBluescript II SK vector (Table S2). Plasmids pCS2nrf2,

pCS2FLmKeap1, and pKSgstp1N have been described previously

[8,9,12].

Knockdown and overexpression analyses of Nrf2
Synthetic capped nrf2 RNA was made with an SP6 mMES-

SAGE mMACHINE in vitro transcription kit (Ambion, Austin,

TX) using pCS2nrf2. The Nrf2-morpholino oligonucleotide

(nrf2MO) has been described previously [9]. mRNA or morpho-

lino oligonucleotides were injected into yolk of the zebrafish at the

one-cell stage using an IM300 microinjector (Narishige, Tokyo,

Japan).

Sectioning of zebrafish larvae
After carrying out WISH analysis, larvae were fixed with 4%

PFA/PBS, embedded in 1.5% SeaPlaque GTG agarose (Takara

Bio, Osaka, Japan), and dehydrated through graded ethanol series

(30%, 50%, 90% and twice 100%) in PBS for 15 minutes each.

Glycol methacrylate (Technovit 8100; Heraeus Kulzer, Wehr-

heim, Germany), with low-temperature polymerization, was used

according to the manufacturer’s instructions. After embedding, 6-

mm serial sections were made from whole bodies of zebrafish

larvae with an RM 2045 microtome (Leica, Wetzler, Germany).

Results

Identification of Nrf2 target genes in zebrafish
In order to investigate tissue-specific expression of Nrf2 target

genes, we searched for zebrafish Nrf2 targets other than gstp1 that

were able to be used for WISH analysis. Microarray analysis was

carried out using cDNA prepared from 4-dpf larvae treated with

or without 100 mM DEM for 12 hours. In total, 16,000 zebrafish

cDNAs were screened and 42 genes were identified that showed

more than a 2-fold induction compared with DEM-treated larvae

and untreated larvae (Table S3). The reliability of this screen was

demonstrated by the fact that gstp1 produced a top ranking score

in this analysis. In microarray analysis, gclm and nqo1 were induced

by DEM at levels of only 1.97- and 1.93-fold, respectively. Since

they have generally been used as Nrf2 target genes in mammalian

cells, we selected them together with gclc and hmox1, for further

analysis, in addition to 42 identified genes (Table S4).

We next carried out RT-PCR analysis to confirm the results of

microarray analysis. RT-PCR analysis was performed using RNA

isolated from 4-dpf larvae treated with DEM and isolated RNA

(Figure 1 and Table S3). Thirty-three genes were analyzed out of

46 selected genes, and 19 genes were identified to be induced by

DEM. To clarify whether these inductions were directed by Nrf2,

we carried out RT-PCR analysis using Nrf2-knockdown larvae

Figure 1. Screening of Nrf2 target genes in zebrafish. DEM-
induced expression of candidate genes for Nrf2 target analyzed by RT-
PCR. Embryos were injected with or without nrf2MO and treated with or
without 100 mM DEM for six hours at 2 hours post-fertilization (hpf)
using total RNA from the whole bodies.
doi:10.1371/journal.pone.0026884.g001

Tissue-Restricted Induction of Nrf2 Target Genes

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e26884



using nrf2-specific morpholino oligonucleotide. As a result, the

induction of eleven genes was clearly demonstrated to be Nrf2-

dependent (Figure 1).

We constructed phylogenetic trees of the 11 identified genes,

with the exception of gstp1, using the zebrafish genome and cDNA

information; we also renamed some genes (Figures S1–S10).

Finally, the genes were identified as gstal (glutathione S-transferase

alpha like), mgst3b (microsomal glutathione S-transferase 3b),

sepw2b (selenoprotein W2b), bcat1 (branched chain aminotransfer-

ase 1), prdx1 (peroxiredoxin 1), frrs1c (ferric-chelate reductase 1c),

fthl (ferritin heavy chain like), gclc (glutamate-cysteine ligase

catalytic subunit), gclm (glutamate-cysteine ligase modifier subunit)

and hmox1a (heme oxygenase 1a). Gsta, Prdx1, Fth, Gclc, Gclm

and Hmox1 have been identified as typical Nrf2 target genes in

mammalian cells [15–19]. Mgst3 has also been suggested to be an

Nrf2 target from several microarray studies [20–22]. These results

indicated that target genes of Nrf2 are conserved among

vertebrates. More interestingly, SepW2, Bcat1, and Frrs1 have

never been indentified as Nrf2 targets, including from microarray

analyses. Among these three, two are redox-regulating proteins

Figure 2. WISH analysis of Nrf2 target genes. Expression of eleven Nrf2 target genes was analyzed by WISH. Embryos were injected with or
without nrf2MO and treated with or without 100 mM DEM for six hours (three hours only for hmox1a) at 5 dpf. Lateral views. Numbers indicate the
induction positive embryos/tested embryos. Red and white arrowheads indicate positive and negative expression, respectively. Asterisks denote
basal expression in the intestine.
doi:10.1371/journal.pone.0026884.g002

Tissue-Restricted Induction of Nrf2 Target Genes
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which are possible candidates for Nrf2 targets: SepW2 is a

member of the selenoprotein family, which has been shown to

possess anti-oxidative stress activity [23], and Frrs1 is an iron-

metabolizing enzyme that reduces ferric ion [24]. Bcat1 is a

metabolizing enzyme for branched-chain amino acids and plays

important roles in ammonia metabolism [25].

A WISH analysis was carried out using eleven genes as probes

(Figure 2). Among them, seven genes (gstp1, mgst3b, prdx1, frrs1c,

fthl, gclc and hmox1a) showed clear and strong induction in response

to DEM, suggesting they will be useful for studying tissue

specificity of Nrf2 target genes. The remaining four genes showed

either weak induction (sepw2b and gclm) or strong constitutive

expression (gstal and bcat1), thus indicating that they were unsuited

for gene expression studies. We, therefore, used the seven genes

showing a strong induction for further analyses.

Tissue-restricted induction of Nrf2 target genes
Tissue-restricted induction of seven Nrf2 target genes was

examined by WISH (Figures 3 and S11), using 5-dpf larvae, since

the induction was much clearer compared with that in 4-dpf

larvae. As a result, the induction of mgst3b, prdx1, frrs1c, fthl, and gclc

was observed in nose, gill, and liver, similar to gstp1, although the

expression of frrs1c and gclc in the liver and nose, respectively, was

relatively weak. Induction in the intestine was observed in the case

of mgst3b, prdx1, frrs1c and gclc, but we did not take them into

account since a considerable level of basal expression was detected.

Figure 3. Tissue-restricted induction of Nrf2 target genes. 5-dpf larvae were treated with or without 100 mM DEM for six hours (three hours
only for hmox1a) and expression of indicated genes was analyzed by WISH. Lateral and ventral views. Red and white arrowheads indicate positive and
negative expression, respectively, of each gene in the nose, gill and liver. Asterisks denote basal expression in the intestine.
doi:10.1371/journal.pone.0026884.g003

Tissue-Restricted Induction of Nrf2 Target Genes
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Interestingly, hmox1a was only induced in the liver, suggesting the

existence of gene-specific differences in tissue specificity. Expres-

sion profiles of hmox1a and frrs1c in the liver were confirmed by

section analysis in comparison with a liver-specific marker fabp10

(Figure S11) [26]. These results indicate that tissue-restricted

induction is a common characteristic among Nrf2 target genes, not

only for gstp1.

The induction time profiles of seven genes were also analyzed in

detail (Figure 4). All genes showed induction beginning three hours

after DEM treatment. Interestingly, expression of hmox1a was

rapidly reduced beginning six hours after DEM treatment to

almost the same level as the non-induced condition, whereas

expression levels of the remaining six genes were maintained until

twelve hours after treatment. A negative feedback regulation may

exist in the case of hmox1a.

To determine whether tissue specificity and induction time

profiles of Nrf2 target genes vary according to differences of Nrf2-

activating compounds, expression profiles of seven genes by

sulforaphane were analyzed (Figures S12). Induction profiles of all

seven genes were basically identical to those in the case of DEM,

suggesting that tissue-restricted induction of Nrf2 target genes is

intrinsic properties of each gene.

Gene regulation by Nrf2
Considering that all genes tested showed restricted-expression in

the nose, gill, liver, and intestine, gene expression in these four

tissues seemed to be a default state for Nrf2 target genes. This may

suggest that Nrf2 or its activator dominantly exists in these tissues

and directly transactivates the target genes. To test this hypothesis,

Figure 4. Induction time profiles of Nrf2 target genes. 5-dpf larvae were treated with 100 mM DEM for indicated hours and expression of seven
genes was analyzed by WISH. Lateral views. Red and white arrowheads indicate positive and negative expression, respectively, of each gene in the
nose, gill and liver. Asterisks denote the basal expression in the intestine.
doi:10.1371/journal.pone.0026884.g004

Figure 5. Tissue-specific expression of the Nrf2 gene. Expression
of Nrf2 gene in 24-hpf embryos and 5-dpf larvae were analyzed by
WISH. Lateral (upper left, lower left), dorsal (upper right), and ventral
(lower right) views. Arrowheads in light blue, red and orange indicate
expression in the nose, gill and liver.
doi:10.1371/journal.pone.0026884.g005

Tissue-Restricted Induction of Nrf2 Target Genes
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we analyzed the expression of nrf2 in 5-dpf larvae by WISH

(Figure 5). As expected, nrf2 is specifically expressed in the nose,

gill, liver, and intestine, suggesting that tissue-restricted induction

of Nrf2 target genes is based on the tissue-specific expression of

nrf2 mRNA.

We previously demonstrated that the expression of gstp1 and

gclc (cgcsh) to be strongly induced when Nrf2 is overexpressed in

zebrafish embryos [9]. We next investigated whether the other

five Nrf2 targets can also be induced by Nrf2 overexpression.

Nrf2 was overexpressed by injecting nrf2 mRNA into one-cell-

stage embryos, and the expression of Nrf2 target genes was

analyzed by RT-PCR seven hours after injection (Figure 6). The

results indicate that all seven genes were induced by Nrf2

overexpression. Using the zebrafish genome database (http://

www.ensembl.org/Danio_rerio/Info/Index), we searched the

ARE sequences in the 5-kb upstream regions of the deduced

transcription initiation sites in these genes (Figure 7). All genes

were found to have more than three ARE sites in the 5-kb

regions, to which Nrf2 may bind and regulate. All of these results

suggest that induction of these seven genes is directly regulated by

Nrf2.

Discussion

The zebrafish is a good system to observe the tissue-specific

expression of many genes, including gene induction, as described

in this study. Indeed, tissue-specific induction in systems other than

Keap1-Nrf2, such as the heat-shock genes, has been reported from

studies in zebrafish [27,28]. These observations would be difficult

to analyze using cultured cell lines, demonstrating a significant

advantage for zebrafish system. Zebrafish is also good for drug

toxicity screening and testing environmental toxicants [29,30].

Since Nrf2 is activated by a variety of toxic compounds and

oxidative stress, it would be worthwhile for these screens and tests

to analyze tissue-restricted induction of Nrf2 target genes. The

seven target genes of Nrf2 selected in this paper would be useful

for such studies.

Figure 6. Target gene induction in zebrafish embryos by Nrf2
overexpression. RT-PCR analysis using total RNA from the whole
bodies of 30 embryos and specific primers of indicated genes.
doi:10.1371/journal.pone.0026884.g006

Figure 7. ARE sequences in upstream regions of Nrf2 target genes. ARE sequences (TGAG/CNNNGC) and AP1-type ARE (like) (TGAG/CTCAGN
or TGAG/CTCANC) in the 5-kb region of deduced transcription initiation sites of indicated genes were searched using the zebrafish genome database.
doi:10.1371/journal.pone.0026884.g007

Tissue-Restricted Induction of Nrf2 Target Genes

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e26884



In our analysis, all tested genes showed tissue-restricted induction.

Furthermore, we found gene-specific variation in tissue specificity,

e.g., a weak induction of frrs1c and gclc in the liver and nose,

respectively, and no hmox1a induction in the nose and gill. The

requirements of metabolizing enzymes encoded by each target gene

may be different among tissues and the level of enzymes are

controlled at a transcriptional level. An important finding in this

study is that the expression level of Nrf2 itself is different among

tissues, which will be the critical point to exert tissue-restricted

induction of its target genes. We hypothesized that the gene

expression profiles of the Nrf2 gene defines a default state of tissue

specificity of target genes. In cases of frrs1c, gclc and hmox1a, some

tissue- and gene-specific transcriptional repressors may be involved

to exert their tissue-specific variations. Nrf2-dependent ARE gene

regulation has been shown to be negatively regulated by other ARE-

binding proteins such as Nrf1, Nrf3, Bach1, small Maf proteins, and

c-Maf [31–35]. Since we have previously demonstrated that the

target genes of Nrf-Maf proteins tend to differ somewhat among

family proteins [36,37], it is possible that these ARE-acting factors

may bind in a gene-specific manner and interfere with DNA binding

of Nrf2. Furthermore, ATF3, c-Myc and p53 have also been

reported to repress Nrf2-dependent gene activation [38–40]. Some

of these transcription factors may bind near the ARE in a gene- and

tissue-specific manner and inhibit the transcription activity of Nrf2.

In contrast to Nrf2 regulation at a post translational step,

molecular mechanisms of Nrf2 gene regulation have not been

extensively studied. The exception is the upregulation of the Nrf2

gene by Nrf2 itself and aryl hydrocarbon receptor in response to

their chemical activators [41,42]. We previously reported that the

embryonic expression of the Nrf2 gene is quite low both in the

mouse and zebrafish and it becomes elevated near birth [12,43].

The downregulation of Nrf2 was found in prostate cancer which

may be related to the initiation of cellular transformation [44]. A

low Nrf2 expression in the brain has been reported in humans,

mice, and chickens [45–47], as was also the case in our present

study. For the efficient medical applications of the Keap1-Nrf2

system for the treatment of neurodegenerative diseases [48,49],

Nrf2 should be considerably expressed in the brain. However, we

found the expression of Nrf2 in the brain to be low. It will thus be

valuable to find new methods and procedures to elevate the Nrf2

expression in both brain and prostate cancer cells.

Supporting Information

Figure S1 Phylogenetic tree of Gsta family proteins.
Amino acid sequences of full-length proteins were analyzed. The

tree was constructed by the neighbor-joining method using the

ClustalW program (http://clustalw.ddbj.nig.ac.jp/top-j.html). c,

chicken; h, human; m, mouse; r, rat; xt, Xenopus tropicalis; z, zebrafish.

(TIF)

Figure S2 Phylogenetic tree of Mgst3 family proteins.
Amino acid sequences of full-length proteins were analyzed. ci,

Ciona intestinalis; x, Xenopus laevis.

(TIF)

Figure S3 Phylogenetic tree of SepW family proteins.
Amino acid sequences of full-length proteins were analyzed. d,

Drosophila melanogaster.

(TIF)

Figure S4 Phylogenetic tree of Bcat family proteins.
Amino acid sequences of full-length proteins were analyzed. ce,

Caenorhabditis elegans.

(TIF)

Figure S5 Phylogenetic tree of Prdx family proteins.
Amino acid sequences of full-length proteins were analyzed.

(TIF)

Figure S6 Phylogenetic tree of Frrs family proteins.
Amino acid sequences of full-length proteins were analyzed.

(TIF)

Figure S7 Phylogenetic tree of Fth family proteins.
Amino acid sequences of full-length proteins were analyzed.

(TIF)

Figure S8 Phylogenetic tree of Gclc family proteins.
Amino acid sequences of full-length proteins were analyzed.

(TIF)

Figure S9 Phylogenetic tree of Gclm family proteins.
Amino acid sequences of full-length proteins were analyzed.

(TIF)

Figure S10 Phylogenetic tree of Hmox family proteins.
Amino acid sequences of full-length proteins were analyzed.

(TIF)

Figure S11 Expression of frrs1c and hmox1c in the liver.
Transverse sections of 5-dpf larvae through the trunk at the level of

the liver (dotted line). Larvae were treated with (frrs1c, hmox1a) or

without (fabp10) 100 mm DEM and analyzed by WISH before

sectioning. Red and white arrowheads indicate positive and

negative expression, respectively, of each gene in the liver. Asterisk

denotes the basal expression in the intestine. Scale bar, 100 mm.

(TIF)

Figure S12 Induction of Nrf2 target genes by sulforaph-
ane. 5-dpf larvae were treated with or without 40 mM

sulforaphane for indicated hours and expression of seven Nrf2

target genes was analyzed by WISH. Lateral and ventral views.

Red and white arrowheads indicate positive and negative

expression, respectively, of each gene in the nose, gill and liver.

Asterisks denote basal expression in the intestine.

(TIF)

Table S1 Oligonucleotide primers used for RT-PCR
analyses.

(DOC)

Table S2 Oligonucleotide primers used for plasmid
construction.

(DOC)

Table S3 Identification of DEM-inducible genes in
zebrafish (1).

(DOC)

Table S4 Identification of DEM-inducible genes in
zebrafish (2).

(DOC)
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