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Abstract
Humans display a large inter-individual variation in leukocyte telomere length (LTL), which is
influenced by heredity, sex, race/ethnicity, paternal age at conception and environmental
exposures. LTL dynamics (birth LTL and its age-dependent attrition thereafter) mirror telomere
dynamics in hematopoietic stem cells (HSCs). LTL at birth is evidently a major determinant of
LTL throughout the human lifespan, such that individuals endowed with short (or long) LTL at
birth probably have short (or long) LTL later in life. Therefore, the associations of short LTL with
atherosclerosis and with diminished survival in the elderly may relate to short birth LTL,
accelerated age-dependent LTL attrition, or both. The mechanisms underlying these associations
are still not well understood, but they stem in part from genetic factors in control of telomere
maintenance and the rate of HSC replication.
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INTRODUCTION
Leukocyte telomere length (LTL) is a complex human trait. It is heritable [1–11] and
modified by paternal age at conception (PAC) [12–15]. LTL displays large inter-individual
variation at birth [16–19] and throughout the human lifespan [3,18,20,21]. Short telomeres
in leukocytes and other organs have been observed in rare syndromes of Telomere
Shortening [22–27] and considerable research has been devoted to the roles of telomere
biology in human cancers [28–30]. But this communication focuses on LTL genetics in the
general population and the potential role of LTL in human atherosclerosis.

LTL DYNAMICS
The last decade has seen remarkable progress in human telomere research with the majority
of studies focusing on telomere dynamics (telomere length and its age-dependent rate of
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shortening) in leukocytes. Why leukocytes? The studies that launched the discipline of
telomere epidemiology probably examined leukocytes because they were readily available
and convenient to handle [18,19]. It turned out that LTL is associated with a host of aging-
related diseases and environmental circumstances that are linked to the aging of the
cardiovascular system, primarily in the form of atherosclerosis [31–34].

The hematopoietic system is hierarchically arranged with mature leukocytes (erythrocytes
and platelets) at its bottom and hematopoietic stem cells (HSCs) at its apex. At any age, LTL
mirrors the length of telomeres in HSCs [35–37], although by and large LTL is shorter than
telomere length in HSCs [but see 37]. Given that the hematopoietic system is the most
proliferative among human tissues, age-dependent telomere shortening in this system, as
expressed in LTL dynamics, does not reflect telomere shortening in other tissues that display
less proliferation. In fact, in the general population, replicative senescence, which is one of
the ultimate outcomes of telomere shortening, is unlikely to contribute to the aging of poorly
proliferative tissues/cells [38,39] such as neurons, skeletal muscle and fat. That said, in rare
syndromes of Telomere Shortening, organs such as lung and liver show functional
compromise, which is apparently due to critically short telomeres (25,26,40,41).

What might be the factors that impact LTL dynamics? We know little about the variables in
the developing fetus that account for the wide inter-individual variation in LTL at birth [16–
20,37]. Moreover, most studies that have shown heritability of LTL [1–11] were based on
findings in adults, although the work by Slagboom et al [1], the first to report LTL
heritability, was based on twins aged 2–95 years. Akkad et al [17] observed a correlation
between the LTLs of mothers and their newborns, suggesting that LTL heritability might
already be expressed at birth. Whether or not the rate of LTL shortening during the post-
natal period is also heritable, is unknown at present.

What we do know is that the rate of LTL shortening is extremely rapid early in life in both
humans [18,19,42] and non-human primates [43] and that it slows down considerably during
adulthood. HSCs have insufficient activity of telomerase [44–48], the reverse transcriptase
that adds telomere repeats onto the ends of chromosomes [49], to prevent telomere
shortening in leukocytes. Therefore, age-dependent LTL attrition reflects telomere
shortening in HSCs. Although the length of telomeres and age-dependent telomere
shortening in various leukocyte lineages may differ, there is a tight relationship in telomere
length between these lineages and LTL [37]. Theoretical considerations [36] suggest that the
rapid expansions of the pools of HCSs (by symmetric HSC replication) and hematopoietic
progenitor cells (by asymmetric HSC replication) [50], in tandem with the growing soma,
account for the fast pace of LTL shortening during the formative years. During adulthood,
LTL shortening stems from ‘housekeeping’ functions of HSC replication to accommodate
the homeostatic needs of the peripheral blood and probably replace HSCs that exit the
replicative cycle due to a variety of causes. As shown in longitudinal studies, that is,
repeated measures of LTL in the same persons over several years, there is a wide inter-
individual variation in the rate of LTL shortening during adulthood [51–55]. Moreover, a
number of these studies have suggested that a subset of individuals may even lengthen their
LTL over time. However, recent work has concluded that the lengthening of LTL might be
an artifact that reflects the measurement error of telomere length [56]. Although telomerase
activity in activated T and B lymphocytes [57] might attenuate the rate of telomere
shortening in these circulating cells, it is unlikely to cause LTL elongation with age.

LTL and Atherosclerosis
A consistent association has been observed between LTL and atherosclerosis. In general,
individuals with clinical [58–61] and sub-clinical [34,62–65] manifestations of

Aviv Page 2

Mutat Res. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



atherosclerosis and those with increased risk for the disease because of a high BMI [3,65–
68], sedentary lifestyle [69], insulin resistance [66,70–73] or cigarette smoking [4,65,67],
display relatively shorter LTL than their peers, after adjustment for age, sex and race.
Moreover, women have a longer LTL than men [2–4,15,64,65,73] and they are less likely to
manifest atherosclerosis during the pre-menopausal period. Curiously, as a group African
Americans have a longer LTL than whites [3, 73,74]. African Americans are also less prone
than whites to coronary atherosclerosis, which is expressed in less coronary artery
calcification [75–78]. Calcification is an important indicator of atherosclerotic plaque
burden in the coronary arteries (79). A body of research indicates that independent of
traditional risk factors, coronary artery calcification predicts coronary heart disease events
(80–83). Even in the presence of multiple cardiac risk factors, persons with no evidence of
coronary artery calcification have low near-term risk of having coronary artery disease
events. However, whether the longer LTL and less coronary artery calcifications in African
Americans than in whites are mechanistically connected is unknown at present.

The association of LTL with smoking [4,65,67], and sedentary lifestyle [69], suggests that in
part the rate of LTL shortening is modified by environmental factors. The relatively short
LTL in cigarette smokers might reflect an accelerated rate of LTL shortening [56], perhaps
because of a cigarette smoke-mediated increase in the load of pro-inflammatory factors and
pro-oxidants [84], two factors that might accelerate the rate of LTL shortening along the
same lines that explain the short LTL in atherosclerosis. In fact, the proclivity of smokers to
atherosclerosis is largely attributed to the pro-inflammatory and pro-oxidant effects of
smoking. In As atherosclerosis is a state of chronic low-grade inflammation and increased
oxidative stress [85,86], shortened LTL in patients with atherosclerosis might stem from a)
an accelerated rate in HSC replication to replace leukocytes consumed in the inflammatory
process, and b) the increase in the loss of telomere repeats per replication due to the
sensitivity of the GGG triplets on telomeres to the hydroxyl radical [87,88]. But in and of
itself an accelerated rate of LTL attrition hardly accounts for shortened LTL in all patients
with clinical manifestations of atherosclerosis, because individuals with very short birth
LTL probably have a relatively short LTL as adults regardless of their rate of age-dependent
LTL shortening. This tenet is supported by the following findings: a) synchrony
(equivalence) is observed in telomere length in utero [89], at birth [16,37] and to a great
extent during adult life [37,90–92], and b) synchrony is also observed between LTL and
telomere length in poorly proliferative tissues such as muscle [90] and fat [91]. As telomere
length in poorly proliferative cells largely reflects telomere length during early development,
and given the high inter-individual variation in LTL across newborns [16–19], it is safe to
surmise that individuals with very short (or long) birth LTL are likely to display short (or
long) LTL throughout their life course.

Accordingly, another potential model that explains the LTL-atherosclerosis connection
focuses not on inflammation and oxidative stress that mark atherosclerosis but on repair
mechanisms undertaken by the body to attenuate its progression. This repair is largely
implemented by endothelial progenitor cells (EPCs), which originate from the bone marrow
and integrate themselves into the site of vascular injury where they are engaged in
endothelial repair [93,94]. Thus, EPCs are the endothelial repair offshoot of HSCs and both
their numbers and replicative potential, which are essential for repair, depend on telomere
length [95–98]. It follows that shortened telomere length in HSCs, expressed in
compromised functions of EPCs, might be as much a part of atherosclerosis as the injurious
part that results from inflammation and oxidative stress. In this sense, the hematopoietic
repair arm of the vasculature depends on HSC telomere length.
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LTL, Atherosclerosis, and Longevity
One of the fundamental questions that pertain to telomere biology in humans is whether
LTL is linked to human longevity. If such a connection exists it is likely to be displayed in
the elderly, i.e., individuals whose age approaches or has surpassed their life expectancy.
Which raises this question: What is the main cause of death in the elderly? Without a doubt,
the demise of the majority of the elderly in the USA and other modern societies relates in
one way or another to cardiovascular disease, particularly in the form of atherosclerosis
[99,100]. To put this statement in perspective, in 2005, approximately 35.5% of mortality in
the US population was due to cardiovascular disease, which includes stroke and diabetes, the
complication of which is accelerated atherosclerosis. However, in persons older than 85
years, 47.2% of mortality was the consequence of cardiovascular disease [101]. And these
vital statistics do not account for death due to infection and dementia, which are much more
common in elderly persons with severe cardiovascular disease. With regard to infection, the
ultimate cause of death in the elderly is often listed as infection, e.g., influenza or
pneumonia. However, the elderly easily succumb to infection due to immune senescence,
which might be linked to LTL dynamics [102], and/or because of severely compromised
cardiovascular functions. In this context, while the incidence of cardiovascular disease
continues to climb exponentially with age, the incidence of cancer plateaus and even
declines after the eighth decade [103]. Thus, the association or lack thereof of LTL with
mortality in the elderly must be considered from the perspective of the role of cardiovascular
disease in the death of the elderly. That said, a controversy once existed whether shortened
LTL predicts mortality in the aged [104–109], but research examining the LTL-mortality
connection in same-sex elderly twins has found that the co-twins with the shorter LTL were
more likely to die first during the follow-up period [9,110]. Data derived from same-sex
twins are particularly powerful with regard to the question about the LTL-longevity
connection, since they require no statistical adjustments for age and sex of the co-twins and
given that twins are more likely to be exposed to similar environmental conditions.
Moreover, a recent study that focused on the LTL-mortality nexus in elderly persons
participating in the Cardiovascular Health Study also found that individuals with short LTL
are at a higher risk for premature death [73].

LTL Heritability and the Paternal Age at Conception (PAC) Effect on the
Offspring’s LTL

Studies in twins, siblings and families, a few of which were multigenerational, have found
that LTL is heritable— estimated heritability between 0.36–0.84 (Table 1). Huda et al [111]
found no evidence of LTL heritability based on a study in twins, whose telomere length was
measured using Southern blots. The samples of the co-twins in each pair were not
randomized; instead they were resolved in adjacent lanes. This probably exerted a ‘gel-
effect’, which differs between samples resolved on different gels but not on those resolved
on the same gel. Without randomizing the co-twins, the ‘gel effect’ might explain the
inability of Huda et al to detect LTL heritability in their twins.

The mode of LTL heritability has been the focus of several studies (Table 1). Nawrot et al
[4] reported that the inheritance of LTL is X-linked. Subsequent works reported a paternal
mode of heritability [10] or a greater paternal than maternal LTL heritability [8,11]. In
addition, Akkad et al [17] observed a robust correlation of LTL between mothers and their
newborns. Thus, the evidence points to both maternal and paternal modes of LTL
inheritance, although nuances in the exact modes of inheritance among studies are not well
understood.
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One of the most intriguing observations in telomere epidemiology (and telomere genetics) is
the effect of PAC on the offspring’s LTL (Table 2). The PAC effect was observed by Unryn
et al in 2005 [13] in a small cohort and, except for one study in a relatively small sample
[11], it has been replicated since in large cohorts [12,14,15], one of which [15] included
participants in four different studies in the USA and Europe. It is expressed as a longer LTL
in offspring of older fathers. Since all studies showing the PAC effect were performed in
adult offspring, it has not been established whether PAC affects the offspring’s LTL at birth
and/or its age-dependent shortening afterwards. Several studies also reported association of
maternal age at conception (MAC) with the offspring’ LTL [8,12,14,15] (table 2), but given
that the ages of the parents are usually highly correlated, the MAC effect is primarily
attributed the PAC effect [12,14,15] (Table 2).

The root causes of the PAC effect are unknown. Interestingly, in contrast to age-dependent
telomere shortening in proliferative somatic cells, telomere length is longer in sperm of
older as opposed to younger men [10,112,113], a phenomenon that ostensibly relates to the
‘emergence’ of a subset of sperm with longer telomeres in older donors [15]. If telomere
length reflects sperm ‘fitness’, it is possible that those stem cells of the germ line that
display resiliency to aging give rise to sperm with longer telomeres. How this is brought
about, and in what way longer telomeres in sperm of older donors might relate to the PAC
effect, are unsolved enigmas. It is unlikely, however, that the PAC effect on the offspring’s
LTL stems from mutations that accumulate with age in the male germ line. A more plausible
mechanism to explain the PAC effect might be altered gene expression, mediated by age-
dependent changes in chromatin structure and DNA methylation of telomere-regulating
genes or perhaps in the sub-telomeric region, which has been shown to affect telomere
length [114]. Moreover, it is puzzling how these putative ‘epigenetic’ changes might be
transmitted across generations without being erased during early gestation. And then another
potential ramification of the PAC effect is whether by virtue of their longer LTL, offspring
of older fathers are relatively resistant to atherosclerosis.

LTL-Regulating Genes in the General Population
Major mutations in telomere maintenance genes that involve the telomerase reverse
transcriptase (TERT) and the telomerase RNA component (TERC), which encode the two
subunits of telomerase, cause catastrophic diseases, marked by aplastic anemia and
increased predilection to various forms of malignancies, pulmonary fibrosis and liver
cirrhosis [22–27]. A subset of these diseases displays progressive shortening of telomeres
across generations (genetic anticipation) — a phenomenon that presumably relates to the
lack of telomerase activity during early gestation [115], which serves to elongate telomeres,
and thereby prevent their shortening with cell replication. However, the specific (and rare)
mutations that cause these diseases do not explain the wide inter-individual variation in LTL
in the general population. In addition, genome-wide association studies (GWAS), which
examine the associations of numerous single-nucleotide polymorphisms (SNPs) with
specific phenotypes in many individuals, have found that the TERT locus is associated with
adenocarcinomas of the lung [116–120], testicular germ cell cancers [121], gliomas [122], as
well as other solid tumors [123]. However, only very recent works have deciphered through
GWAS genetic loci that explain the inter-individual variation of LTL in the general
population.

As LTL dynamics reflect telomere dynamics in HSCs, the genes that account for inter-
individual variation in LTL presumably belong to at least two major categories: genes that
are engaged in telomere maintenance in all cells and genes that modify directly or indirectly
the pace of HSC replication. Recent GWAS support this supposition. These studies have
found that SNPs in loci that harbor oligonucleotide/oligosaccharide-binding fold containing
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1 gene (OBFC1), TERC and the chemokine (C-X-C motif) receptor 4 gene (CXCR4) are
associated with LTL in the general population [124,125]. In addition, LTL was found to be
associated with TERC in a study that used the candidate gene approach [126].

The telomere maintenance function of TERC is, of course, at the center of telomere biology.
But OBFC1, the homologue of the yeast Stn1, is a newly discovered telomere maintenance
gene in humans and its functions include the negative regulation of telomerase [127,128].
However, the functional impact of these SNPs associated with LTL through GWAS has not
been demonstrated thus far.

While TERC and OBFC1 are directly engaged in telomere maintenance in all cells, it is
postulated that CXCR4 might influence LTL by its central role in the trafficking of
neutrophils across the bone marrow [129,130]. The rate of replication of HSCs of
individuals with CXCR4 variants that bring about slower mobilization of neutrophils from
the bone marrow might be attenuated, resulting in a longer LTL. What’s more, CXCR4 also
plays a key role in the damage-repair feedback loop between HSCs and the endothelium,
which is mediated by EPCs [131–134].

Previous GWAS have uncovered common genetic variants associated with aging-related
diseases, including atherosclerosis. But as noted recently [135], many of these variants have
so far provided little mechanistic insight into complex human traits. In contrast, the GWAS
of LTL [12,125] have uncovered important mechanisms of LTL regulation by identifying
loci that harbor variants of known telomere maintenance genes (TERC, OBFC1) and a gene
engaged in HSC replication (CXCR4) that fit into the broader picture of the LTL-
atherosclerosis connection. What might be the reason for this gap in outcomes between
GWAS of aging-related diseases and GWAS of LTL?

Phenotypes of aging-related diseases such as atherosclerosis are many steps removed from
the variant genes that contribute to their characteristics, and they often are poorly
quantifiable. Myocardial infarction, a major complication of atherosclerosis, is a categorical
trait (yes/no myocardial infarction). But such a trait might change with age, i.e., individuals
without a history of myocardial infarction at the age when they were genotyped experience
such an event later in life. In contrast, age-adjusted LTL is a quantitative trait that can be
measured with relative accuracy. Therefore, using LTL as an intermediate phenotype
narrows the spectrum of confounders and might facilitate identifying networks of genes that
are engaged in telomere dynamics of the hematopoietic system and their impact on the aging
vasculature. It follows that using LTL as an intermediate phenotype of atherosclerosis (and
perhaps longevity) in humans might require relatively small samples for GWAS. For
instance, 19,492 subjects participated in a GWAS of early-onset myocardial infarction that
identified SNPs with genome-wide level of significance, including CXCL12— the ligand of
CXCR4 [136]. In contrast, the GWAS of LTL that uncovered OBFC1, TERC and CXCR4
was based on 3,417 persons [124]. Most importantly, the identification of TERC, OBFC1
and CXCR4 as LTL-regulating genes provides the proof of concept that LTL dynamics
mirror telomere dynamics in HSCs.

It is noteworthy, however, that LTL-regulating genes that have been discovered through
GWAS explain only a small portion of the inter-individual variation in LTL, although it is
likely that ongoing, large-scale GWAS of LTL will decipher more genes that explain this
variation. Furthermore, thus far most of LTL GWAS have been performed primarily in
Caucasians, providing no insight into the effect of race on LTL, a phenomenon that is
probably driven by genetic factors, the potential ramifications of which to human health and
longevity are unknown.
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Conclusions
The essence of the LTL-atherosclerosis nexus comes down to the following paradigm:
Atherosclerosis is an aging-related disease. The onset of the clinical (and sub-clinical)
manifestations of the disease depends on the balance between the injurious and repair
elements of the disease. An imbalance that is tilted towards injury over that of repair marks
the onset of atherosclerosis, which probably occurs early in life in most individuals. The
injurious element is partially attributed to the accruing burden of oxidative stress and
inflammation on the vascular endothelium. In contrast, the repair element depends in large
measure on HSC reserves, which are defined by HSC telomere length, as expressed in LTL.
The pace of age-dependent LTL shortening, the index of the contraction rate of these
reserves as humans get older, is accelerated by oxidative stress and inflammation.

Practically all humans, if they live long enough, develop atherosclerosis and LTL dynamics
provide information about both the injurious and possibly the repair element of this age-
related disease. The genes that thus far have been found to be associated with LTL in the
general population appear to reaffirm this dichotomy. OBFC1—a gene that negatively
regulates telomerase— and TERC are more likely to impact the size of the HSC reserves, as
expressed in LTL, at birth. That is because telomerase activity is robust during early
gestation [115] but repressed during extra-uterine life. In contrast, CXCR4 probably impacts
the rate of HSC reserve contraction, as mirrored in the rate of age-dependent LTL
shortening. Whether PAC influences HSC reserves at birth, the rate of the contraction of
these reserves, or both, is unknown at present.

Finally, given that atherosclerosis is a major determinant in human longevity and that LTL is
associated with both atherosclerosis and longevity, it is only reasonable to propose that
human longevity might depend to some extent on LTL-regulating genes and the PAC effect
on the offspring’s LTL.
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