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The authors developed a sensitivity analysis method to address the issue of uncontrolled confounding in

observational studies. In this method, the authors use a 1-dimensional function of the propensity score, which
they refer to as the sensitivity function (SF), to quantify the hidden bias due to unmeasured confounders. The
propensity score is defined as the conditional probability of being treated given the measured covariates. Then the
authors construct SF-corrected inverse-probability-weighted estimators to draw inference on the causal treatment
effect. This approach allows analysts to conduct a comprehensive sensitivity analysis in a straightforward manner
by varying sensitivity assumptions on both the functional form and the coefficients in the 1-dimensional SF.
Furthermore, 1-dimensional continuous functions can be well approximated by low-order polynomial structures
(e.g., linear, quadratic). Therefore, even if the imposed SF is practically certain to be incorrect, one can still hope
to obtain valuable information on treatment effects by conducting a comprehensive sensitivity analysis using
polynomial SFs with varying orders and coefficients. The authors demonstrate the new method by implementing
it in an asthma study which evaluates the effect of clinician prescription patterns regarding inhaled corticosteroids
for children with persistent asthma on selected clinical outcomes.

confounding factors (epidemiology); inverse probability weighting; propensity score; sensitivity analysis; sensitivity

function; uncontrolled confounding

Abbreviations: IPW, inverse-probability-weighted; SF, sensitivity function.

Uncontrolled confounding remains a major concern for
comparative effectiveness and safety results obtained from
analyzing observational studies (1). Sensitivity analysis is of
paramount importance and usefulness in assessing the effect
of possible uncontrolled confounding on the estimates of the
parameter of interest.

Sensitivity analysis for uncontrolled confounding has
been studied by multiple researchers. Cornfield et al. (2)
first conducted a formal sensitivity analysis examining the
association between smoking and lung cancer. Rosenbaum
(3) has also done extensive work in sensitivity analysis
by modeling the associations between an unobserved con-
founder and the treatment variable and the outcome of in-
terest. McCandless et al. (4) proposed a Bayesian sensitivity
analysis which uses hierarchical prior distributions to infer
information on the unobserved confounder using the mea-
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sured confounders. Related statistical methods and research
are described in detail elsewhere (5-15).

Robins et al. (16) and Brumback et al. (17) proposed
an alternative sensitivity analysis method for inverse-
probability-weighted (IPW) estimators (18, 19). They quan-
tify the hidden bias due to uncontrolled confounding using
a sensitivity function (SF) which depends on the measured
potential confounders. In this article, on the basis of their
existing work, we propose a new sensitivity analysis ap-
proach with a 1-dimensional, propensity score-based SF.
The propensity score is defined as the conditional probabil-
ity of being treated, given measured covariates. We con-
struct the SF-corrected IPW estimators to draw inference
on the causal treatment effect. Our new approach is easier
and more straightforward to implement. By reducing the
dimension of the SF, we make it much easier to specify
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the sensitivity functional forms and the values of coefficients.
Furthermore, a 1-dimensional continuous function can be
reasonably approximated by low-order polynomials (e.g.,
linear or quadratic) (20, 21). Therefore, even if the imposed
SF is practically certain to be incorrect, we can still hope to
understand the possible impact of uncontrolled confounding
by conducting a comprehensive sensitivity analysis using
polynomial SFs with varying orders and coefficients.

CAUSAL INFERENCE IN THE ABSENCE OF
UNCONTROLLED CONFOUNDING

Suppose we have n independently and identically dis-
tributed copies of data {(Y;, Z;, X)), i = 1, ..., n}, where
Y; indicates subject i’s observed outcome, Z; is the di-
chotomous treatment variable with 1 for treatment and 0
for control, and X; is a vector of measured confounders,
either continuous or discrete. We also define Y,; as the
potential outcome for treatment Z; = z, z € {0, 1}. Suppose
we are interested in estimating the average treatment effect
V = E[Y;;] — E[Yp,]. If the outcome is binary, | is the
causal risk difference. Our results can be easily extended
to other causal measures such as risk ratios and odds ratios.

The IPW approach has been well established for de-
riving causal inference in observational studies in the
absence of uncontrolled confounding (18, 19, 22). Its heu-
ristic idea is to construct a pseudopopulation consisting

-1
of w; = [e(X,-)Zi(l - e(X;))le'} copies of subject i’s data

X;, Z;, Y;) to remove confounding. Here e(X;) = Pr(Z; =
1|1X;) is the so-called propensity score, that is, the con-
ditional probability of being treated given the measured
confounders. Specifically, let é(X;) be the estimated pro-
pensity score for subject i. Then the IPW estimator of s

is Y =1, — fiy, where

—1
L1 ) I N
uz=<;ZI(Zi :Z)Wi> E;I(Zi = z)WiY;
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and z € {O, 1}. The idea of IPW originates from survey
sampling (23) and has been further generalized to address
many issues such as confounding bias in observational
studies and missing data (18, 19, 24, 25). When there is
no uncontrolled confounding, the potential outcomes are
independent of the treatment variable given the values of
X, that is, (Yo, Y1)L1Z|X, where I indicates independence
in probability. As a direct consequence, the potential out-
comes are also independent of Z given the values of the
propensity score, that is, (¥p, Y )I1Z|e(X). Therefore, it can
be shown that \TJ is a consistent estimator of | as long as
there is no uncontrolled confounding and é(X;) consistently

estimates the true propensity score. However, V is likely to
be biased when X does not include all confounders.

SENSITIVITY ANALYSIS FOR UNCONTROLLED
CONFOUNDING

Next, we introduce a new sensitivity analysis approach
which is based on the IPW estimators and uses a propensity
score-based SF to quantify the hidden bias due to unmea-
sured confounders.

Sensitivity function

In the presence of uncontrolled confounding, (Yo, Y;) is
likely to be correlated with Z, conditional on the propensity
score e(X). Thus, we cannot obtain a valid estimate of
the causal effect by directly comparing the outcome means
between the 2 treatment groups in the pseudopopulation.
To address this issue, we propose an SF, defined below, to
quantify the hidden bias.

c(z,e) = E[Y;|Z = 1,e(X) = e] = E[V|Z = 0,e(X) = ]

forz € {0,1} and 0 < e < 1. That is, for the subpopulation
with the same propensity score values (i.e., e(X) = e), c(z, e)
is the mean difference for the potential outcome Y, between
the treated (Z = 1) and untreated (Z = 0) groups. In other
words, c(z, ) quantitatively measures the impact of unmea-
sured confounders on the difference in potential outcomes
between the treated and untreated subjects, conditional on
the propensity score of measured covariates. The range of
the SF c(z, e) reflects the magnitude of uncontrolled con-
founding bias. Under the assumption of no uncontrolled
confounding, c(z, ¢) = 0 for any value of (z, e).

Our sensitivity analysis method is developed along the
lines of the work by Robins et al. (16, 26) and Brumback
et al. (17), in which the uncontrolled confounding is quan-
tified using the between-group difference, conditional on the
values of all measured confounders, that is, c*(z, x) =
E[Y,|Z=1,X =x] — E[Y,]Z =0, X = x]. We prove in the
Web Appendix (available on the Journal’s Web site (http://
aje.oxfordjournals.org/)) that c(z, €) = E[c*(z, X)|e(X) = e].
Therefore, if ¢*(z, X) is constant, c*(z, X) = c(z, ), and both
methods are the same. Nonetheless, when X contains mul-
tiple covariates, our approach will be much easier to imple-
ment because our SF depends only on a single random
variable e(X), a 1-dimensional summary of X, rather than
a multidimensional vector X. Note that in performing a sen-
sitivity analysis, an analyst needs to specify not only the
functional form of the SF but also the values of the coeffi-
cients. For instance, c*(z, x) equals f; X age + B, X race,
where B; equals 0.2 and B, equals 0.1. When c*(z, x) is
expected to depend on multiple confounders, such specifi-
cations will be difficult, and the imposed working functional
form is unlikely to accurately reflect the complex relations
between the measured and unmeasured confounders and the
potential outcomes. Furthermore, since we cannot empiri-
cally verify the imposed assumptions using the observed
data, it is a common practice to vary these assumptions in
sensitivity analysis to evaluate the corresponding causal es-
timates. When c*(z, x) is high-dimensional, it will be tech-
nically difficult to do so, as we would need to vary many
parameters in c¢*(z, x) simultaneously.
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Our approach nicely reduces the dimension of the SF
and makes it much easier to vary sensitivity assumptions
to explore plausible scenarios. In practice, the specified
SF is likely to be incorrect. Nonetheless, since the new
SF is 1-dimensional, low-order polynomials (e.g., linear,
quadratic) should be able to provide reasonable approxi-
mations as long as the true SF c(z, ¢) is continuous in
the interval [0, 1] (20, 21). We suggest conducting a sen-
sitivity analysis with constant, linear, or quadratic SFs with
the coefficients varying over a set of plausible values,
which should be selected on the basis of the observed
data, literature, and subject knowledge specific to the ap-
plication setting. For instance, suppose the outcome of
interest is death and the treated subjects are relatively
sicker than the untreated subjects; then, before conducting
sensitivity analysis, we need to understand how different
the treated and untreated groups are after controlling for
measured confounders. Suppose we expect an average
5%—-10% excess risk for the treated subjects as compared
with the untreated subjects, even if, contrary to fact, they
were given the same treatment. We would vary c(z, e) be-
tween 0.05 and 0.1 when considering a constant SF. If
we expect the amount of hidden bias to vary approximately
linearly across levels of propensity score, we could use
a linear SF. Since e € [0, 1], we would select the intercept
and slope of the linear SF on the basis of the likely values
of excess risks for persons with very large or very small
propensity scores. For instance, c(z, ) = 0.05 + 0.05e if
we expect c(z, e) to increase with e or ¢(z, ¢) = 0.1 — 0.05¢
if we expect c(z, e) to decrease with e. Later in this article,
we provide more specific illustrations and instructions in
the context of an example.

SF-corrected IPW estimators

Given an SF c¢(z, ¢), we construct the SF-corrected IPW
estimators by replacing the observed Y in the original esti-

mator \TJ with the SF-corrected outcomes

ySF=y_ (E[YZ|Z,6(X)] - E[YZ|6(X)])

_ {Y— (1 —eX))c(l,e) ifZ=1,
Y +e(X)c(0,e) if Z=0. (1)

Then,

= _u()v

where

sk = (Z[ ) Zl 2w, YSF.

We prove in the Web Appendix the consistency of \TJSF. The
intuitive idea is straightforward: We simply remove the
hidden bias in the pseudopopulation by applying the SF.
Then the causal effect can be consistently estimated by
the between-group difference of outcome means.
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Note that for noncontinuous outcomes (e.g., binary out-
comes), instead of using an additive SF as defined above, we
may use a multiplicative SF

c(z,e) =log [%}

and remove residual bias by defining

e EYle(X)]
=Y e Z. e

which equals Y{e(X) + exp(—c(z = 1, e(X))(1 — e(X)))} if
Z =1land Y{l — e(X) + exp(c(z = 0, e(X))e(X))} if Z= 0.
Then it can be easily shown that E[YSF|Z = z, X] =
E[Y.|le(X)]. In addition, Y5F is guaranteed to be positive.
Nonetheless, with binary outcomes, the estimates of the
marginal means u Fand fi ASF may still be outside the plau-
sible range [0, 1]. ThlS 1n turn guides analysts in the
selection of sensible parameters in the SF.

In this article, we chose to focus primarily on the additive
SF for the purposes of illustration and explication. Multipli-
cative SFs can be implemented in exactly the same manner.

Variance and bootstrap confidence intervals

We estimate the propensity score using generalized
boosted models (27). The generalized boosted models ap-
proach predicts treatment assignment from a large number
of pretreatment covariates through adaptive choice of vari-
ables. It inherits many of the properties of regression trees,
and thus is flexible, can capture complex interactions among
confounders and nonlinear terms, and can handle highly
correlated covariates. Ridgeway and McCaffery (28) have
provided empirical evidence, via a simulation study, show-
ing that the generalized boosted models method produces
more stable and reliable estimates of the propensity score
than logistic regression models. We then use bootstrap
methods (29) to obtain estimates of the variances and the
95% bootstrap confidence intervals. Specifically, the var-
iances are estimated with the sample variances and the
bootstrap confidence intervals are estimated with the corre-
sponding percentiles among the bootstrap realizations.

APPLICATION TO THE ASTHMA STUDY

To illustrate our method, we present data from a Boston,
Massachusetts, prospective cohort study (the Parent Asthma
Communication Experience Study) comparing selected
clinical outcomes during a 12-month follow-up period
(2007-2008) for children with mild persistent asthma whose
parents believed that they were supposed to use inhaled
corticosteroids either daily or periodically (30).

Motivating example

Study subjects with mild persistent asthma were initially
identified using administrative claims records. A diagnosis
of persistent asthma was later confirmed on the basis of
responses to a telephone survey (30). Our study cohort
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Table 1. Distribution of Children With Mild Persistent Asthma and
Risks of Uncontrolled Asthma According to Treatment Group (Daily
Use or Periodic Use of Inhaled Corticosteroids) and Associated Risk
Differences, Parent Asthma Communication Experience Study,
2007-2008

PS PS Daily Use Periodic Use Risk
Stratum? Cutpoint No. Risk No. Risk Difference
1 0.30 7 014 66 0.20 —0.06
2 0.46 22 036 50 0.32 0.04
3 0.62 37 049 36 0.36 0.13
4 0.77 57 0.46 15 0.20 0.26
5 0.96 71 0.66 2 0.00 0.66
Total 194  0.52 169 0.27 0.25

Abbreviation: PS, propensity score.
@ Estimated quintiles.

consisted of 363 children with a confirmed diagnosis of
mild persistent asthma. The children were classified into 2
treatment groups based on whether their parents believed
that their health-care providers had told them to have their
children use inhaled corticosteroids daily (Z = 1) or peri-
odically (i.e., as needed; Z = 0). The clinical outcome of
interest (¥) was whether a child had an episode of uncon-
trolled asthma during the 12-month period after the tele-
phone survey. The measured confounders X included age,
race, parental education, household income, health insur-
ance provider, baseline asthma physical status score, com-
peting family priorities score, and health-care utilization
during the baseline period (i.e., 12 months before the sur-
vey). Crude comparisons showed that the periodic users had
better observed outcomes than the daily users. We hypoth-
esized that periodic users appeared to have fewer episodes
of uncontrolled asthma because the periodic users had less
severe asthma at baseline. Our goal was to evaluate whether
periodic users had worse outcomes than daily users, while
adjusting for both measured covariates and possibly uncon-
trolled confounding. The causal effect {s indicated the effect
of the pattern of inhaled corticosteroid prescription on the
clinical outcome of uncontrolled asthma—that is, the rate
difference for uncontrolled asthma supposing that the entire
study population was told to use inhaled corticosteroids daily
versus periodically. We did not intend to evaluate the treat-
ment effect of inhaled corticosteroids because a new-user
design (31) was infeasible and we were not able to monitor
actual use of the medications.

Preliminary analyses showed that the daily-use group had
a worse baseline asthma physical status score and a higher
baseline medication concerns score than the periodic-use
group (30). In this specific example, sicker participants were
more likely to be treated (i.e., to be prescribed daily use of
inhaled corticosteroids). The crude risk difference for un-
controlled asthma was 0.25 (95% confidence interval: 0.15,
0.35), and the adjusted risk difference was 0.20 (95% con-
fidence interval: 0.12, 0.30). In Table 1, we present the
numbers of subjects and absolute risks by treatment group,
as well as risk differences, in the entire study cohort and

within each propensity score stratum, defined by estimated
quintiles. After adjustment for the estimated propensity
scores, the marginal distributions for the measured baseline
covariates were balanced between the 2 treatment groups
without significant differences. In the propensity score es-
timation, we adjusted for age, race, health maintenance
organization site, parental education, household income,
baseline asthma physical status score, competing family
priorities score, expectations score, provider interaction
score, number of outpatient visits for asthma during the
baseline period (i.e., the 12 months before the interview),
uncontrolled asthma during the baseline period, and the
number of emergency department visits or hospitalizations
in the baseline period.

The results imply that the daily-use pattern is worse than
the periodic-use pattern, especially among subjects with
high propensity scores. These results are inconsistent with
both the anecdotal clinical experience of physicians and
national guidelines which recommend that children with
persistent asthma use inhaled corticosteroids on a daily basis
year-round. We suspect that the paradoxical results are due
to uncontrolled confounding. The seemingly harmful effect
of daily use is probably due to the fact that the children who
were prescribed daily use of inhaled corticosteroids had
more severe disease during the baseline period, which was
not adequately captured by the measured covariates. On
the basis of the observed increasing risk difference from
the lowest propensity score stratum to the highest stratum,
we hypothesize that the magnitude of residual bias due to
unmeasured confounders increases with the estimated pro-
pensity score; that is, subjects with high propensity scores
are probably children with the most severe asthma and are
thus subject to more uncontrolled confounding bias. Our
sensitivity analyses will examine whether this harmful
effect of daily use diminishes as we account for possible
residual confounding bias.

Note that Table 1 shows some poor overlap of the pro-
pensity score distributions between the 2 treatment groups,
as there are very few daily users in stratum 1 and very few
periodic users in stratum 5. In this article, we use this exam-
ple purely for the purpose of illustrating the sensitivity anal-
ysis method and thus do not wish to distract the reader with
extra details. In real-life applications, analysts may consider
redefining the study population such that their estimated
propensity scores are on the overlapping support (32).

Sensitivity analysis

In the sensitivity analysis, we consider constant, linear,
and quadratic SFs. In all analyses, we use the generalized
boosted models approach to estimate the propensity score
(33). The 95% bootstrap confidence intervals are constructed

using the 2.5% and 97.5% percentiles of the 1,000 bootstrap
realizations of \TJSF.

Constant SF. We first consider c(z, ) = ¢, for z € {0, 1}.
In our motivating example, we expect the treated group
(daily-use pattern) to have poorer pretreatment asthma sta-
tus than the untreated group (periodic-use pattern), even
after controlling for measured confounders. Thus, we expect
co and c¢; to be nonnegative constants, since children with

Am J Epidemiol. 2011;174(3):345-353
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Point estimates (solid line) of the risk difference for uncontrolled asthma between daily use and periodic use of inhaled corticosteroids in

children with mild persistent asthma, assuming constant sensitivity functions, Parent Asthma Communication Experience Study, 2007—2008. The
authors vary the values of ¢(1, €) and r= ¢(0, e)/c(1, €). A) r=1; B) r=1.2; C) r=1.5; D) r= 2. The 95% bootstrap confidence intervals (dotted
lines) were obtained using the 2.5% and 97.5% percentiles among the 1,000 bootstrap replications.

poorer asthma status are likely to have higher risks of
uncontrolled asthma during the follow-up period than the
other group, even if, contrary to fact, they received the same
treatment. Note that disease scores typically measure a dif-
ferent dimension than propensity scores. Our sensitivity
assumptions in this asthma example are made on the basis
of observed data, literature, and subject knowledge for this
specific application, and they may not apply to other set-
tings. In the crude analysis prior to adjustment for any con-
founders, 52% of treated subjects and 27% of untreated
subjects had uncontrolled asthma. Based on clinical knowl-
edge and experience, we do not expect the daily-use pattern
to produce worse clinical outcomes than the periodic-use
pattern; therefore, we vary the value of ¢; in the range of
[0, 0.3]. We allow for the possibility that ¢ is greater than
c1—that is, that the uncontrolled confounding has a bigger
impact on the potential outcome for periodic use (Y;) than
on the potential outcome for daily use (Y7).

Let r = co/c; indicate the ratio between the 2 constant
SFs. In Figure 1, we present 4 plots for » values of 1, 1.2, 1.5,
and 2, respectively. The solid lines indicate the point esti-
mates of the risk difference, while the dotted lines indicate
the lower and upper limits of the 95% bootstrap confidence
intervals. The horizontal line represents the null value of 0.

Am J Epidemiol. 2011;174(3):345-353

As expected, the risk difference estimates decrease when
either ¢, or r increases. This is intuitively plausible, because
the more the uncontrolled confounding is assumed to exist,
the further the SF-corrected risk difference estimator de-
creases as we attribute an increasing proportion of the
observed risk difference to the effect of uncontrolled con-
founding. Under the assumption of no unmeasured con-
founder, the estimated risk difference for uncontrolled
asthma is 0.2 (95% bootstrap confidence interval: 0.1,
0.3); that is, the daily-use pattern leads to a 20% excess risk.
Let us first examine the plot in the upper left corner of
Figure 1 with r =1 (ie.,, c(z=1,¢) = c(z =0, e) = ¢y).
When ¢, increases to approximately 0.15 (i.e., the treated
group has a 0.15 greater risk of uncontrolled asthma than
the uncontrolled group, regardless of whether they were
all treated or all untreated), the lower bound of the 95%
bootstrap confidence interval crosses the null value of zero,
indicating an insignificant risk difference between the 2
patterns of inhaled corticosteroid use. The 95% bootstrap
confidence interval remains statistically insignificant within
the considered range of ¢; < 0.3. The point estimate for the
risk difference decreases to —0.05 at ¢; = 0.3, but this
difference is insignificant. Results shown in other parts of
Figure 1 with varying values of r are very similar. The 95%
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Table 2. Estimated Risk Difference for Uncontrolled Asthma According to Treatment Group (Daily Use or Periodic
Use of Inhaled Corticosteroids) Among Children With Mild Persistent Asthma, Parent Asthma Communication

Experience Study, 2007-2008%

r=1.0 r=1.5 r=2.0
é s RD 95% BCI® 95% BCI RD 95% BCI
0.00 0.00 0.20 0.12, 0.30 0.20 0.12, 0.30 0.20 0.12, 0.30
0.05 0.18 0.10, 0.28 0.18 0.10, 0.28 0.17 0.09, 0.28
0.10 0.16 0.08, 0.27 0.15 0.07, 0.26 0.14 0.06, 0.25
0.20 0.12 0.05, 0.23 0.10 0.03, 0.22 0.08 0.01, 0.20
0.30 0.08 0.01, 0.20 0.05 -0.02, 0.18 0.02 —0.05, 0.15
0.05 0.00 0.16 0.08, 0.27 0.15 0.07, 0.26 0.14 0.07, 0.25
0.05 0.14 0.06, 0.25 0.13 0.05, 0.24 0.11 0.04, 0.22
0.15 0.10 0.03, 0.22 0.08 0.00, 0.20 0.05 -0.02, 0.17
0.25 0.06 -0.01,0.18 0.03 —0.05, 0.15 —0.01 —0.08, 0.12
0.10 0.00 0.12 0.05, 0.23 0.10 0.03, 0.22 0.08 0.01, 0.20
0.10 0.08 0.01, 0.20 0.05 -0.02, 0.17 0.02 —0.05, 0.15
0.20 0.04 —0.03, 0.16 0.00 -0.07,0.13 —0.04 -0.11,0.10
0.20 0.00 0.04 —-0.03, 0.16 0.00 -0.07,0.13 -0.04 -0.11, 0.09
0.10 0.00 -0.07,0.13 -0.05 —-0.12, 0.09 -0.10 -0.17,0.04
0.30 0.00 —0.05 -0.10, 0.10 -0.10 —-0.16, 0.05 -0.16 —-0.23, —0.01

Abbreviations: BCI, bootstrap confidence interval; RD, risk difference.
& The authors assumed that the sensitivity functions followed linear structures, such that c(z= 1, €) = ¢; + s;eand

c(z=0,e)=rx(z=1,¢e).

® The 95% bootstrap confidence intervals were obtained using the 2.5% and 97.5% percentiles among the 1,000

bootstrap replications.

bootstrap confidence interval becomes significant only in
the unlikely setting in which ¢, is approximately 0.3 and ¢,
is approximately 0.6.

Linear and quadratic SFs. We also consider the linear
SF c(z, €) = ¢, + s,e(X); that is, the effect of uncontrolled
confounding changes linearly with the propensity score. In
this example, we expect the magnitude of residual con-
founding to increase with the propensity score (i.e., s, is
positive), since children with higher propensity scores are
expected to be sicker at baseline. Then c, and c, + s, in-
dicate the lower and upper bounds of c(z, e), respectively.
Note that the propensity score is likely to be bounded away
from 0 and 1. However, for this specific example, we do not
have enough background information to specify the exact
boundaries.

In Table 2, we present the results for a set of scenarios
in which c¢; varies between 0 and 0.3 and s; varies between
0 and 0.3 — ¢, for a given ¢, since we do not expect c(1, e)
to exceed 0.3. We also consider 3 possible values (i.e., 1.0,
1.5, and 2.0) for the ratio r = ¢(0, ¢)/c(1, e). The numbers
presented in Table 2 suggest that the results are similar
to those shown in Figure 1. The point and interval estimates
of the risk difference keep decreasing when cj, sy, or r in-
creases. The more the uncontrolled confounding is assumed
to exist, the smaller the risk difference estimates are. With
larger values of r, the estimates decrease at an even faster
rate. Under certain scenarios, the point estimates of risk
difference are negative, indicating a protective effect of
daily use on the incidence of uncontrolled asthma during

the follow-up period. However, the differences remain sta-
tistically insignificant under plausible scenarios.

To evaluate the effect of violations of linear structures,
we further consider the quadratic SF c(z, €) = ¢, + s.e +
g.e>. The coefficients (c,, ., ¢.) do not have direct inter-
pretations. Their values are determined by the values of the
SF at 3 points—for example, c(z, e = 0) (the lower bound),
c(z, e = 1) (the upper bound), and c(z, e = 0.5). For each
selected (c(z, 0), c(e, 1)), we vary the value of c(z, e =
0.5) between ¢(1,e = 0) + (1/4)[c(l,e = 1) —¢(1,e = 0)]
andc(l,e =0) + (3/4)[c(1,e = 1) — ¢(1,e = 0)]. The dif-
ference between the middle point c¢(z, ¢ = 0.5) and
(1/2)[c(z,e = 0) 4 c(z,e = 1)] indicates the deviation of
the SF from linear structures. The results are very similar
and thus are not shown here.

In summary, we conducted a comprehensive sensitivity
analysis for the asthma study considering constant, linear,
and quadratic SFs and various sets of coefficients. After
accounting for possible uncontrolled confounding, the un-
likely harmful effect of the daily-use pattern diminishes.
The risk difference estimates become negative, suggesting
some beneficial effect of the daily-use prescription pattern
when c(z, e) is 0.25 or higher. Nevertheless, the differences
are statistically insignificant under a wide range of plausi-
ble scenarios. Thus, our study population does not exhibit
strong evidence supporting the superiority of the daily-use
pattern compared with the periodic-use pattern. The results
are consistent with some providers’ clinical experience that
periodic use of inhaled corticosteroids is effective for
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selected patients with mild intermittent asthma. The 2007
National Heart, Lung, and Blood Institute guidelines (34)
also state that periodic or seasonal treatment is an acceptable
option for some children. Several recent clinical trials have
demonstrated the effectiveness of periodic inhaled cortico-
steroid use for selected adult patients with mild persistent
asthma (35-37). However, to our knowledge, no studies
exist for children. The published study on this asthma ex-
ample (30) provides useful information with which to guide
clinical practice for children with asthma. Nonetheless, the
results suffer from the bias due to unmeasured confounders.
Our sensitivity analysis directly addresses this issue and
provides a comprehensive assessment of the 2 use patterns
to answer the critical clinical question of interest.

DISCUSSION

We have introduced a new propensity score-based sen-
sitivity analysis method that uses the SF-corrected IPW
estimators to assess the effect of possible uncontrolled
confounding in observational studies. As we have shown
through its application to an asthma study (30), the new
method can be easily adopted to provide valuable insight
on the impact of uncontrolled confounding. The SF is a
1-dimensional function of the propensity score. If strong
prior information is available, appropriate functional forms
and coefficients can be directly imposed. Otherwise, low-
order (e.g., linear, quadratic) polynomials are expected to
provide reasonably good approximations of continuous 1-
dimensional functions. We suggest varying the coefficients
over a set of plausible values, which should be determined
on the basis of observed data, literature, and subject knowl-
edge. The sensitivity assumptions we made in the analysis
were appropriate for our asthma study but may not apply
to other settings. These assumptions need to be examined
or modified before our method is applied to other studies.

The proposed method is a direct extension of an existing
sensitivity analysis method (17) in which the SF depends
on the entire covariate vector X. The motivation is to reduce
the dimension of the SF to facilitate the implementation
of a comprehensive sensitivity analysis. Nonetheless, a good
understanding of the relation between the propensity score
and the disease risk is still required in order to impose
reasonable parametric assumptions on the 1-dimensional
SF. In some settings, patients who have similar propensity
scores may have totally different disease risks and thus are
subject to different amounts of hidden bias (e.g., relatively
healthy patients and very severely impaired patients may
both have low propensities of receiving the treatment). Then
it would be less straightforward to impose assumptions on
the 1-dimensional SF, since we collapse subjects who have
similar propensity scores but different disease risks together.
In such settings, we suggest taking an intermediate step
to balance the trade-off between reducing the dimension
of the SF and keeping subjects with different disease risks
separate. Specifically, we could define the SF as the condi-
tional mean difference in the potential outcomes between
the treated and untreated subgroups, conditional on not only
the propensity score but also 1 or several elements in X that
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were strong predictors of the outcome (e.g., a dummy vari-
able indicating whether the patient was severely impaired).
It can be shown that the aforementioned results apply.

The idea of bias correction using a propensity score-based
SF can also be applied to other causal inference methods—
for example, propensity score matching and stratification
and doubly robust estimation (38). These methods share
the same heuristic ideas as the IPW approach in that they
use the propensity score to select comparable real-life
treated and untreated subjects from whom to borrow infor-
mation and draw causal inferences. Therefore, the idea of
removing the hidden bias using the imposed SF applies
equally to all of them. Within each level of the propensity
score, the expectation of the SF-corrected outcome in a
single treatment group equals the expectation of the corre-
sponding potential outcome in both treatment groups. Then
the causal treatment effect can be consistently estimated
given that the imposed SF is correct. In future work, we
plan to evaluate and compare the performance of different
SF-corrected estimators under various scenarios. We will
also extend the work to longitudinal settings with repeated
measurements.

Finally, note that the proposed sensitivity analysis does
not work when the IPW approach does not work. For in-
stance, when the weights are highly variable (propensity
scores for some treated subjects are close to 0 and/or pro-
pensity scores for some untreated subjects are close to 1),
IPW estimators are known to be sensitive and unstable
(39). In such settings, our sensitivity analysis approach is
unlikely to yield useful information, since it is based on
the IPW estimation. Other sensitivity analysis approaches
might be preferred. In their 2004 article, Brumback et al.
(17) provide an excellent discussion on relevant approaches.
However, a major advantage of Brumback’s and our ap-
proaches is that they can be used to explore sensitivity to
multiple unmeasured confounders simultaneously.

To help researchers implement the proposed work, we
have written a user-friendly software program within the
R statistical computing environment (R Foundation for
Statistical Computing, Vienna, Austria) with which to con-
duct the proposed sensitivity analysis for a list of sensitivity
functional forms. The R program will be posted on our
faculty Web sites.
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