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MicroRNAs (miRNAs) regulate gene expression posttranscriptionally. Although previous efforts have demonstrated the functional
importance of target sites on miRNAs, little is known about the influence of the rest of 3′ untranslated regions (3′UTRs) of target
genes on microRNA function. We conducted a genome-wide study and found that the entire 3′UTR sequences could also play
important roles on miRNA function in addition to miRNA target sites. This was evidenced by the fact that human single nucleotide
polymorphisms (SNPs) on both seed target region and the rest of 3′UTRs of miRNA target genes were under significantly stronger
negative selection, when compared to non-miRNA target genes. We also discovered that the flanking nucleotides on both sides of
miRNA target sites were subject to moderate strong selection. A local sequence region of∼67 nucleotides with symmetric structure
is herein defined. Additionally, from gene expression analysis, we found that SNPs and miRNA target sites on target sequences may
interactively affect gene expression.

1. Introduction

miRNAs are small noncoding RNAs of ∼23 nucleotides.
They are one of the major regulatory gene families playing
important roles in almost every cellular process in animals,
plants and viruses [1–3]. In animals, this includes regulation
of developmental timing and signaling pathways, apoptosis,
metabolism, myogenesis and cardiogenesis, brain develop-
ment [1], and human pathologies [4–6].

It is believed that miRNAs mainly mediate gene regu-
lation posttranscriptionally via translational repression and
reduction of mRNA stability by forming miRNA-mRNA
pairs to their target genes. In vertebrates, most miRNAs
pair imperfectly with their target 3′UTRs, with a contiguous
and perfect base pairing of the miRNA nucleotides 2–7 or
2–8 in the “seed” region. The miRNA seed target region

on target gene, which is very important for target recog-
nition, provides pairing specificity [7–9] for translational
suppression. However, these seed matches are not always
sufficient for repression. The degree of repression might also
be related to other features on target 3′UTRs, including
AU-rich nucleotide composition of 3′UTR [10] or AU-rich
nucleotide composition near miRNA target sites [11], the
location of miRNA target sites on 3′UTRs [11–13], the site
accessibility in miRNA target recognition [14–16], and base
pairing pattern outside seed target region [11].

SNPs are an abundant form of genome variation.
Although most SNPs have little or no effect on gene reg-
ulation and protein activity, there are many circumstances
where base changes in coding regions change the protein
anthology and in noncoding regions affect the dynamics of
gene expression through the influences of DNA and RNA
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structures. SNPs residing in miRNA genes can alter pri-
miRNA processing and maturation [17, 18], affect miRNA-
mRNA interaction, and decrease mature miRNA expression
[19, 20], resulting in disease phenotype such as tumorigen-
esis [20] and esophageal cancer [21]. SNPs within miRNA
target sites can modulate miRNA-mRNA interaction to cre-
ate or destroy miRNA binding to target sites, resulting in new
phenotypes [22–26]. There are also reports indicating that
SNPs outside miRNA target sites can affect miRNA function.
One recent finding [27] demonstrates that a polymorphism
near miR-24 target site in the 3′UTR of human dihydrofolate
reductase gene affects its expression by interfering with
the miR-24 function, resulting in dihydrofolate reductase
overexpression and methotrexate resistance.

Chen and Rajewsky found that SNP density in miRNA
target genes was significantly lower in the region matching
the 5′ end of miRNA than in the rest of the target site
and that significant negative selection acted on a large class
of computationally predicted conserved miRNA target sites
[28]. These results were in agreement with the finding
reported by Saunders et al. who discovered that the average
SNP density in computationally predicted target sites was
much lower than that in flanking regions [29]. All these
results indicate that miRNA target sites play very important
roles for miRNA function. However, little is known about
the impact from the rest of target 3′UTR nucleotides on the
functionality of miRNAs, as polymorphism outside miRNA
target site can interfere with miRNA function [27]. In an
attempt to gain insight into the functional importance of
target 3′UTRs on miRNAs, we conducted studies to compare
the difference of selective pressures for SNPs between miRNA
and non-miRNA target 3′UTRs. Given the broad function of
miRNAs, it is expected that miRNA target sequences, if they
contribute to the functionality of miRNAs, would be under
strong evolutionary selective pressures and therefore have
less genetic variations, as compared to non-miRNA target
sequences. We have found that SNPs on both seed target
region and the rest of 3′UTRs of miRNA target genes were
under stronger negative selection, suggesting the functional
role of the 3′UTRs on miRNAs. We also found that other
than the seed target region, a continuous nucleotide region
surrounding the seed target region was subject to moderate
strong selection, indicating more important roles on miRNA
function for local sequences. Additionally, from correlation
and gene expression data analyses, we found that SNPs on
the target sequences may have functional roles related to
miRNAs.

2. Methods

2.1. 3′UTRs of Human Genes and miRNA Data. We down-
loaded genomic coordinates and the length of 3′UTRs
for all human genes (hg18 March 2006 assembly) with
Reference Sequences (RefSeqs) from UCSC genome browser
(http://genome.ucsc.edu/) and predicted miRNA target sites
(hg18 March 2006 assembly) from TargetScan (http://
www.targetscan.org/). These miRNA target data sets contain
the human gene names and the genomic coordinates with

the seed region for each individual miRNAs. In the case
of a gene with alternative-splicing variants but the same
3′UTR sequence, one of the 3′UTRs was chosen. We obtained
∼20170 3′UTRs for human RefSeqs, which represent∼18080
unique genes.

2.2. Compilation of SNP, Derived Allele Frequency (DAF), and
Minor Allele Frequency (MAF) Data. We obtained human
SNP data (dbSNP Build 130) with SNP IDs, genomic
coordinates, and polymorphism types from UCSC genome
browser (http://genome.ucsc.edu/). Insertion and deletion
polymorphisms were discarded. Using genomic coordinates,
we mapped SNPs located on 3′UTRs to the 20170 human
RefSeqs. The data for DAF and MAF were obtained from
three data tables SNPAncestralAllele, SNPAlleleFreq, and
Allele (dbSNP Built 130). The SNPAncestralAllele table
contains ancestral allele information and the SNPAlleleFreq
table provides the allele frequencies for SNPs with both tables
being organism specific (ftp://ftp.ncbi.nih.gov/snp/organ-
isms/human 9606/database/). The allele table (ftp://ftp.ncbi
.nih.gov/snp/database/shared data/) contains allele informa-
tion for all organisms. We first joined these three tables to get
the frequency of each allele for SNPs located on the 3′UTRs
of the 20170 human RefSeq genes, including the ancestor
allele. We then computed for individual SNPs the DAF by
removing the fraction of ancestor allele. For multiple alleles
at a locus, the one with lowest allele frequency was selected
as MAF. In the case of only one allele for a SNP, MAF is
considered to be 0.

2.3. Gene Expression Data and Analysis of Expression Vari-
ation. Gene expression data from Stranger et al. [30] was
used for the analyses of expression variation between miRNA
and non-miRNA target genes with or without SNPs on the
3′UTRs. This dataset, which comes from illumina 6 × 2
Human gene expression arrays, contains gene expression
profiling of Epstein-Barr virus-transformed lymphoblastoid
cell lines of all 270 individuals genotyped in the HapMap
Consortium. These individuals include 90 Yoruban individ-
uals (YRI), 45 Japanese (JPT), 45 Han Chinese (CHB), and
90 Utah residents with ancestry from northern and western
Europe (CEU). The gene expression data, which contains
∼18980 unique RefSeqs, were normalized with quantile
normalization across replicates and medial normalization
across all individuals and therefore can be used for joint
analyses for all populations or within each population.

For each gene, the coefficient of variation (CV) of
expression signals across all 270 individuals was computed,
which is the ratio of the standard deviation to the mean
expression signal. The CV difference between gene groups
was then compared. These groups include (1) non-miRNA
target genes without SNPs on their 3′UTRs; (2) non-miRNA
target genes with SNPs on their 3′UTRs; (3) miRNA target
genes without SNPs on their 3′UTRs; (4) miRNA target
genes with SNPs on their 3′UTRs; (5) miRNA target genes
with SNPs in the seed target region; (6) miRNA target
genes with SNPs in the rest but seed target region; (7)
miRNA target genes with SNPs in the defined SNP density
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window region; (8) miRNA target genes with SNPs in the rest
but defined SNP density window region. Two-way ANOVA
was also employed to compare the effect on CVs between
miRNA and non-miRNA target genes, target genes with
SNPs and without SNPs, and the interaction between SNPs
and miRNAs. The GLM is: CV = miRNA + SNP + miRNA×
SNP + error.

2.4. Rank Test. Rank test was employed to estimate corre-
lation between SNP density and miRNA target site density.
Genes were first ranked by either the density of miRNA
target sites or the density of SNPs, resulting in 2 datasets
with either ordered density of miRNA target sites or ordered
SNP density. Genes in each of the two resulting datasets
were then separated into 5 equal number groups, which
were represented as [1, 20], (21,40], (41,60], (61,80], and
(81,100] in standard interval notation with increasing values.
Comparison analyses for the paired values of miRNA target
site density and SNP density were performed within each of
the 5 gene groups.

2.5. Significance Tests. To assess the statistical significance
for the window sizes of SNP density (67 nucleotides), DAF
(28 nucleotides), and MAF (26 nucleotides) surrounding
miRNA target sites, we performed tests to estimate the
occurrences of such window sizes using randomly selected
SNP density, DAF, or MAF from 3′UTRs of miRNA target
genes. The same number of nucleotides for each window size
was randomly sampled without replacement from 3′UTRs of
all miRNA target genes with SNPs and then used to compare
the values of SNP density, MAF, or DAF to those from non-
miRNA target genes. The analyses for each window size were
performed 100,000 times, and the P values were obtained by
computing the number of times out of 100,000 simulated
windows have larger SNP density, or lower DAF/MAF as
compared to those from non-miRNA target genes.

3. Results

3.1. The Impact of 3′UTRs on miRNA Function Inferred from
SNPs. SNPs are the most abundant type of genetic polymor-
phisms in genomes. While functional SNPs have the ability
to influence the structure of DNA, RNA, or proteins, they are
believed to contain the signatures of evolutionary selection
for the functional elements on the genome. We chose to
compare the SNP density between 3′UTRs of miRNA target
genes and non-miRNA target genes, which should be able
to reveal whether or not miRNA target sequences are under
strong evolutionary selective pressures due to miRNAs and,
therefore, the functional importance of target sequences on
miRNAs.

The SNP density from non-miRNA target genes and
miRNA target genes is listed in Table 1, in which the number
of SNPs and nucleotides from the 3′UTRs of miRNA target
genes and non-miRNA target genes are also listed. Out
of 8,529,061 nucleotides from the 3′UTRs of non-miRNA
target genes, 47,230 of them display SNP features with a
density of 5.54/kb. By contrast, the SNP density on the

3′UTRs of miRNA target genes is much lower. Of the
total 13,795,877 nucleotides, 54,890 display SNP features
(3.99/kb), indicating that SNPs occur less frequently in the
3′UTRs of miRNA target genes than non-miRNA target
genes (Fisher’s exact test P = 1.5× 10−154). We were curious
to know if the length of 3′UTRs from individual genes
would have impact on the occurrence of SNPs and performed
further analysis to calibrate SNP density from individual
genes. We first computed SNP density on each individual
gene and then compared SNP density difference at gene level
between miRNA target genes and non-miRNA target genes.
In agreement with the above finding, the results indicate that
the median SNP density of individual miRNA target genes
(3.8 SNPs/1000 nucleotides) is significantly (Wilcoxon rank
sum test P = 4.1×10−126) lower than that of individual non-
miRNA target genes (5.2 SNPs/1000 nucleotides).

We next performed analysis to investigate the distri-
bution of SNP density surrounding miRNA target sites.
In this analysis, we computed the occurrence of SNPs at
each nucleotide location for nucleotides both upstream and
downstream of the 5′ end of miRNA target site. In the case of
multiple miRNA target sites on a gene’s 3′UTR, we extended
the computing to the middle nucleotide location of two
adjacent miRNA target sites. We then separated them to bins,
each covering 20 nucleotide locations, and computed SNP
density for each bin. The results indicate that SNP density for
each bin on both sides of miRNA target sites is significantly
lower (Fisher’s exact test P between 3.5 × 10−5 and 9.6 ×
10−105) than those from the 3′UTRs of non-miRNA target
genes, as shown in Figure 1(a), where SNP density for 500
nucleotides both upstream and downstream of miRNA target
site is depicted. This result reveals that not only miRNA
target sites but also the rest of target 3′UTRs could play
important roles on miRNA function.

To further confirm the above findings, we performed
analysis to compare DAF between 3′UTRs of miRNA and
non-miRNA target genes, since an excess of rare derived
alleles is a signature of negative selection due to the sensitivity
of SNP density to mutation rate heterogeneity [28]. Based
on the frequency in HapMap data [31], SNPs for both
miRNA and non-miRNA target genes were first separated
into 10 bins with DAF increment of 0.1, and the fraction of
SNPs in each bin was then computed. The results indicate
that DAF distribution of SNPs from both miRNA and non-
miRNA target genes is heavily skewed toward rare derived
alleles as shown in Figure 1(b), where majority of SNPs have
DAF ≤ 0.1, indicating that SNPs on 3′UTRs were under
strong negative selection. Further analyses demonstrate that
64% SNPs from miRNA target genes are rare derived alleles
(DAF ≤ 0.1), when compared to 59% SNPs from non-
miRNA target genes (Fisher’s exact test P < 10−3). We also
investigated the SNP distribution for minor alleles, which
harbor deleterious mutations limited by natural selection.
MAF, therefore, provides further evidence for negative
selection. Similar to DAF results, MAF distribution of SNPs
from both miRNA and non-miRNA target genes is heavily
skewed toward rare minor alleles (MAF ≤ 0.05) as shown in
Figure 1(c), in which SNPs from miRNA target genes have a
higher fraction (55%) of rare minor alleles (MAF ≤ 0.05),
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Table 1: Comparison of SNP density on 3′UTRs between miRNA target genes and non-miRNA target genes.

No.
SNPs

No.
nucleotides

Density (SNP/kb) ∗P value

Non-miRNA target gene with SNPs 47230 8529061 5.538

miRNA target gene with SNPs 54980 13795877 3.985 1.50E-154
∗

From Fisher’s exact test.
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Figure 1: Distribution of SNP density, DAF, MAF on the 3′UTRs
of miRNA and non-miRNA target genes. (a) The distribution of
SNP density for 500 nucleotides both upstream and downstream of
miRNA target sites. Each asterisk represents the average SNP density
for a 20 nucleotide window size. The average SNP density from non-
miRNA target genes is depicted in solid lines. Dotted lines indicate
the 5′ end of miRNA target sites. P values are from Fisher’s exact
tests comparing between each bin and those from non-miRNA
target genes. (b) SNPs for both miRNA and non-miRNA target
genes were separated into 10 bins with DAF increment of 0.1, and
the fraction of SNPs in each bin was computed. (c) SNPs for both
miRNA and non-miRNA target genes were separated into 10 bins
with MAF increment of 0.05, and the fraction of SNPs in each bin
was computed.

as compared to SNPs from non-miRNA target genes (47%;
Fisher’s exact test P < 10−8).

Taken together, our results show that miRNA target
3′UTRs are under stronger negative selection, most likely due
to the presence of functional miRNA targets. These results
also demonstrate that the low SNP density on miRNA target
3′UTRs, as compared to those from non-miRNA target
genes, are not due to the potential source of bias from the
prediction of miRNA target sites with preferential cross-
species conservation. This was supported by the findings
from both the distributions of SNP density and DAF.

3.2. The Importance of Target Local Sequences on miRNAs.
Previous studies [28, 29] showed that miRNA seed region
was subject to stronger negative selection, when compared
to nucleotides in other region of the genome, suggesting that
the seed region is critical for miRNA function. Other than
the seed region, local environment such AU content on target
3′UTRs [11] could also affect the functionality of miRNAs.
We were curious to know if there exists any nucleotide region
surrounding miRNA target sites that could have great impact
on miRNA function.

Accordingly, we performed analysis to investigate SNP
density, the distribution of SNPs for minor alleles and the
distribution of SNPs for derived alleles surrounding miRNA
target sites. As mentioned above, we computed the occur-
rence of SNPs, SNPs of minor alleles, and SNPs of derived
alleles at each nucleotide location on both sides of the 5′

end of miRNA target sites. Since the rare derived alleles and
rare minor allele, which constitute a large part of SNPs, are
signatures for strong negative selection, we employed DAF≤
0.1 and MAF ≤ 0.05 for the analyses of their distributions
surrounding miRNA target sites.

The results are shown in Figure 2, where SNP density, the
fraction of SNPs from derived and minor alleles obtained
from all miRNA target genes are depicted for the 200
nucleotides on both sides of region matching the 5′ end of
the miRNA. We found that a ∼67 continuous nucleotide
region surrounding miRNA target sites displayed lower
SNP density with 32 nucleotides on the right side and 35
nucleotides on the left side, as compared to the average
SNP density from non-miRNA target genes (Figure 2(a)).
The occurrence of this window size with lower SNP density
is statistically significant (P = 0.01) based on 100,000
datasets, each having 67 nucleotides randomly sampled from
miRNA target 3′UTRs. Similar results were also observed
for the distribution of MAF and DAF although the window
sizes surrounding miRNA target sites are smaller. While
26 nucleotides (P < 10−3) display higher SNP frequency
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Figure 2: Distribution of SNP density, DAF, and MAF surrounding miRNA target sites. The SNP density (a), the fraction of SNPs for minor
alleles (b) and derived alleles (c) obtained from all miRNA target genes having SNPs for the 200 nucleotides on both sides of the 5′ end of
miRNA target sites are shown. The average SNP density and fraction of minor and derived alleles from non-miRNA target genes are depicted
in solid lines. Dotted lines indicate the 5′ end of miRNA target sites (middle), upstream bound (left), and downstream bound (right). Also
shown are the P values for the occurrence of the window sizes from simulation tests.

for minor alleles surrounding miRNA target sites with 11
nucleotides on the right side and 15 nucleotides on the left
side (Figure 2(b)), the DAF window size is 28 nucleotides
(P < 10−5) with 18 on the right side and 10 on the
left side (Figure 2(c)). To confirm the above findings, we
next performed analyses with a smaller window size of 8
nucleotides. Starting from miRNA seed target region, we
moved this smaller window 2 bases each time toward either
3′ or 5′ end and computed for each case the statistical
significance based on randomly sampled datasets from
miRNA target 3′UTRs. Significant lower SNP density (P <
10−2) was observed for all cases when this smaller window
size was within the defined 67 nucleotide window. These
results suggest that local environment with a certain size of
nucleotides on both sides of miRNA target site is most likely
needed for miRNAs to function properly.

3.3. Comparison of SNP Density, DAF, and MAF for Different
Regions of Target Sequences. To investigate the influence
on miRNA function from different target sequences, we
separated SNPs into 2 groups with one group from window
region defined in this study and the other group from the
rest of target 3′UTRs. We also separated SNPs into groups
from seed target region and from the rest of target 3′UTRs.
We then computed SNP density as well as SNP frequency for
minor alleles and derived alleles for each group. The findings

show that SNP density and SNP frequency for derived alleles
and minor alleles from all 4 groups are significantly different
(P between 10−3 and 10−200) from those of non-miRNA
target genes (Figure 3). While the seed target region has the
lowest SNP density and largest fraction of DAF and MAF,
which is in agreement with previous reports [28, 29], the
rest 3 groups have similar patterns of lower SNP density
and higher SNP frequency for derived and minor alleles, as
compared to non-miRNA target genes. These results further
exemplify that other than seed target region, the rest of the
target 3′UTRs may play important roles on miRNA function.

3.4. SNPs on miRNA Target Sequences Are Most Likely to
Have Functional Roles Related to miRNAs. Since miRNAs
play important biological roles for cells, one would expect
that miRNA target sequences should have not only lower
SNP density than that of non-miRNA target sequences but
also a negative correlation between the miRNA target site
density and SNP density. Our findings, however, indicate that
miRNA target site density and SNP density are positively
correlated (Spearman’s rank correlation rho: 0.13; P: 2.2 ×
10−18). To further confirm our findings, we employed a rank
test to assess the density relationship between miRNAs and
SNPs. In agreement with the correlation result, as the density
of miRNA target sites increases, the average SNP density
increases as shown in Figure 4(a), where the distribution of
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Figure 3: Comparison of SNP density, DAF, and MAF between different regions of miRNA target genes and non-miRNA target genes. SNPs
on miRNA target sequences were separated into (1) seed target region: region matching the 5′ end of the miRNA; (2) excluding seed target
region: all the rest of 3′UTRs without seed target region; (3) window regions: regions surrounding the 5′ end of the miRNA target site defined
in this study, 67 nucleotides for SNP density, 28 nucleotides for DAF, and 26 nucleotides for MAF; (4) excluding the window regions: all the
rest of 3′UTRs without the corresponding window regions. SNPs from these defined regions were compared to the SNPs from non-miRNA
target genes. (a) All 4 regions from miRNA target sequences have lower SNP density than non-miRNA target genes. (b) All 4 regions from
miRNA target sequences have higher fraction of DAF than non-miRNA target genes. (c) All 4 regions from miRNA target sequences have
higher fraction of MAF than non-miRNA target genes. Also shown are the Wilcoxon rank sum test P-values comparing to non-miRNA target
genes.

the average SNP density for 5 miRNA target site density
groups is depicted. Statistical analyses show that the average
SNP density in higher miRNA target site density groups is
significantly larger than those in lower miRNA target site
density groups (one-side Wilcoxon rank sum test P < 10−2).
This observation is also true for the SNP density ranked
analysis as shown in Figure 4(b), where the average miRNA
target site density increases along with the increasing of SNP
density, with significant differences of miRNA target site
density (one-side Wilcoxon rank sum test P < 10−7) between
low, medium, and high SNP density groups.

These results suggest that SNPs in miRNA target sequen-
ces could have functional roles related to miRNAs. Therefore,
it is expected that some of these SNPs came from very recent
selection in favor of new alleles that were better suited to the
environments. To test if SNPs from miRNA target sequences
were also under stronger positive selection, we compared
the difference of integrated haplotype scores (iHS), which

measure the recent positive selection for a given haplotype
[32], for SNPs between miRNA and non-miRNA target
genes. Using values of |iHS| from 3 haplotypes of 90 Yoruban
individuals (YRI), 90 Asian individuals (ASI), and 90 Utah
residents with ancestry from Northern and Western Europe
(CEU) in the HapMap Consortium [31], we compared
within each haplotype the |iHS| for SNPs between miRNA
and non-miRNA target genes as well as seed target region
and density window regions defined in this study. The results
indicate that SNPs from miRNA target genes were under
stronger positive selection in CEU and ASI, as compared
to SNPs from non-miRNA target genes, although statistical
significances were not observed (data not shown). It is
worthy to note that the strongest positive selection were
observed in the seed target region and density window region
defined in this study, for which all 3 haplotypes display larger
|iHS|, as compared to those for SNPs from non-miRNA
target genes.
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Figure 4: Relationship between miRNA target site density and SNP density. (a) Variation of SNP density for 5 miRNA target site density
groups with increasing density of target sites. The degree of the increasing trend for SNP density along with the increasing density of miRNA
target sites was estimated by Wilcoxon rank sum tests and depicted in P values. (b) Variation of miRNA target site density for 5 SNP groups
with increasing density. The degree of the increasing trend for miRNA target site density along with the increasing density of SNPs was
estimated by Wilcoxon rank sum tests and depicted in P values. Error bars indicate standard errors.

As a first step to investigate the relationship between
SNPs and miRNAs on gene regulation, we extended our
analysis to see if they act interactively using data from
Stranger et al. [30]. For each gene, we first obtained the
CV across 270 individuals from the HapMap Consortium
[31] and then compared the CV differences between different
gene groups (see Section 2). Since SNPs can affect miRNAs to
either increase or decrease the expression of a gene, the use of
CV, therefore, provides the most unambiguous measurement
of gene expression variability [33] due to SNPs or miRNAs.
The results indicate that miRNA target genes with SNPs
have significant larger CVs (one-side Wilcoxon rank sum
test, P < 10−4; Figure 5). We also performed permutation
tests to randomly get sets of genes with the same size of
miRNA target genes with SNPs from either all genes or genes
with SNPs. The median CVs from these selected genes were
computed and compared to that of miRNA target genes
with SNPs. Significantly higher CVs (P < 10−5) were also
observed in miRNA target genes with SNPs, when compared
to the random sets of genes. This result is not surprising,
as both miRNAs and SNPs could influence gene expression,
which was further illustrated by a two-way ANOVA analysis
showing that CVs for miRNA target genes are significantly
larger (P < 10−15) than CVs for non-miRNA target genes and
CVs for genes with SNPs are significantly larger (P < 10−10)
than CVs for genes without SNPs. It is important to note
that there exists interacting effect on CVs between miRNAs
and SNPs (P = 0.03). These results indicate that SNPs on
target sequences may interactively act with miRNA to affect
the variability of gene expression.

4. Discussion

miRNAs regulate gene expression posttranscriptionally by
base-pairing to target mRNAs in 3′UTRs. Previous study
indicated that 3′UTR length of miRNA target genes are
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Figure 5: Comparison of CVs between different gene groups. Genes
with both miRNA target sites and SNPs have significant larger CVs
(one-side Wilcoxon rank sum test, P < 10−4). Gene groups include
non-miR no SNP: non-miRNA target genes without SNPs on their
3′UTRs; non-miRNA SNP: non-miRNA target genes with SNPs on
their 3′UTRs; miR no SNP: miRNA target genes without SNPs on
their 3′UTRs; miR SNP: miRNA target genes with SNPs on their
3′UTRs; seed nt SNP: miRNA target genes with SNPs in the seed
target region; excluding seed nt: miRNA target genes with SNPs in
the rest but seed target region; 67 nts SNP: miRNA target genes
with SNPs in the SNP density window region defined in this study;
excluding 67 nts: miRNA target genes with SNPs in the rest but
defined density window region.

significantly longer than those in non-miRNA target genes
[34], suggesting that 3′UTRs play very important roles
for miRNA function. In fact, early studies indicated that
different features of miRNA target sequences could influence
the repression of miRNAs on gene expression [22–26]. In
this study, we conducted studies to gain new insight into the
influence of target 3′UTRs on miRNA function by the use of
human SNP data.
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The rationale behind this study is that if miRNAs are
functional and target sequences influence their function, the
SNPs on these sequences would be under stronger purifying
selection when compared to those of non-miRNA target
sequences. The advantage of comparing to the 3′UTRs of
non-miRNA target genes, rather than the genome sequences
or conserved sequences [28], is because the 3′UTRs, other
than miRNA target sites, harbor target sites for other
important regulatory elements. These regulatory elements
include Selenocysteine insertion sequence, UNR-binding
sites, Polyadenylation signal, Mos polyadenylatin response
element, and K-boxes, Brd-boxes, and GY-boxes [35], which
are known to play crucial roles in posttranscriptional
regulation of gene expression such as translation, subcellular
localization, and stability of the mRNA. The comparison
results from using the 3′UTRs of non-miRNA target genes
are, therefore, most likely to reflect the difference due to the
functional elements of miRNAs.

It is worthy to note that the prediction of miRNA
targets depends on conservation information of 3′UTRs,
SNPs on the 3′UTRs of miRNA target genes could, therefore,
have lower density than those from non-miRNA target
genes because of the potential source of bias from the
prediction of miRNA target sites with preferential cross-
species conservation. This concern was addressed by both
the distribution of SNP density and the DAF analyses. The
former demonstrated lower SNP density not only for the
miRNA target sites but also the rest of 3′UTR sequences,
when compared to those from the 3′UTRs of non-miRNA
target genes. The latter compared the fraction of rare derived
alleles between miRNA target genes and non-miRNA target
genes, which was normalized by each target gene groups.

We observed significant difference of SNP density
between 3′UTRs of miRNA target genes and non-miRNA
target genes, suggesting that miRNA target sequences in gen-
eral are subject to stronger purifying selection. It is important
to note that majority of SNPs accumulating overtime are
neutral with no harmful or beneficial effect on human. These
SNPs, which occur at a steady rate, can greatly influence the
comparison results. Therefore, we employed both DAF and
MAF to further confirm our findings. Whereas an excess of
rare derived alleles is a signature of negative selection [28],
minor alleles are most likely to harbor deleterious mutations
that were subject to negative selection [36]. The findings that
both miRNA and non-miRNA target genes have excess rare
derived and minor alleles is an indicative of strong negative
selection on the 3′UTRs of both miRNA and non-miRNA
target genes, indicating the validity of using the 3′UTR of
non-miRNA target genes as references for comparisons. The
fraction of both rare derived alleles (DAF ≤ 0.1) and rare
minor alleles (MAF ≤ 0.05) from miRNA target genes are
significantly larger than those from non-miRNA target genes,
presenting very strong evidence for a stronger purifying
selection on SNPs from miRNA target genes.

One of the purposes of this study is to find if there
exists any nucleotide region surrounding miRNA target sites
that could have great impact on miRNA function. Based
on SNP density, we found that a local region of about ∼67
nucleotides is most likely to play a critical role in miRNA

function. This local region contains similar number of
nucleotides on both sides of the seed target region. Whereas
most of the nucleotides upstream of the seed target region
might pair with the rest of the ∼23 miRNA sequences, the
downstream flanking sequences are located outside miRNA
target sites, raising an interesting question as to whether
a symmetric structure is needed for miRNA seed efficacy.
It is important to note that the seed target region display
the lowest SNP density, which is in agreement with other’s
findings [28]. We did not however find any significant
difference between the upstream and downstream sequences
for SNP densities in the window region. These findings were
exemplified by both MAF and DAF analyses, and although
results from MAF and DAF display smaller local sequence
region than SNP density, they nevertheless show similar
symmetric structures like SNP density with up to 10 to 18
nucleotides downstream of miRNA target sites.

One of the interesting findings from this study is that
SNP density and miRNA target site density on miRNA target
genes are positively correlated, suggesting that SNPs may be
functionally related to miRNA target sites. It is therefore
expected that some of the SNPs that were first under
purifying selection might be also subject to positive selection,
resulting in new genotypes that were better suited to the
environments. It is known that advantageous substitutions
are rare and are usually overwhelmed by the large number
of neutral substitutions. We, nevertheless, found stronger
positive selection for SNPs from miRNA target genes than
those from non-miRNA target genes, although no statistical
significance was observed, indicating that some of the SNPs
on miRNA target sequences might have new functional roles
other than affecting miRNA-mRNA interactions. Further
evidence comes from the variation analysis for gene expres-
sion, in which SNPs and miRNAs could interactively affect
the variability of gene expression.
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